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NAMD: Practical Supercomputing
• 24,000 users can’t all be computer experts.

– 18% are NIH-funded; many in other countries.
– 4900 have downloaded more than one version.

• User experience is the same on all platforms.
– No change in input, output, or configuration files.
– Run any simulation on any number of processors.
– Precompiled binaries available when possible.

• Desktops and laptops – setup and testing
– x86 and x86-64 Windows, and Macintosh
– Allow both shared-memory and network-based parallelism.

• Linux clusters – affordable workhorses
– x86, x86-64, and Itanium processors
– Gigabit ethernet, Myrinet, InfiniBand, Quadrics, Altix, etc

Phillips et al., J. Comp. Chem. 26:1781-1802, 2005.
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Our Goal: Practical Acceleration

• Broadly applicable to scientific computing
– Programmable by domain scientists
– Scalable from small to large machines

• Broadly available to researchers
– Price driven by commodity market
– Low burden on system administration

• Sustainable performance advantage
– Performance driven by Moore’s law
– Stable market and supply chain
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Acceleration Options for NAMD

• Outlook in 2005-2006:
– FPGA reconfigurable computing (with NCSA)

• Difficult to program, slow floating point, expensive
– Cell processor (NCSA hardware)

• Relatively easy to program, expensive
– ClearSpeed (direct contact with company)

• Limited memory and memory bandwidth, expensive
– MDGRAPE

• Inflexible and expensive
– Graphics processor (GPU)

• Program must be expressed as graphics operations 
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– Calculation: 450 GFLOPS vs 32 GFLOPS
– Memory Bandwidth: 80 GB/s vs 8.4 GB/s
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G80 = GeForce 8800 GTX

G71 = GeForce 7900 GTX

G70 = GeForce 7800 GTX

NV40 = GeForce 6800 Ultra

NV35 = GeForce FX 5950 Ultra

NV30 = GeForce FX 5800

GPU vs CPU: Raw Performance
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CUDA: Practical Performance

• CUDA makes GPU acceleration usable:
– Developed and supported by NVIDIA.
– No masquerading as graphics rendering.
– New shared memory and synchronization.
– No OpenGL or display device hassles.
– Multiple processes per card (or vice versa).

• Resource and collaborators make it useful:
– Experience from VMD development
– David Kirk (Chief Scientist, NVIDIA)
– Wen-mei Hwu (ECE Professor, UIUC)

November 2006: NVIDIA announces CUDA for G80 GPU.

Fun to program (and drive)

Stone et al., J. Comp. Chem. 28:2618-2640, 2007.
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12,288 threads, 128 cores, 
450 GFLOPS

GeForce 8800 General Computing

768 MB DRAM, 4GB/S bandwidth to CPU
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Typical CPU Architecture
L2 Cache

L1 I L1 D

ALUFPU

Dispatch/Retire

L3 Cache

Memory Controller

FPU
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Minimize the Processor

L1 I L1 D

Dispatch/Retire

Memory Controller

FPU Do integer arithmetic on FPU

No large caches or multiple execution units
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Maximize Floating Point

L1 I L1 D

Dispatch/Retire

Memory Controller

FPU FPU FPU FPU
One thread per FPU allows 
branches and gather/scatter.

Single instruction stream

Shared data cache

FPU FPU FPU FPU

8 FP pipelines per SIMD unit
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Add More Threads

FPU FPU FPU FPU

Pipeline 4 threads per 
FPU to hide 4-cycle 
instruction latency.

All 32 threads in a 
“warp” execute the 
same instruction.

Divergent branches 
allowed through 
predication.

FPU FPU FPU FPU
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Add Even More Threads

FPU FPU FPU FPU

FPU FPU FPU FPU

Multiple warps in a “block” 
hide main memory latency and 
can synchronize to share data.
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Add More Threads Again
Multiple blocks on a 
single multiprocessor 
hide both memory 
and synchronization 
latency.

FPU FPU FPU FPU

FPU FPU FPU FPU

All blocks execute a 
“kernel” function 
independently without 
synchronization or 
memory coherency.
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Add Cores to Suit Customer

Kernel is invoked on a 
“grid” of uniform blocks.

Blocks are dynamically 
assigned to available 
multiprocessors and run 
to completion.

Synchronization occurs 
when all blocks complete.
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Support Fine-Grained Parallelism

• Threads are cheap but desperately needed.
– How many can you give?
– 512 threads will keep all 128 FPUs busy.
– 1024 threads will hide some memory latency.
– 12,288 threads can run simultaneously.
– Up to 2×1012 threads per kernel invocation.
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Hybrid of spatial and force decomposition:

•Spatial decomposition of atoms into cubes 
(called patches)

•For every pair of interacting patches, create one 
object for calculating electrostatic interactions

•Recent: Blue Matter, Desmond, etc. use 
this idea in some form

NAMD Parallel Design

• Designed from the beginning as a parallel program
• Uses the Charm++ idea:

– Decompose the computation into a large number of objects
– Have an Intelligent Run-time system (of Charm++) assign objects to 

processors for dynamic load balancing with minimal communication

Kale et al., J. Comp. Phys. 151:283-312, 1999.
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847 objects 100,000

NAMD Overlapping Execution

Example 
Configuration

Objects are assigned to processors and queued as data arrives.

