
NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Accelerating NAMD
with Graphics Processors

James Phillips
John Stone
Klaus Schulten
http://www.ks.uiuc.edu/Research/namd/

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

NAMD: Practical Supercomputing
• 24,000 users can’t all be computer experts.

– 18% are NIH-funded; many in other countries.
– 4900 have downloaded more than one version.

• User experience is the same on all platforms.
– No change in input, output, or configuration files.
– Run any simulation on any number of processors.
– Precompiled binaries available when possible.

• Desktops and laptops – setup and testing
– x86 and x86-64 Windows, and Macintosh
– Allow both shared-memory and network-based parallelism.

• Linux clusters – affordable workhorses
– x86, x86-64, and Itanium processors
– Gigabit ethernet, Myrinet, InfiniBand, Quadrics, Altix, etc

Phillips et al., J. Comp. Chem. 26:1781-1802, 2005.

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Our Goal: Practical Acceleration

• Broadly applicable to scientific computing
– Programmable by domain scientists
– Scalable from small to large machines

• Broadly available to researchers
– Price driven by commodity market
– Low burden on system administration

• Sustainable performance advantage
– Performance driven by Moore’s law
– Stable market and supply chain

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Acceleration Options for NAMD

• Outlook in 2005-2006:
– FPGA reconfigurable computing (with NCSA)

• Difficult to program, slow floating point, expensive
– Cell processor (NCSA hardware)

• Relatively easy to program, expensive
– ClearSpeed (direct contact with company)

• Limited memory and memory bandwidth, expensive
– MDGRAPE

• Inflexible and expensive
– Graphics processor (GPU)

• Program must be expressed as graphics operations

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

– Calculation: 450 GFLOPS vs 32 GFLOPS
– Memory Bandwidth: 80 GB/s vs 8.4 GB/s

G
FL

O
P

S

G80 = GeForce 8800 GTX

G71 = GeForce 7900 GTX

G70 = GeForce 7800 GTX

NV40 = GeForce 6800 Ultra

NV35 = GeForce FX 5950 Ultra

NV30 = GeForce FX 5800

GPU vs CPU: Raw Performance

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

CUDA: Practical Performance

• CUDA makes GPU acceleration usable:
– Developed and supported by NVIDIA.
– No masquerading as graphics rendering.
– New shared memory and synchronization.
– No OpenGL or display device hassles.
– Multiple processes per card (or vice versa).

• Resource and collaborators make it useful:
– Experience from VMD development
– David Kirk (Chief Scientist, NVIDIA)
– Wen-mei Hwu (ECE Professor, UIUC)

November 2006: NVIDIA announces CUDA for G80 GPU.

Fun to program (and drive)

Stone et al., J. Comp. Chem. 28:2618-2640, 2007.

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

L2

FB

SP SP

L1

TF

Th
re

ad
 P

ro
ce

ss
or

Vtx Thread Issue

Setup / Rstr / ZCull

Geom Thread Issue Pixel Thread Issue

Input Assembler

Host

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

L2

FB

L2

FB

L2

FB

L2

FB

L2

FB

GeForce 8800 Graphics Mode

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Load/store

Global Memory

Thread Execution Manager

Input Assembler

Host

Texture Texture Texture Texture Texture Texture Texture TextureTexture

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Load/store Load/store Load/store Load/store Load/store

12,288 threads, 128 cores,
450 GFLOPS

GeForce 8800 General Computing

768 MB DRAM, 4GB/S bandwidth to CPU

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Typical CPU Architecture
L2 Cache

L1 I L1 D

ALUFPU

Dispatch/Retire

L3 Cache

Memory Controller

FPU

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Minimize the Processor

L1 I L1 D

Dispatch/Retire

Memory Controller

FPU Do integer arithmetic on FPU

No large caches or multiple execution units

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Maximize Floating Point

L1 I L1 D

Dispatch/Retire

Memory Controller

FPU FPU FPU FPU
One thread per FPU allows
branches and gather/scatter.

Single instruction stream

Shared data cache

FPU FPU FPU FPU

8 FP pipelines per SIMD unit

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Add More Threads

FPU FPU FPU FPU

Pipeline 4 threads per
FPU to hide 4-cycle
instruction latency.

All 32 threads in a
“warp” execute the
same instruction.

Divergent branches
allowed through
predication.

FPU FPU FPU FPU

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Add Even More Threads

FPU FPU FPU FPU

FPU FPU FPU FPU

Multiple warps in a “block”
hide main memory latency and
can synchronize to share data.

