
NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Accelerating Molecular Modeling
Applications with GPU Computing

John Stone
Theoretical and Computational Biophysics Group

Beckman Institute for Advanced Science and Technology
University of Illinois at Urbana-Champaign

http://www.ks.uiuc.edu/Research/gpu/

Second Sharcnet Symposium on GPU and Cell Computing
University of Waterloo, Canada, May 20, 2009

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Outline
• Evolution of GPU hardware and software

toward programmability and general
purpose use

• Accelerating molecular modeling
applications with GPUs:
– CUDA overview (brief)
– General GPU programming techniques
– VMD molecular visualization and analysis

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Computational Biology’s Insatiable
Demand for Processing Power

• Simulations still fall short of
biological timescales

• Large simulations extremely
difficult to prepare, analyze

• Order of magnitude increase in
performance would allow use of
more sophisticated models

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Programmable Graphics Hardware
Groundbreaking research systems:

AT&T Pixel Machine (1989):
82 x DSP32 processors

UNC PixelFlow (1992-98):
64 x (PA-8000 +

8,192 bit-serial SIMD)
SGI RealityEngine (1990s):

Up to 12 i860-XP processors perform
vertex operations (ucode), fixed-
func. fragment hardware

All mainstream GPUs now incorporate
fully programmable processors

SGI Reality Engine i860
Vertex Processors

UNC PixelFlow Rack

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

GLSL Sphere Fragment Shader

• Written in OpenGL
Shading Language

• High-level C-like language
with vector types and
operations

• Compiled dynamically by
the graphics driver at
runtime

• Compiled machine code
executes on GPU

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Origins of Computing on GPUs
• Widespread support for programmable shading led

researchers to begin experimenting with the use of GPUs
for general purpose computation, “GPGPU”

• Early GPGPU efforts used existing graphics APIs to
express computation in terms of drawing

• As expected, expressing general computation problems in
terms of triangles and pixels and “drawing the answer” is
obfuscating and painful to debug…

• Soon researchers began creating dedicated GPU
programming tools, starting with Brook and Sh, and
ultimately leading to a variety of commercial tools such as
RapidMind, CUDA, OpenCL, and others...

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

GPU Computing
• Commodity devices, omnipresent in modern

computers (over a million sold per week)
• Massively parallel hardware, hundreds of

processing units, throughput oriented architecture
• Standard integer and floating point types supported
• Programming tools allow software to be written in

dialects of familiar C/C++ and integrated into
legacy software

• GPU algorithms are often multicore friendly due to
attention paid to data locality and data-parallel work
decomposition

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

What Speedups Can GPUs Achieve?
• Single-GPU speedups of 10x to 30x vs. one

CPU core are common
• Best speedups can reach 100x or more,

attained on codes dominated by floating
point arithmetic, especially native GPU
machine instructions, e.g. expf(), rsqrtf(), …

• Amdahl’s Law can prevent legacy codes
from achieving peak speedups with shallow
GPU acceleration efforts

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Comparison of CPU and GPU
Hardware Architecture

CPU: Cache heavy,
focused on individual
thread performance

GPU: ALU heavy,
massively parallel,
throughput oriented

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

Instruction Fetch/Dispatch

Instruction L1 Data L1

Texture Processor
Cluster

SM Shared Memory

Streaming Processor Array

Streaming Multiprocessor

Te
xt

ur
e

U
ni

t

Streaming
Processor

ADD, SUB
MAD, Etc…

Special
Function Unit

SIN, EXP,
RSQRT, Etc…

TPC TPC TPC TPC TPC TPC TPC TPC TPC TPC

SM

SM

Constant Cache

R
ea

d-
on

ly
,

8k
B

 s
pa

tia
l c

ac
he

,
1/

2/
3-

D
 in

te
rp

ol
at

io
n

64kB, read-only

FP64 Unit

FP64 Unit (double precision)