108

Phillips et al., SC2002.

Offload to GPU
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Nonbonded Forces on CUDA GPU
• Start with most expensive calculation: direct nonbonded interactions.
• Decompose work into pairs of patches, identical to NAMD structure.
• GPU hardware assigns patch-pairs to multiprocessors dynamically.

16kB Shared Memory
Patch A Coordinates & Parameters

32kB Registers
Patch B Coords, Params, & Forces

Texture Unit
Force Table
Interpolation

Constants
Exclusions

8kB cache
8kB cache

32-way SIMD Multiprocessor
32-256 multiplexed threads

768 MB Main Memory, no cache, 300+ cycle latency

Force computation on single multiprocessor (GeForce 8800 GTX has 16)

Stone et al., J. Comp. Chem. 28:2618-2640, 2007.
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texture<float4> force_table;
__constant__ unsigned int exclusions[];
__shared__ atom jatom[];
atom iatom;      // per-thread atom, stored in registers
float4 iforce;   // per-thread force, stored in registers
for ( int j = 0; j < jatom_count; ++j ) {

float dx = jatom[j].x - iatom.x; float dy = jatom[j].y - iatom.y; float dz = jatom[j].z - iatom.z;
float r2 = dx*dx + dy*dy + dz*dz;
if ( r2 < cutoff2 ) {

float4 ft = texfetch(force_table, 1.f/sqrt(r2));
bool excluded = false;
int indexdiff = iatom.index - jatom[j].index;
if ( abs(indexdiff) <= (int) jatom[j].excl_maxdiff ) {
indexdiff += jatom[j].excl_index;
excluded = ((exclusions[indexdiff>>5] & (1<<(indexdiff&31))) != 0);

}
float f = iatom.half_sigma + jatom[j].half_sigma;  // sigma
f *= f*f;  // sigma^3
f *= f;  // sigma^6
f *= ( f * ft.x + ft.y );  // sigma^12 * fi.x - sigma^6 * fi.y
f *= iatom.sqrt_epsilon * jatom[j].sqrt_epsilon;
float qq = iatom.charge * jatom[j].charge;
if ( excluded ) { f = qq * ft.w; }  // PME correction
else { f += qq * ft.z; }  // Coulomb
iforce.x += dx * f;  iforce.y += dy * f; iforce.z += dz * f;
iforce.w += 1.f;  // interaction count or energy

}
} Stone et al., J. Comp. Chem. 28:2618-2640, 2007.

Nonbonded Forces
CUDA Code

Force Interpolation

Exclusions

Parameters

Accumulation
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Why Calculate Each Force Twice?

• Newton’s 3rd Law of Motion: Fij = Fji
– Could calculate force once and apply to both atoms.

• Floating point operations are cheap:
– Would save at most a factor of two.

• Almost everything else hurts performance:
– Warp divergence
– Memory access
– Synchronization
– Extra registers
– Integer logic
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What About Pairlists?

• Generation works well under CUDA
– Assign atoms to cells
– Search neighboring cells
– Write neighbors to lists as they are found
– Scatter capability essential
– 10x speedup relative to CPU

• Potential for significant performance boost
– Eliminate 90% of distance test calculations
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Why Not Pairlists?

• Changes FP-limited to memory limited:
– Limited memory to hold pairlists
– Limited bandwidth to load pairlists
– Random access to coordinates, etc.
– FP performance grows faster than memory

• Poor fit to NAMD parallel decomposition:
– Number of pairs in single object varies greatly
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Initial GPU Performance

• Full NAMD, not test harness
• Useful performance boost

– 8x speedup for nonbonded
– 5x speedup overall w/o PME
– 3.5x speedup overall w/ PME
– GPU = quad-core CPU

• Plans for better performance
– Overlap GPU and CPU work.
– Tune or port remaining work.

• PME, bonded, integration, etc. 0
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New GPU Cluster Performance

• 7x speedup
• 1M atoms for more work
• Overlap with CPU
• Infiniband helps scaling
• Load balancer still disabled
• Plans for better scaling

– Better initial load balance
– Balance GPU load
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NAMD• Definite need for faster serial IMD
– Useful method for tweaking structures.
– 10x performance yields 100x sensitivity.
– Needed on-demand clusters are rare.

• AutoIMD available in VMD already
– Isolates a small subsystem.
– Specify molten and fixed atoms.
– Fixed atoms reduce GPU work.
– Pairlist-based algorithms start to win.

• Limited variety of simulations
– Few users have multiple GPUs.
– Move entire MD algorithm to GPU.

Next Goal: Interactive MD on GPU

User

(Former HHS Secretary Thompson)

VMD

http://www.ks.uiuc.edu/images/thompson/thompson-composite1.jpg
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Conclusion and Outlook

• Low-End GPU Impact:
– Usable performance from a single machine
– Faster, cheaper, smaller clusters

• High-End GPU Impact:
– Fewer, faster nodes reduces communication
– Faster iteration for longer simulated timescales

• This is first-generation CUDA hardware
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