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VMD – “Visual Molecular Dynamics”
• Visualization and analysis of molecular dynamics simulations, 

sequence data, volumetric data, quantum chemistry simulations, 
particle systems, …

• User extensible with scripting and plugins
• http://www.ks.uiuc.edu/Research/vmd/
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Range of VMD Usage Scenarios
• Users run VMD on a diverse range of hardware: 

laptops, desktops, clusters, and supercomputers
• Typically used as a desktop science application, 

for interactive 3D molecular graphics and analysis
• Can also be run in pure text mode for numerically 

intensive analysis tasks, batch mode movie 
rendering, etc…

• GPU acceleration provides an opportunity to make 
some slow, or batch calculations capable of being 
run interactively, or on-demand…
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Molecular orbital  

calculation and display

CUDA Acceleration in VMD

Electrostatic field 

calculation, ion placement

Imaging of gas migration 
pathways in proteins with 
implicit ligand sampling
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Need for Multi-GPU 
CUDA Acceleration in VMD

• Ongoing increases in supercomputing resources at 
NSF centers such as NCSA enable increased 
simulation complexity, fidelity, and longer time 
scales…

• Drives need for more visualization and analysis 
capability at the desktop and on clusters running 
batch analysis jobs

• Desktop use is the most compute-resource-limited 
scenario, where GPUs can make a big impact…
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CUDA Runtime API Basics
• A single host thread can attach to and 

communicate with a single GPU
• A single GPU can be shared by multiple 

threads/processes, but only one such context 
is active at a time

• In order to use more than one GPU, 
multiple host threads or processes must be 
created
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One Host Thread Per GPU
(Strategy used by VMD)

CPU Thread 0 CPU Thread 1 CPU Thread N

GPU 0 GPU 1 GPU N

…

…
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Host Thread Contexts Cannot Directly Share GPU 
Memory, Must Communicate/Share on Host Side

CPU Thread 0 CPU Thread 1

GPU 0

CPU Thread 3

GPU 1

Even threads sharing the same GPU cannot exchange
data by reading each other’s GPU memory
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CUDA Runtime APIs for Enumerating 
and Selecting GPU Devices

• Query available hardware: 
– cudaGetDeviceCount(), cudaGetDeviceProperties()

• Attach a GPU device to a host thread:
– cudaSetDevice()
– This is a permanent binding, once set it cannot be 

subsequently changed
– Binding a GPU device to a host thread has overhead:

• 1st CUDA call after binding takes ~100 milliseconds



NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Launching/Collecting Host Threads
(POSIX Threads)

void *cudaworkerthread(void *voidparms); // worker function

…
/* spawn child threads to do the work */
for (i=0; i<numprocs; i++) {
pthread_create(&threads[i], cudaworkerthread, &parms[i]);

}

/* “join” the threads after work is done */
for (i=0; i<numprocs; i++) 
pthread_join(threads[i], NULL);

}
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VMD Threading and 
Work Distribution Abstractions

• Wrap low-level OS threading APIs with 
convenient abstractions that launch, synchronize, 
and collect groups of GPU worker threads

• Work distribution routines (shared iterators, akin 
to a “parallel for loop”, work queues, etc)

• Routines to generate a persistent pool of worker 
threads that sleep waiting for work to run, 
amortizing one-time CUDA device initialization, 
optimizes performance for multi-GPU kernels that 
have runtimes below 1 second…
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Why Not TBB, Library X, Y, …
• We use the same threading primitives for both the 

multi-core and CUDA code in VMD, portability is 
important, minimize dependencies on external 
libraries

• Intel Threading Building Blocks (TBB) library 
contains many of the abstractions we want, but…

• Recent versions not (yet?) ported to all 
platforms/compilers VMD supports

• Uses a cooperative (no preemption) scheduler 
which is unable to cope with blocking disk I/O, 
Host-GPU DMA I/O, blocking CUDA calls, etc…
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Classification of VMD Workloads

• Analysis computations:
– Driven by user scripts
– May run for seconds, minutes, or hours

• Interactive visualization, trajectory animation:
– Computations used to generate visual representation
– In all cases, total computation+rendering time should be 

on the order of 0.1 seconds or less…
– Sensitive to latency
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Direct Coulomb Summation Runtime

GPU 
underutilized

GPU fully utilized, 
~40x faster than CPU

Accelerating molecular modeling applications with graphics processors. 
J. Stone, J. Phillips, P. Freddolino, D. Hardy, L. Trabuco, K. Schulten. 