NVIDIA
GT200

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

GPU Peak Single-Precision Performance:
Exponential Trend

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

GPU Peak Memory Bandwidth:
Linear Trend

GT200

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

NVIDIA CUDA Overview
• Hardware and software architecture for GPU

computing, foundation for building higher level
programming libraries, toolkits

• C for CUDA, released in 2007:
– Data-parallel programming model
– Work is decomposed into “grids” of “blocks”

containing “warps” of “threads”, multiplexed onto
massively parallel GPU hardware

– Light-weight, low level of abstraction, exposes many
GPU architecture details/features enabling development
of high performance GPU kernels

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

CUDA Threads, Blocks, Grids
• GPUs use hardware multithreading to hide latency

and achieve high ALU utilization
• For high performance, a GPU must be saturated

with concurrent work: >10,000 threads
• “Grids” of hundreds of “thread blocks” are

scheduled onto a large array of SIMT cores
• Each core executes several thread blocks of 64-

512 threads each, switching among them to hide
latencies for slow memory accesses, etc…

• 32 thread “warps” execute in lock-step (e.g. in
SIMD-like fashion)

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

Texture Processor
Cluster

SM

Streaming Processor Array

Streaming Multiprocessor

Te
xt

ur
e

U
ni

t

TPC TPC TPC TPC TPC TPC TPC TPC TPC TPC

SM

SM

NVIDIA
GT200Grid of thread blocks

Multiple thread blocks,
many warps of threads

Individual threads

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

GPU Memory Accessible in CUDA
• Mapped host memory: up to 4GB, ~5.7GB/sec

bandwidth (PCIe), accessible by multiple GPUs
• Global memory: up to 4GB, high latency (~600

clock cycles), 140GB/sec bandwidth, accessible
by all threads, atomic operations (slow)

• Texture memory: read-only, cached, and
interpolated/filtered access to global memory

• Constant memory: 64KB, read-only, cached,
fast/low-latency if data elements are accessed in
unison by peer threads

• Shared memory:16KB, low-latency, accessible
among threads in the same block, fast if accessed
without bank conflicts

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

An Approach to Writing CUDA Kernels
• Find an algorithm that exposes substantial parallelism,

thousands of independent threads…
• Identify appropriate GPU memory subsystems for storage

of data used by kernel
• Are there trade-offs that can be made to exchange

computation for more parallelism?
– Though counterintuitive, past successes resulted from

this strategy
– “Brute force” methods that expose significant

parallelism do surprisingly well on current GPUs
• Analyze the real-world use case for the problem and

optimize the kernel for the problem size/characteristics that
will be heavily used

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

VMD – “Visual Molecular Dynamics”
• Visualization and analysis of molecular dynamics simulations,

sequence data, volumetric data, quantum chemistry simulations,
particle systems, …

• User extensible with scripting and plugins
• http://www.ks.uiuc.edu/Research/vmd/

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Range of VMD Usage Scenarios
• Users run VMD on a diverse range of hardware:

laptops, desktops, clusters, and supercomputers
• Typically used as a desktop application, for

interactive 3D molecular graphics and analysis
• Can also be run in pure text mode for numerically

intensive analysis tasks, batch mode movie
rendering, etc…

• GPU acceleration provides an opportunity to make
some slow, or batch calculations capable of being
run interactively, or on-demand…

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Need for Multi-GPU
Acceleration in VMD

• Ongoing increases in supercomputing resources at
NSF centers such as NCSA enable increased
simulation complexity, fidelity, and longer time
scales…

• Drives need for more visualization and analysis
capability at the desktop and on clusters running
batch analysis jobs

• Desktop use is the most compute-resource-limited
scenario, where GPUs can make a big impact…

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Molecular orbital

calculation and display

CUDA Acceleration in VMD

Electrostatic field

calculation, ion placement

Imaging of gas migration
pathways in proteins with
implicit ligand sampling

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Electrostatic Potential Maps
• Electrostatic potentials

evaluated on 3-D lattice:

• Applications include:
– Ion placement for

structure building
– Time-averaged potentials

for simulation
– Visualization and

analysis Isoleucine tRNA synthetase

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Direct Coulomb Summation
• Each lattice point accumulates electrostatic potential

contribution from all atoms:
potential[j] += charge[i] / rij

atom[i]

rij: distance
from lattice[j]

to atom[i]
Lattice point j

being evaluated

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Direct Coulomb Summation on the GPU

