Accelerating NAMD with Graphics Processors

Klaus Schulten

http://www.ks.uiuc.edu/Research/namd/

NIH Resource for Macromolecular Modeling and Bioinformatics http://www.ks.uiuc.edu/

NAMD: Practical Supercomputing

- 24,000 users can't all be computer experts.
 - 18% are NIH-funded; many in other countries.
 - 4900 have downloaded more than one version.
- User experience is the same on all platforms.
 - No change in input, output, or configuration files.
 - Run any simulation on **any number of processors**.
 - Precompiled binaries available when possible.
- Desktops and laptops setup and testing
 - x86 and x86-64 Windows, and Macintosh
 - Allow both shared-memory and network-based parallelism.
- Linux clusters affordable workhorses
 - x86, x86-64, and Itanium processors
 - Gigabit ethernet, Myrinet, InfiniBand, Quadrics, Altix, etc

Phillips et al., J. Comp. Chem. 26:1781-1802, 2005.

Beckman Institute, UIUC

Our Goal: Practical Acceleration

- Broadly applicable to scientific computing
 - Programmable by domain scientists
 - Scalable from small to large machines
- Broadly available to researchers
 - Price driven by commodity market
 - Low burden on system administration
- Sustainable performance advantage
 - Performance driven by Moore's law
 - Stable market and supply chain

Acceleration Options for NAMD

- Outlook in 2005-2006:
 - FPGA reconfigurable computing (with NCSA)
 - Difficult to program, slow floating point, expensive
 - Cell processor (NCSA hardware)
 - Relatively easy to program, expensive
 - ClearSpeed (direct contact with company)
 - Limited memory and memory bandwidth, expensive
 - MDGRAPE
 - Inflexible and expensive
 - Graphics processor (GPU)
 - Program must be expressed as graphics operations

GPU vs CPU: Raw Performance

Calculation: 450 GFLOPS vs 32 GFLOPS
Memory Bandwidth: 80 GB/s vs 8.4 GB/s

NIH Resource for Macromolecular Modeling and Bioinformatics http://www.ks.uiuc.edu/

CUDA: Practical Performance

November 2006: NVIDIA announces CUDA for G80 GPU.

- CUDA makes GPU acceleration usable:
 - Developed and supported by NVIDIA.
 - No masquerading as graphics rendering.
 - New shared memory and synchronization.
 - No OpenGL or display device hassles.
 - Multiple processes per card (or vice versa).
- Resource and collaborators make it useful:
 - Experience from VMD development
 - David Kirk (Chief Scientist, NVIDIA)
 - Wen-mei Hwu (ECE Professor, UIUC)

Stone et al., J. Comp. Chem. 28:2618-2640, 2007.

Fun to program (and drive)

GeForce 8800 Graphics Mode

GeForce 8800 General Computing

768 MB DRAM, 4GB/S bandwidth to CPU

NIH Resource for Macromolecular Modeling and Bioinformatics http://www.ks.uiuc.edu/

Typical CPU Architecture

L2 Cache			L3 Cache		
L1 I	L1	D			
Dispatch/Retire					
FPU F	PU	ALU			
Memory Controller					

Minimize the Processor

No large caches or multiple execution units

L1 I L1 D

Dispatch/Retire

FPU Do integer arithmetic on FPU

Memory Controller

Maximize Floating Point 8 FP pipelines per SIMD unit

L1 I]	L1 D					
Dispatch/Retire							
FPU	FPU	IJ]	FPU	FPU			
FPU	FPU	J]	FPU	FPU			

Shared data cache

Single instruction stream

One thread per FPU allows branches and gather/scatter.

Memory Controller

Add More Threads

Pipeline 4 threads per FPU to hide 4-cycle instruction latency.

All 32 threads in a "warp" execute the same instruction.

Divergent branches allowed through predication.

Add Even More Threads

Multiple warps in a "block" hide main memory latency and can synchronize to share data.

Add More Threads Again

Multiple blocks on a single multiprocessor hide both memory and synchronization latency.

All blocks execute a "kernel" function independently without synchronization or memory coherency.

Add Cores to Suit Customer

Kernel is invoked on a "grid" of uniform blocks.

Blocks are dynamically assigned to available multiprocessors and run to completion.

Synchronization occurs when all blocks complete.

GeForce 8800 General Computing

768 MB DRAM, 4GB/S bandwidth to CPU

NIH Resource for Macromolecular Modeling and Bioinformatics http://www.ks.uiuc.edu/

Support Fine-Grained Parallelism

- Threads are cheap but desperately needed.
 - How many can you give?
 - 512 threads will keep all 128 FPUs busy.
 - 1024 threads will hide some memory latency.
 - 12,288 threads can run simultaneously.
 - Up to 2×10^{12} threads per kernel invocation.

NAMD Parallel Design

Kale et al., J. Comp. Phys. 151:283-312, 1999.