J. Comp. Chem., 28:2618-2640, 2007.

Lower 
is better

GPU initialization 
time: ~110ms 
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GPU 1 GPU N…

Multi-GPU Direct 
Coulomb Summation

NCSA GPU Cluster
http://www.ncsa.uiuc.edu/Projects/GPUcluster/

Evals/sec TFLOPS Speedup*

4-GPU (2 Quadroplex) 
Opteron node at NCSA

157 billion 1.16 176

4-GPU GTX 280 (GT200) 241 billion 1.78 271

*Speedups relative to Intel QX6700 CPU core w/ SSE
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Multi-GPU Data-parallel Decomposition

• Many independent coarse-grain 
computations farmed out to 
pool of GPUs

• Work assignment can be 
explicit in the code, or 
controlled with a dynamic work 
scheduler of some sort

• May need to handle load 
imbalance, GPUs with varying 
capabilities, runtime errors, etc.

GPU 1 GPU N…
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Multi-GPU Static Load Balance,
Static Work Decomposition

• Static round-robin load 
balance:
– Easy to code, explicit round 

robin decomposition
– Low overhead, works well 

for short calculation runs
– Can’t reschedule work on 

error/exception
– Easy to port to multiple OSs

GPU 1 GPU 3…
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Multi-GPU 
Static Work Decomposition

// Each GPU worker thread loops over
// subset of 2-D planes in a 3-D cube…
for (k=thrID; k<numplane; k+=thrCount) {
// Process one plane of work…
// Launch one CUDA kernel for each
//   loop iteration taken…
// Simple scheme, works well when GPUs
//   and work units are nearly identical…
// No provision for in-flight error handling

}

GPU 1 GPU 3…
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Multi-GPU Load Balance

• Many early CUDA codes 
assumed all GPUs were 
identical 

• All new NVIDIA cards support 
CUDA, so a typical machine 
may have a diversity of GPUs 
of varying capability

• Static decomposition works 
poorly if you have diverse 
workload, or diverse GPUs,  
e.g. 2 SM, 16 SM, 30 SM

GPU 1
2 SMs

GPU 3
30 SMs

…
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Multi-GPU Dynamic Load Balance,
Shared Work Iterator

• Dynamic load balance, single shared iterator
assigns slices to workers:
– Replaces the for loop in static decomposition
– Added overhead from mutex locks or atomic 

memory operations 
– Can reschedule/retry on error/exception by re-

adding to a shared queue or exception stack
– Still easy to port to multiple OSs
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Multi-GPU Shared Work Iterator
// Each GPU worker thread loops over
// subset 2-D planes in a 3-D cube…
while (!iterator_next(&parms, &k) {
// Process one plane of work…
// Launch one CUDA kernel for each
//   loop iteration taken…
// Shared iterator automatically 
//   balances load on GPUs

}

GPU 1 GPU 3…

Shared work iterator
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Multi-GPU Runtime 
Error/Exception Handling

• Competition for resources from 
other applications or the 
windowing system can cause 
runtime failures (e.g. GPU out 
of memory half way through an 
algorithm)

• Handling of algorithm 
exceptions (e.g. convergence 
failure, NaN result, etc)

• Need to handle and/or 
reschedule failed tiles of work

GPU 1
SM 1.0
128MB

GPU 3
SM 1.3

4096MB

…
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Molecular Orbital Computation and Display Process

Read QM simulation log file, trajectory

Compute 3-D grid of MO wavefunction amplitudes
Most performance-demanding step, run on GPU…

Extract isosurface mesh from 3-D MO grid 

Apply user coloring/texturing 
and render the resulting surface 

Preprocess MO coefficient data
eliminate duplicates, sort by type, etc…

For current frame and MO index, 
retrieve MO wavefunction coefficients  

One-time 
initialization

For each trj frame, for   
each MO shown

Initialize Pool of GPU 
Worker Threads
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VMD Multi-GPU Molecular Orbital 
Performance Results for C60

Kernel Cores/GPUs Runtime (s) Speedup
CPU ICC-SSE 1 46.580 1.00

CPU ICC-SSE 4 11.74 3.97

CUDA-const-cache 1 0.400 116.45

CUDA-const-cache 2 0.205 227.21

CUDA-const-cache 3 0.144 323.47

Intel Q6600 CPU,
1x NVIDIA Quadro 5800, 2x Tesla C1060 GPUs,

Uses persistent thread pool to avoid GPU init overhead
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Future Work

• Continued focus on low-latency GPU kernel 
launch/scheduling mechanisms

• Public release of the multi-GPU framework 
for easy use in other codes

• Add implementations that interoperate with 
or build on top of libraries like BOOST

• Possibly contribute patches for other 
libraries like TBB 
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