• GPU outruns a CPU core by 44x
• Work is decomposed into tens of thousands of

independent threads, multiplexed onto hundreds of
GPU processing units

• Single-precision FP arithmetic is adequate for intended
application

• Numerical accuracy can be improved by compensated
summation, spatially ordered summation groupings, or
accumulation of potential in double-precision

• Starting point for more sophisticated linear-time
algorithms like multilevel summation

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

DCS CUDA Block/Grid Decomposition
(unrolled, coalesced)

Grid of thread blocks:

Padding waste

0,0 0,1

1,0 1,1

…

… …

…

Thread blocks:
64-256 threads

…

Unrolling increases
computational tile size

Threads compute
up to 8 potentials,

skipping by half-warps

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Global Memory

Texture Texture Texture Texture Texture TextureTexture

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

GPUConstant Memory

Direct Coulomb Summation on the GPU
Host

Atomic
Coordinates

Charges

Threads compute
up to 8 potentials,

skipping by half-warps

Thread blocks:
64-256 threads

Grid of thread blocks

Lattice padding

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Direct Coulomb Summation Runtime

GPU
underutilized

GPU fully utilized,
~40x faster than CPU

Accelerating molecular modeling applications with graphics processors.
J. Stone, J. Phillips, P. Freddolino, D. Hardy, L. Trabuco, K. Schulten.

J. Comp. Chem., 28:2618-2640, 2007.

Lower
is better

Cold start GPU
initialization time:

~110ms

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Direct Coulomb Summation Performance

CUDA-Simple:
14.8x faster,

33% of fastest
GPU kernel

CUDA-Unroll8clx:
fastest GPU kernel,

44x faster than CPU,
291 GFLOPS on

GeForce 8800GTX

GPU computing. J. Owens, M. Houston, D. Luebke, S. Green, J. Stone,
J. Phillips. Proceedings of the IEEE, 96:879-899, 2008.

CPU

Number of thread blocks modulo number of SMs results in
significant performance variation for small workloads

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

GPU 1 GPU N…

Multi-GPU Direct
Coulomb Summation

NCSA GPU Cluster
http://www.ncsa.uiuc.edu/Projects/GPUcluster/

Evals/sec TFLOPS Speedup*

4-GPU (2 Quadroplex)
Opteron node at NCSA

157 billion 1.16 176

4-GPU GTX 280 (GT200) 241 billion 1.78 271

*Speedups relative to Intel QX6700 CPU core w/ SSE

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Infinite vs. Cutoff Potentials
• Infinite range potential:

– All atoms contribute to all lattice points
– Summation algorithm has quadratic complexity

• Cutoff (range-limited) potential:
– Atoms contribute within cutoff distance to lattice points
– Summation algorithm has linear time complexity
– Has many applications in molecular modeling:

• Replace electrostatic potential with shifted form
• Short-range part for fast methods of approximating full electrostatics
• Used for fast decaying interactions (e.g. Lennard-Jones, Buckingham)

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Cutoff Summation
• Each lattice point accumulates electrostatic potential

contribution from atoms within cutoff distance:
if (rij < cutoff)

potential[j] += (charge[i] / rij) * s(rij)
• Smoothing function s(r) is algorithm dependent

Cutoff radius rij: distance
from lattice[j]

to atom[i]

Lattice point j
being evaluated atom[i]

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Cutoff Summation on the GPU

Global memory Constant memory
Offsets for bin
neighborhood

Shared memory

atom bin

Potential
map

regions Bins of atoms

Each thread block cooperatively
loads atom bins from surrounding
neighborhood into shared memory
for evaluation

Atoms are spatially hashed into fixed-size bins
CPU handles overflowed bins (GPU kernel can be very aggressive)
GPU thread block calculates corresponding region of potential map,
Bin/region neighbor checks costly; solved with universal table look-up