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Add More Threads Again
Multiple blocks on a
single multiprocessor
hide both memory
and synchronization
latency.

FPU FPU FPU FPU

FPU FPU FPU FPU

All blocks execute a
“kernel” function
independently without
synchronization or
memory coherency.

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Add Cores to Suit Customer

Kernel is invoked on a
“grid” of uniform blocks.

Blocks are dynamically
assigned to available
multiprocessors and run
to completion.

Synchronization occurs
when all blocks complete.

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Load/store

Global Memory

Thread Execution Manager

Input Assembler

Host

Texture Texture Texture Texture Texture Texture Texture TextureTexture

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Load/store Load/store Load/store Load/store Load/store

12,288 threads, 128 cores,
450 GFLOPS

GeForce 8800 General Computing

768 MB DRAM, 4GB/S bandwidth to CPU

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Support Fine-Grained Parallelism

• Threads are cheap but desperately needed.
– How many can you give?
– 512 threads will keep all 128 FPUs busy.
– 1024 threads will hide some memory latency.
– 12,288 threads can run simultaneously.
– Up to 2×1012 threads per kernel invocation.

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Hybrid of spatial and force decomposition:

•Spatial decomposition of atoms into cubes
(called patches)

•For every pair of interacting patches, create one
object for calculating electrostatic interactions

•Recent: Blue Matter, Desmond, etc. use
this idea in some form

NAMD Parallel Design

• Designed from the beginning as a parallel program
• Uses the Charm++ idea:

– Decompose the computation into a large number of objects
– Have an Intelligent Run-time system (of Charm++) assign objects to

processors for dynamic load balancing with minimal communication

Kale et al., J. Comp. Phys. 151:283-312, 1999.

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

847 objects 100,000

NAMD Overlapping Execution

Example
Configuration

Objects are assigned to processors and queued as data arrives.

108

Phillips et al., SC2002.

Offload to GPU

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

Instruction Fetch/Dispatch

Instruction L1 Data L1

Texture Processor
Cluster

SM
Shared Memory

TPC TPC TPC TPC TPC TPC TPC TPC

Streaming Processor Array

Streaming Multiprocessor

Te
xt

ur
e

U
ni

t

Streaming
Processor

ADD
SUB
MAD
Etc…

GPU Hardware Special Features

Super Function
Unit

SIN
RSQRT
EXP
Etc…

Constant
Cache

64kB read-only

read-only
interpolation

SM

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Nonbonded Forces on CUDA GPU
• Start with most expensive calculation: direct nonbonded interactions.
• Decompose work into pairs of patches, identical to NAMD structure.
• GPU hardware assigns patch-pairs to multiprocessors dynamically.

16kB Shared Memory
Patch A Coordinates & Parameters

32kB Registers
Patch B Coords, Params, & Forces

Texture Unit
Force Table
Interpolation

Constants
Exclusions

8kB cache
8kB cache

32-way SIMD Multiprocessor
32-256 multiplexed threads

768 MB Main Memory, no cache, 300+ cycle latency

Force computation on single multiprocessor (GeForce 8800 GTX has 16)

Stone et al., J. Comp. Chem. 28:2618-2640, 2007.

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

texture<float4> force_table;
__constant__ unsigned int exclusions[];
__shared__ atom jatom[];
atom iatom; // per-thread atom, stored in registers
float4 iforce; // per-thread force, stored in registers
for (int j = 0; j < jatom_count; ++j) {

float dx = jatom[j].x - iatom.x; float dy = jatom[j].y - iatom.y; float dz = jatom[j].z - iatom.z;
float r2 = dx*dx + dy*dy + dz*dz;
if (r2 < cutoff2) {

float4 ft = texfetch(force_table, 1.f/sqrt(r2));
bool excluded = false;
int indexdiff = iatom.index - jatom[j].index;
if (abs(indexdiff) <= (int) jatom[j].excl_maxdiff) {
indexdiff += jatom[j].excl_index;
excluded = ((exclusions[indexdiff>>5] & (1<<(indexdiff&31))) != 0);

}
float f = iatom.half_sigma + jatom[j].half_sigma; // sigma
f *= f*f; // sigma^3
f *= f; // sigma^6
f *= (f * ft.x + ft.y); // sigma^12 * fi.x - sigma^6 * fi.y
f *= iatom.sqrt_epsilon * jatom[j].sqrt_epsilon;
float qq = iatom.charge * jatom[j].charge;
if (excluded) { f = qq * ft.w; } // PME correction
else { f += qq * ft.z; } // Coulomb
iforce.x += dx * f; iforce.y += dy * f; iforce.z += dz * f;
iforce.w += 1.f; // interaction count or energy

}
} Stone et al., J. Comp. Chem. 28:2618-2640, 2007.

