
NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Experiences with Multi-GPU
Acceleration in VMD

John Stone

Path to Petascale: Adapting GEO/CHEM/ASTRO Applications
for Accelerators and Accelerator Clusters

April 2, 2009

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

VMD – “Visual Molecular Dynamics”
• Visualization and analysis of molecular dynamics simulations,

sequence data, volumetric data, quantum chemistry simulations,
particle systems, …

• User extensible with scripting and plugins
• http://www.ks.uiuc.edu/Research/vmd/

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Range of VMD Usage Scenarios
• Users run VMD on a diverse range of hardware:

laptops, desktops, clusters, and supercomputers
• Typically used as a desktop science application,

for interactive 3D molecular graphics and analysis
• Can also be run in pure text mode for numerically

intensive analysis tasks, batch mode movie
rendering, etc…

• GPU acceleration provides an opportunity to make
some slow, or batch calculations capable of being
run interactively, or on-demand…

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Molecular orbital

calculation and display

CUDA Acceleration in VMD

Electrostatic field

calculation, ion placement

Imaging of gas migration
pathways in proteins with
implicit ligand sampling

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Need for Multi-GPU
CUDA Acceleration in VMD

• Ongoing increases in supercomputing resources at
NSF centers such as NCSA enable increased
simulation complexity, fidelity, and longer time
scales…

• Drives need for more visualization and analysis
capability at the desktop and on clusters running
batch analysis jobs

• Desktop use is the most compute-resource-limited
scenario, where GPUs can make a big impact…

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

CUDA Runtime API Basics
• A single host thread can attach to and

communicate with a single GPU
• A single GPU can be shared by multiple

threads/processes, but only one such context
is active at a time

• In order to use more than one GPU,
multiple host threads or processes must be
created

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

One Host Thread Per GPU
(Strategy used by VMD)

CPU Thread 0 CPU Thread 1 CPU Thread N

GPU 0 GPU 1 GPU N

…

…

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Host Thread Contexts Cannot Directly Share GPU
Memory, Must Communicate/Share on Host Side

CPU Thread 0 CPU Thread 1

GPU 0

CPU Thread 3

GPU 1

Even threads sharing the same GPU cannot exchange
data by reading each other’s GPU memory

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

CUDA Runtime APIs for Enumerating
and Selecting GPU Devices

• Query available hardware:
– cudaGetDeviceCount(), cudaGetDeviceProperties()

• Attach a GPU device to a host thread:
– cudaSetDevice()
– This is a permanent binding, once set it cannot be

subsequently changed
– Binding a GPU device to a host thread has overhead:

• 1st CUDA call after binding takes ~100 milliseconds

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Launching/Collecting Host Threads
(POSIX Threads)

void *cudaworkerthread(void *voidparms); // worker function

…
/* spawn child threads to do the work */
for (i=0; i<numprocs; i++) {
pthread_create(&threads[i], cudaworkerthread, &parms[i]);

}

/* “join” the threads after work is done */
for (i=0; i<numprocs; i++)
pthread_join(threads[i], NULL);

}

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

VMD Threading and
Work Distribution Abstractions

• Wrap low-level OS threading APIs with
convenient abstractions that launch, synchronize,
and collect groups of GPU worker threads

• Work distribution routines (shared iterators, akin
to a “parallel for loop”, work queues, etc)

• Routines to generate a persistent pool of worker
threads that sleep waiting for work to run,
amortizing one-time CUDA device initialization,
optimizes performance for multi-GPU kernels that
have runtimes below 1 second…

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Why Not TBB, Library X, Y, …
• We use the same threading primitives for both the

multi-core and CUDA code in VMD, portability is
important, minimize dependencies on external
libraries

• Intel Threading Building Blocks (TBB) library
contains many of the abstractions we want, but…

• Recent versions not (yet?) ported to all
platforms/compilers VMD supports

• Uses a cooperative (no preemption) scheduler
which is unable to cope with blocking disk I/O,
Host-GPU DMA I/O, blocking CUDA calls, etc…

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Classification of VMD Workloads

• Analysis computations:
– Driven by user scripts
– May run for seconds, minutes, or hours

• Interactive visualization, trajectory animation:
– Computations used to generate visual representation
– In all cases, total computation+rendering time should be

on the order of 0.1 seconds or less…
– Sensitive to latency

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Direct Coulomb Summation Runtime

GPU
underutilized

GPU fully utilized,
~40x faster than CPU

Accelerating molecular modeling applications with graphics processors.
J. Stone, J. Phillips, P. Freddolino, D. Hardy, L. Trabuco, K. Schulten.