Look-up table
encodes “logic” of
spatial geometry

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Using the CPU to Improve GPU
Performance

• GPU performs best when the work evenly divides
into the number of threads/processing units

• Optimization strategy:
– Use the CPU to “regularize” the GPU workload
– Use fixed size bin data structures, with “empty” slots

skipped or producing zeroed out results
– Handle exceptional or irregular work units on the CPU

while the GPU processes the bulk of the work
– On average, the GPU is kept highly occupied, attaining

a much higher fraction of peak performance

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

GPU acceleration of cutoff pair potentials for molecular modeling applications.
C. Rodrigues, D. Hardy, J. Stone, K. Schulten, W. Hwu. Proceedings of the 2008

Conference On Computing Frontiers, pp. 273-282, 2008.

Cutoff Summation Runtime
GPU cutoff with

CPU overlap:
17x-21x faster than

CPU core

If asynchronous
stream blocks due
to queue filling,

performance will
degrade from

peak…

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Cutoff Summation Observations
• Use of CPU to handle overflowed bins is very

effective, overlaps completely with GPU work
• Caveat: avoid overfilling the asynchronous stream

queue with work, doing so can trigger blocking
behavior (improved in current drivers)

• The use of compensated summation (all GPUs) or
double-precision (GT200 only) for potential
accumulation resulted in only a ~10%
performance penalty vs. pure single-precision
arithmetic, while reducing the effects of floating
point truncation

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Multilevel Summation
• Approximates full electrostatic potential
• Calculates sum of smoothed pairwise potentials

interpolated from a hierarchy of lattices
• Advantages over PME and/or FMM:

– Algorithm has linear time complexity
– Permits non-periodic and periodic boundaries
– Produces continuous forces for dynamics (advantage

over FMM)
– Avoids 3-D FFTs for better parallel scaling (advantage

over PME)
– Spatial separation allows use of multiple time steps
– Can be extended to other pairwise interactions

• Skeel, Tezcan, Hardy, J Comp Chem, 2002 — Computing forces for molecular dynamics

• Hardy, Stone, Schulten, J Paral Comp, 2009 — GPU-acceleration of potential map calculation

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Multilevel Summation Calculation
map

potential
exact

short-range
interactions

interpolated
long-range
interactions

+=

short-range cutoff

interpolationanterpolation

h-lattice cutoff

2h-lattice cutoff

4h-lattice

restriction

restriction

prolongation

prolongation
long-range

parts

atom
charges

map
potentials

Computational Steps

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Multilevel Summation on the GPU

Computational steps CPU (s) w/ GPU (s) Speedup

Short-range cutoff 480.07 14.87 32.3

Long-range anterpolation 0.18

restriction 0.16

lattice cutoff 49.47 1.36 36.4

prolongation 0.17

interpolation 3.47

Total 533.52 20.21 26.4

Performance profile for 0.5 Å map of potential for 1.5 M atoms.
Hardware platform is Intel QX6700 CPU and NVIDIA GTX 280.

Accelerate short-range cutoff and lattice cutoff parts

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Photobiology of Vision and Photosynthesis
Investigations of the chromatophore, a photosynthetic organelle

Full chromatophore model will permit structural, chemical and kinetic
investigations at a structural systems biology level

Light

Electrostatic field of chromatophore model
from multilevel summation method:

computed with 3 GPUs (G80) in ~90 seconds,
46x faster than single CPU core

Electrostatics needed to build full
structural model, place ions, study

macroscopic properties

Partial model:
~10M atoms

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Molecular Orbitals
• Visualization of MOs aids

in understanding the
chemistry of molecular
system

• MO spatial distribution is
correlated with
probability density for an
electron(s)

• Algorithms for computing
other interesting
properties are similar, and
can share code

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Computing Molecular Orbitals
• Calculation of high

resolution MO grids can
require tens to hundreds of
seconds in existing tools

• Existing tools cache MO
grids as much as possible
to avoid recomputation:
– Doesn’t eliminate the wait

for initial calculation,
hampers interactivity

– Cached grids consume
100x-1000x more memory
than MO coefficients C60

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Animating Molecular Orbitals
• Animation of (classical

mechanics) molecular
dynamics trajectories
provides insight into
simulation results