Nonbonded Forces
CUDA Code

Force Interpolation

Exclusions

Parameters

Accumulation

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Why Calculate Each Force Twice?

• Newton’s 3rd Law of Motion: Fij = Fji
– Could calculate force once and apply to both atoms.

• Floating point operations are cheap:
– Would save at most a factor of two.

• Almost everything else hurts performance:
– Warp divergence
– Memory access
– Synchronization
– Extra registers
– Integer logic

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

What About Pairlists?

• Generation works well under CUDA
– Assign atoms to cells
– Search neighboring cells
– Write neighbors to lists as they are found
– Scatter capability essential
– 10x speedup relative to CPU

• Potential for significant performance boost
– Eliminate 90% of distance test calculations

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Why Not Pairlists?

• Changes FP-limited to memory limited:
– Limited memory to hold pairlists
– Limited bandwidth to load pairlists
– Random access to coordinates, etc.
– FP performance grows faster than memory

• Poor fit to NAMD parallel decomposition:
– Number of pairs in single object varies greatly

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Initial GPU Performance

• Full NAMD, not test harness
• Useful performance boost

– 8x speedup for nonbonded
– 5x speedup overall w/o PME
– 3.5x speedup overall w/ PME
– GPU = quad-core CPU

• Plans for better performance
– Overlap GPU and CPU work.
– Tune or port remaining work.

• PME, bonded, integration, etc. 0

0.5

1

1.5

2

2.5

CPU GPU
se

co
nd

s p
er

 st
ep

Nonbond
PME
Other

ApoA1 Performance

fa
st

er

2.67 GHz Core 2 Quad Extreme + GeForce 8800 GTX

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

New GPU Cluster Performance

• 7x speedup
• 1M atoms for more work
• Overlap with CPU
• Infiniband helps scaling
• Load balancer still disabled
• Plans for better scaling

– Better initial load balance
– Balance GPU load

0

1

2

3

4

5

1 2 4 8 16 32 48

se
co

nd
s p

er
 st

ep

CPU only
with GPU
GPU

2.4 GHz Opteron + Quadro FX 5600
Thanks to NCSA and NVIDIA

STMV Performance

fa
st

er

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

NAMD• Definite need for faster serial IMD
– Useful method for tweaking structures.
– 10x performance yields 100x sensitivity.
– Needed on-demand clusters are rare.

• AutoIMD available in VMD already
– Isolates a small subsystem.
– Specify molten and fixed atoms.
– Fixed atoms reduce GPU work.
– Pairlist-based algorithms start to win.

• Limited variety of simulations
– Few users have multiple GPUs.
– Move entire MD algorithm to GPU.

Next Goal: Interactive MD on GPU

User

(Former HHS Secretary Thompson)

VMD

http://www.ks.uiuc.edu/images/thompson/thompson-composite1.jpg

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Conclusion and Outlook

• Low-End GPU Impact:
– Usable performance from a single machine
– Faster, cheaper, smaller clusters

• High-End GPU Impact:
– Fewer, faster nodes reduces communication
– Faster iteration for longer simulated timescales

• This is first-generation CUDA hardware

	Accelerating NAMD�with Graphics Processors
	NAMD: Practical Supercomputing
	Our Goal: Practical Acceleration
	Acceleration Options for NAMD
	GPU vs CPU: Raw Performance
	CUDA: Practical Performance
	GeForce 8800 Graphics Mode
	GeForce 8800 General Computing
	Typical CPU Architecture
	Minimize the Processor
	Maximize Floating Point
	Add More Threads
	Add Even More Threads
	Add More Threads Again
	Add Cores to Suit Customer
	GeForce 8800 General Computing
	Support Fine-Grained Parallelism
	NAMD Parallel Design
	GPU Hardware Special Features
	Nonbonded Forces on CUDA GPU
	Why Calculate Each Force Twice?
	What About Pairlists?
	Why Not Pairlists?
	Initial GPU Performance
	New GPU Cluster Performance
	Next Goal: Interactive MD on GPU
	Conclusion and Outlook