- Designed from the beginning as a parallel program
- Uses the Charm++ idea:
 - Decompose the computation into a large number of objects
 - Have an Intelligent Run-time system (of Charm++) assign objects to processors for dynamic load balancing with minimal communication

Hybrid of spatial and force decomposition:

•Spatial decomposition of atoms into cubes (called patches)

•For every pair of interacting patches, create one object for calculating electrostatic interactions

•Recent: Blue Matter, Desmond, etc. use this idea in some form

NAMD Overlapping Execution

Phillips et al., SC2002.

Objects are assigned to processors and queued as data arrives.

GPU Hardware Special Features

Nonbonded Forces on CUDA GPU

- Start with most expensive calculation: direct nonbonded interactions.
- Decompose work into pairs of patches, identical to NAMD structure.
- GPU hardware assigns patch-pairs to multiprocessors dynamically.

<pre>texture<float4> force_table; constant unsigned int exclusions[]; shared atom jatom[]; atom iatom; // per-thread atom, stored in registers float4 iforce; // per-thread force, stored in registers for (int j = 0; j < jatom_count; ++j) { float dx = jatom[j].x - iatom.x; float dy = jatom[j].y - iatom.y; float dz = float r2 = dx*dx + dy*dy + dz*dz; if (r2 < cutoff2) {</float4></pre>	ed Forces Code = jatom[j].z - iatom.z;
float4 ft = texfetch(force_table, 1.f/sqrt(r2));	Force Interpolation
<pre>bool excluded = false; int indexdiff = iatom.index - jatom[j].index; if (abs(indexdiff) <= (int) jatom[j].excl_maxdiff) { indexdiff += jatom[j].excl_index; excluded = ((exclusions[indexdiff>>5] & (1<<(indexdiff&31))) != 0); }</pre>	Exclusions
<pre>float f = iatom.half_sigma + jatom[j].half_sigma; // sigma f *= f*f; // sigma^3 f *= f; // sigma^6 f *= (f * ft.x + ft.y); // sigma^12 * fi.x - sigma^6 * fi.y f *= iatom.sqrt_epsilon * jatom[j].sqrt_epsilon; float qq = iatom.charge * jatom[j].charge; if (excluded) { f = qq * ft.w; } // PME correction else { f += qq * ft.z; } // Coulomb</pre>	Parameters
iforce.x += dx * f; iforce.y += dy * f; iforce.z += dz * f; iforce.w += 1.f; // interaction count or energy	Accumulation

National Center for Research Resources

Stone et al., J. Comp. Chem. 28:2618-2640, 2007.

Beckman Institute, UIUC

Why Calculate Each Force Twice?

- Newton's 3rd Law of Motion: $\mathbf{F}_{ij} = \mathbf{F}_{ji}$
 - Could calculate force once and apply to both atoms.
- Floating point operations are cheap:
 - Would save at most a factor of two.
- Almost everything else hurts performance:
 - Warp divergence
 - Memory access
 - Synchronization
 - Extra registers
 - Integer logic

What About Pairlists?

- Generation works well under CUDA
 - Assign atoms to cells
 - Search neighboring cells
 - Write neighbors to lists as they are found
 - Scatter capability essential
 - 10x speedup relative to CPU
- Potential for significant performance boost
 Eliminate 90% of distance test calculations

Why Not Pairlists?

- Changes FP-limited to memory limited:
 - Limited memory to hold pairlists
 - Limited bandwidth to load pairlists
 - Random access to coordinates, etc.
 - FP performance grows faster than memory
- Poor fit to NAMD parallel decomposition:
 - Number of pairs in single object varies greatly

Initial GPU Performance

- Full NAMD, not test harness
- Useful performance boost
 - 8x speedup for nonbonded
 - 5x speedup overall w/o PME
 - 3.5x speedup overall w/ PME
 - GPU = quad-core CPU
- Plans for better performance
 - Overlap GPU and CPU work.
 - Tune or port remaining work.
 - PME, bonded, integration, etc.

2.67 GHz Core 2 Quad Extreme + GeForce 8800 GTX

NIH Resource for Macromolecular Modeling and Bioinformatics http://www.ks.uiuc.edu/

New GPU Cluster Performance

- 7x speedup
- 1M atoms for more work
- Overlap with CPU
- Infiniband helps scaling
- Load balancer still disabled
- Plans for better scaling
 - Better initial load balance
 - Balance GPU load

STMV Performance

Thanks to NCSA and NVIDIA

NIH Resource for Macromolecular Modeling and Bioinformatics http://www.ks.uiuc.edu/

Next Goal: Interactive MD on GPU

- Definite need for faster serial IMD
 - Useful method for tweaking structures.
 - 10x performance yields 100x sensitivity.
 - Needed on-demand clusters are rare.
- AutoIMD available in VMD already
 - Isolates a small subsystem.
 - Specify molten and fixed atoms.
 - Fixed atoms reduce GPU work.
 - Pairlist-based algorithms start to win.
- Limited variety of simulations
 - Few users have multiple GPUs.
 - Move entire MD algorithm to GPU.

(Former HHS Secretary Thompson)

Conclusion and Outlook Low-End GPU Impact: - Usable performance from a single machine – Faster, cheaper, smaller clusters • High-End GPU Impact: Fewer, faster nodes reduces communication - Faster iteration for longer simulated timescales • This is first-generation CUDA hardware