• To do the same for QM
or QM/MM simulations
one must compute MOs
at ~10 FPS or more

• >100x speedup (GPU)
over existing tools now
makes this possible! C60

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Molecular Orbital Computation and Display Process

Read QM simulation log file, trajectory

Compute 3-D grid of MO wavefunction amplitudes
Most performance-demanding step, run on GPU…

Extract isosurface mesh from 3-D MO grid

Apply user coloring/texturing
and render the resulting surface

Preprocess MO coefficient data
eliminate duplicates, sort by type, etc…

For current frame and MO index,
retrieve MO wavefunction coefficients

One-time
initialization

For each trj frame, for
each MO shown

Initialize Pool of GPU
Worker Threads

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

CUDA Block/Grid Decomposition

Padding optimizes glob. mem
perf, guaranteeing coalescing

Grid of thread blocks:

0,0 0,1

1,0 1,1

…

… …

…
Small 8x8 thread
blocks afford large
per-thread register
count, shared mem.
Threads compute
one MO lattice
point each.

…

MO 3-D lattice decomposes into
2-D slices (CUDA grids)

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

MO Kernel for One Grid Point (Naive C)

Loop over atoms

Loop over shells

Loop over primitives:
largest component of
runtime, due to expf()

Loop over angular
momenta

(unrolled in real code)

…

for (at=0; at<numatoms; at++) {

int prim_counter = atom_basis[at];

calc_distances_to_atom(&atompos[at], &xdist, &ydist, &zdist, &dist2, &xdiv);

for (contracted_gto=0.0f, shell=0; shell < num_shells_per_atom[at]; shell++) {

int shell_type = shell_symmetry[shell_counter];

for (prim=0; prim < num_prim_per_shell[shell_counter]; prim++) {

float exponent = basis_array[prim_counter];

float contract_coeff = basis_array[prim_counter + 1];

contracted_gto += contract_coeff * expf(-exponent*dist2);

prim_counter += 2;

}

for (tmpshell=0.0f, j=0, zdp=1.0f; j<=shell_type; j++, zdp*=zdist) {

int imax = shell_type - j;

for (i=0, ydp=1.0f, xdp=pow(xdist, imax); i<=imax; i++, ydp*=ydist, xdp*=xdiv)

tmpshell += wave_f[ifunc++] * xdp * ydp * zdp;

}

value += tmpshell * contracted_gto;

shell_counter++;

}

} …..

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Preprocessing of Atoms, Basis Set, and
Wavefunction Coefficients

• Must make effective use of high bandwidth, low-
latency GPU on-chip memory, or CPU cache:
– Overall storage requirement reduced by eliminating

duplicate basis set coefficients
– Sorting atoms by element type allows re-use of basis set

coefficients for subsequent atoms of identical type

• Padding, alignment of arrays guarantees coalesced
GPU global memory accesses, CPU SSE loads

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

GPU Traversal of Atom Type, Basis Set,
Shell Type, and Wavefunction Coefficients

• Loop iterations always access same or consecutive
array elements for all threads in a thread block:
– Yields good constant memory cache performance
– Increases shared memory tile reuse

Monotonically increasing memory references

Different at each
timestep, and for

each MO

Constant for all MOs,
all timesteps

Strictly sequential memory references

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Use of GPU On-chip Memory
• If total data less than 64 kB, use only const mem:

– Broadcasts data to all threads, no global memory accesses!
• For large data, shared memory used as a program-

managed cache, coefficients loaded on-demand:
– Tile data in shared mem is broadcast to 64 threads in a block
– Nested loops traverse multiple coefficient arrays of varying

length, complicates things significantly…
– Key to performance is to locate tile loading checks outside of

the two performance-critical inner loops
– Tiles sized large enough to service entire inner loop runs
– Only 27% slower than hardware caching provided by

constant memory (GT200)

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Coefficient array in GPU global memory

Array tile loaded in GPU shared memory. Tile size is a power-of-two,
multiple of coalescing size, and allows simple indexing in inner loops
(array indices are merely offset for reference within loaded tile).

64-Byte memory
coalescing block boundaries

Full tile padding

Surrounding data,
unreferenced

by next batch of
loop iterations

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

VMD MO Performance Results for C60
Sun Ultra 24: Intel Q6600, NVIDIA GTX 280

Kernel Cores/GPUs Runtime (s) Speedup
CPU ICC-SSE 1 46.58 1.00

CPU ICC-SSE 4 11.74 3.97

CPU ICC-SSE-approx** 4 3.76 12.4

CUDA-tiled-shared 1 0.46 100.

CUDA-const-cache 1 0.37 126.

CUDA-const-cache-JIT* 1 0.27 173.
(JIT 40% faster)

C60 basis set 6-31Gd. We used an unusually-high resolution MO grid for
accurate timings. A more typical calculation has 1/8th the grid points.

* Runtime-generated JIT kernel compiled using batch mode CUDA tools
**Reduced-accuracy approximation of expf(),
cannot be used for zero-valued MO isosurfaces

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Performance Evaluation:
Molekel, MacMolPlt, and VMD

Sun Ultra 24: Intel Q6600, NVIDIA GTX 280
C60-A C60-B Thr-A Thr-B Kr-A Kr-B

Atoms 60 60 17 17 1 1

Basis funcs (unique) 300 (5) 900 (15) 49 (16) 170 (59) 19 (19) 84 (84)

Kernel Cores
GPUs

Speedup vs. Molekel on 1 CPU core

Molekel 1* 1.0 1.0 1.0 1.0 1.0 1.0
MacMolPlt 4 2.4 2.6 2.1 2.4 4.3 4.5
VMD GCC-cephes 4 3.2 4.0 3.0 3.5 4.3 6.5
VMD ICC-SSE-cephes 4 16.8 17.2 13.9 12.6 17.3 21.5
VMD ICC-SSE-approx** 4 59.3 53.4 50.4 49.2 54.8 69.8
VMD CUDA-const-cache 1 552.3 533.5 355.9 421.3 193.1 571.6

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

VMD Orbital Dynamics Proof of Concept
One GPU can compute and animate this movie on-the-fly!

CUDA const-cache kernel,
Sun Ultra 24, GeForce GTX 285

GPU MO grid calc. 0.016 s

CPU surface gen,
volume gradient,
and GPU rendering

0.033 s

Total runtime 0.049 s
Frame rate 20 FPS

With GPU speedups over 100x, previously insignificant CPU
surface gen, gradient calc, and rendering are now 66% of runtime.
Need GPU-accelerated surface gen next…

threonine

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Multi-GPU Load Balance

• Many early CUDA codes
assumed all GPUs were
identical

• All new NVIDIA cards support
CUDA, so a typical machine
may have a diversity of GPUs
of varying capability

• Static decomposition works
poorly for non-uniform
workload, or diverse GPUs,
e.g. 2 SM, 16 SM, 30 SM

GPU 1
2 SMs

GPU 3
30 SMs

…

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

VMD Multi-GPU Molecular Orbital
Performance Results for C60

Intel Q6600 CPU, 4x Tesla C1060 GPUs,
Uses persistent thread pool to avoid GPU init overhead,

dynamic scheduler distributes work to GPUs

Kernel Cores/GPUs Runtime (s) Speedup Parallel
Efficiency

CPU-ICC-SSE 1 46.580 1.00 100%

CPU-ICC-SSE 4 11.740 3.97 99%
CUDA-const-cache 1 0.417 112 100%

CUDA-const-cache 2 0.220 212 94%

CUDA-const-cache 3 0.151 308 92%

CUDA-const-cache 4 0.113 412 92%

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

MO Kernel Structure, Opportunity for JIT…
Data-driven, but representative loop trip counts in (…)

Loop over atoms (1 to ~200) {

Loop over electron shells for this atom type (1 to ~6) {

Loop over primitive functions for this shell type (1 to ~6) {

}

Loop over angular momenta for this shell type (1 to ~15) {}

}

}

Unpredictable (at compile-time, since data-driven) but
small loop trip counts result in significant loop overhead.
Dynamic kernel generation and JIT compilation can
unroll entirely, resulting in 40% speed boost

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Molecular Orbital Computation and Display Process
Dynamic Kernel Generation, Just-In-Time (JIT) C0mpilation

Read QM simulation log file, trajectory

Compute 3-D grid of MO wavefunction amplitudes
using basis set-specific CUDA kernel

Extract isosurface mesh from 3-D MO grid

Render the resulting surface

Preprocess MO coefficient data
eliminate duplicates, sort by type, etc…

For current frame and MO index,
retrieve MO wavefunction coefficients

One-time
initialization

Generate/compile basis set-specific CUDA kernel

For each trj frame, for
each MO shown

Initialize Pool of GPU
Worker Threads

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

…..

contracted_gto = 1.832937 * expf(-7.868272*dist2);

contracted_gto += 1.405380 * expf(-1.881289*dist2);

contracted_gto += 0.701383 * expf(-0.544249*dist2);

// P_SHELL

tmpshell = const_wave_f[ifunc++] * xdist;

tmpshell += const_wave_f[ifunc++] * ydist;

tmpshell += const_wave_f[ifunc++] * zdist;

value += tmpshell * contracted_gto;

contracted_gto = 0.187618 * expf(-0.168714*dist2);

// S_SHELL

value += const_wave_f[ifunc++] * contracted_gto;

contracted_gto = 0.217969 * expf(-0.168714*dist2);

// P_SHELL

tmpshell = const_wave_f[ifunc++] * xdist;

tmpshell += const_wave_f[ifunc++] * ydist;

tmpshell += const_wave_f[ifunc++] * zdist;

value += tmpshell * contracted_gto;

contracted_gto = 3.858403 * expf(-0.800000*dist2);

// D_SHELL

tmpshell = const_wave_f[ifunc++] * xdist2;

tmpshell += const_wave_f[ifunc++] * ydist2;

tmpshell += const_wave_f[ifunc++] * zdist2;

tmpshell += const_wave_f[ifunc++] * xdist * ydist;

tmpshell += const_wave_f[ifunc++] * xdist * zdist;

tmpshell += const_wave_f[ifunc++] * ydist * zdist;

value += tmpshell * contracted_gto;

…..

// loop over the shells belonging to this atom (or basis function)

for (shell=0; shell < maxshell; shell++) {

float contracted_gto = 0.0f;

// Loop over the Gaussian primitives of this contracted

// basis function to build the atomic orbital

int maxprim = const_num_prim_per_shell[shell_counter];

int shell_type = const_shell_symmetry[shell_counter];

for (prim=0; prim < maxprim; prim++) {

float exponent = const_basis_array[prim_counter];

float contract_coeff = const_basis_array[prim_counter + 1];

contracted_gto += contract_coeff * exp2f(-exponent*dist2);

prim_counter += 2;

}

/* multiply with the appropriate wavefunction coefficient */

float tmpshell=0;

switch (shell_type) {

case S_SHELL:

value += const_wave_f[ifunc++] * contracted_gto;

break;

[…..]

case D_SHELL:

tmpshell += const_wave_f[ifunc++] * xdist2;

tmpshell += const_wave_f[ifunc++] * ydist2;

tmpshell += const_wave_f[ifunc++] * zdist2;

tmpshell += const_wave_f[ifunc++] * xdist * ydist;

tmpshell += const_wave_f[ifunc++] * xdist * zdist;

tmpshell += const_wave_f[ifunc++] * ydist * zdist;

value += tmpshell * contracted_gto;

break;

General loop-based
CUDA kernel

Dynamically-generated
CUDA kernel (JIT)

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Lessons Learned
• GPU algorithms need fine-grained parallelism and

sufficient work to fully utilize the hardware
• Much of per-thread GPU algorithm optimization

revolves around efficient use of multiple memory
systems and latency hiding

• Concurrency can often be traded for per-thread
performance, in combination with increased use of
registers or shared memory

• Fine-grained GPU work decompositions often
compose well with the comparatively coarse-
grained decompositions used for multicore or
distributed memory programing

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Lessons Learned (2)

• The host CPU can potentially be used to
“regularize” the computation for the GPU,
yielding better overall performance

• Overlapping CPU work with GPU can hide some
communication and unaccelerated computation

• Targeted use of double-precision floating point
arithmetic, or compensated summation can reduce
the effects of floating point truncation at low cost
to performance

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Summary
• GPUs are not a magic bullet, but they can perform

amazingly well when used effectively
• There are many good strategies for extracting high

performance from individual subsystems on the
GPU

• It is wise to begin with a well designed application
and a thorough understanding of its performance
characteristics on the CPU before beginning work
on the GPU

• By making effective use of multiple GPU
subsystems at once, tremendous performance
levels can potentially be attained

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Acknowledgements
• Theoretical and Computational Biophysics

Group, University of Illinois at Urbana-
Champaign

• Wen-mei Hwu and the IMPACT group at
University of Illinois at Urbana-Champaign

• NVIDIA Center of Excellence, University of
Illinois at Urbana-Champaign

• NCSA Innovative Systems Lab
• David Kirk and the CUDA team at NVIDIA
• NIH support: P41-RR05969

	Accelerating Molecular Modeling Applications with GPU Computing
	Outline
	Computational Biology’s Insatiable Demand for Processing Power
	Programmable Graphics Hardware
	GLSL Sphere Fragment Shader
	Origins of Computing on GPUs
	GPU Computing
	What Speedups Can GPUs Achieve?
	Comparison of CPU and GPU Hardware Architecture
	GPU Peak Single-Precision Performance:�Exponential Trend
	GPU Peak Memory Bandwidth:� Linear Trend
	NVIDIA CUDA Overview
	CUDA Threads, Blocks, Grids
	GPU Memory Accessible in CUDA
	An Approach to Writing CUDA Kernels
	VMD – “Visual Molecular Dynamics”
	Range of VMD Usage Scenarios
	Need for Multi-GPU �Acceleration in VMD
	CUDA Acceleration in VMD
	Electrostatic Potential Maps
	Direct Coulomb Summation
	Direct Coulomb Summation on the GPU
	DCS CUDA Block/Grid Decomposition � (unrolled, coalesced)
	Direct Coulomb Summation on the GPU
	Direct Coulomb Summation Runtime
	Direct Coulomb Summation Performance
	Multi-GPU Direct Coulomb Summation
	Infinite vs. Cutoff Potentials
	Cutoff Summation
	Cutoff Summation on the GPU
	Using the CPU to Improve GPU Performance
	Cutoff Summation Runtime
	Cutoff Summation Observations
	Multilevel Summation
	Multilevel Summation Calculation
	Multilevel Summation on the GPU
	Molecular Orbitals
	Computing Molecular Orbitals
	Animating Molecular Orbitals
	Molecular Orbital Computation and Display Process
	CUDA Block/Grid Decomposition
	MO Kernel for One Grid Point (Naive C)
	Preprocessing of Atoms, Basis Set, and �Wavefunction Coefficients
	GPU Traversal of Atom Type, Basis Set,� Shell Type, and Wavefunction Coefficients
	Use of GPU On-chip Memory
	VMD MO Performance Results for C60�Sun Ultra 24: Intel Q6600, NVIDIA GTX 280
	Performance Evaluation:�Molekel, MacMolPlt, and VMD� Sun Ultra 24: Intel Q6600, NVIDIA GTX 280
	VMD Orbital Dynamics Proof of Concept
	Multi-GPU Load Balance
	VMD Multi-GPU Molecular Orbital �Performance Results for C60
	MO Kernel Structure, Opportunity for JIT…�Data-driven, but representative loop trip counts in (…)
	Molecular Orbital Computation and Display Process�Dynamic Kernel Generation, Just-In-Time (JIT) C0mpilation
	Lessons Learned
	Lessons Learned (2)
	Summary
	Acknowledgements