J. Comp. Chem., 28:2618-2640, 2007.

Lower
is better

GPU initialization
time: ~110ms

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

GPU 1 GPU N…

Multi-GPU Direct
Coulomb Summation

NCSA GPU Cluster
http://www.ncsa.uiuc.edu/Projects/GPUcluster/

Evals/sec TFLOPS Speedup*

4-GPU (2 Quadroplex)
Opteron node at NCSA

157 billion 1.16 176

4-GPU GTX 280 (GT200) 241 billion 1.78 271

*Speedups relative to Intel QX6700 CPU core w/ SSE

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Multi-GPU Data-parallel Decomposition

• Many independent coarse-grain
computations farmed out to
pool of GPUs

• Work assignment can be
explicit in the code, or
controlled with a dynamic work
scheduler of some sort

• May need to handle load
imbalance, GPUs with varying
capabilities, runtime errors, etc.

GPU 1 GPU N…

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Multi-GPU Static Load Balance,
Static Work Decomposition

• Static round-robin load
balance:
– Easy to code, explicit round

robin decomposition
– Low overhead, works well

for short calculation runs
– Can’t reschedule work on

error/exception
– Easy to port to multiple OSs

GPU 1 GPU 3…

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Multi-GPU
Static Work Decomposition

// Each GPU worker thread loops over
// subset of 2-D planes in a 3-D cube…
for (k=thrID; k<numplane; k+=thrCount) {
// Process one plane of work…
// Launch one CUDA kernel for each
// loop iteration taken…
// Simple scheme, works well when GPUs
// and work units are nearly identical…
// No provision for in-flight error handling

}

GPU 1 GPU 3…

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Multi-GPU Load Balance

• Many early CUDA codes
assumed all GPUs were
identical

• All new NVIDIA cards support
CUDA, so a typical machine
may have a diversity of GPUs
of varying capability

• Static decomposition works
poorly if you have diverse
workload, or diverse GPUs,
e.g. 2 SM, 16 SM, 30 SM

GPU 1
2 SMs

GPU 3
30 SMs

…

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Multi-GPU Dynamic Load Balance,
Shared Work Iterator

• Dynamic load balance, single shared iterator
assigns slices to workers:
– Replaces the for loop in static decomposition
– Added overhead from mutex locks or atomic

memory operations
– Can reschedule/retry on error/exception by re-

adding to a shared queue or exception stack
– Still easy to port to multiple OSs

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Multi-GPU Shared Work Iterator
// Each GPU worker thread loops over
// subset 2-D planes in a 3-D cube…
while (!iterator_next(&parms, &k) {
// Process one plane of work…
// Launch one CUDA kernel for each
// loop iteration taken…
// Shared iterator automatically
// balances load on GPUs

}

GPU 1 GPU 3…

Shared work iterator

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Multi-GPU Runtime
Error/Exception Handling

• Competition for resources from
other applications or the
windowing system can cause
runtime failures (e.g. GPU out
of memory half way through an
algorithm)

• Handling of algorithm
exceptions (e.g. convergence
failure, NaN result, etc)

• Need to handle and/or
reschedule failed tiles of work

GPU 1
SM 1.0
128MB

GPU 3
SM 1.3

4096MB

…

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Molecular Orbital Computation and Display Process

Read QM simulation log file, trajectory

Compute 3-D grid of MO wavefunction amplitudes
Most performance-demanding step, run on GPU…

Extract isosurface mesh from 3-D MO grid

Apply user coloring/texturing
and render the resulting surface

Preprocess MO coefficient data
eliminate duplicates, sort by type, etc…

For current frame and MO index,
retrieve MO wavefunction coefficients

One-time
initialization

For each trj frame, for
each MO shown

Initialize Pool of GPU
Worker Threads

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

VMD Multi-GPU Molecular Orbital
Performance Results for C60

Kernel Cores/GPUs Runtime (s) Speedup
CPU ICC-SSE 1 46.580 1.00

CPU ICC-SSE 4 11.74 3.97

CUDA-const-cache 1 0.400 116.45

CUDA-const-cache 2 0.205 227.21

CUDA-const-cache 3 0.144 323.47

Intel Q6600 CPU,
1x NVIDIA Quadro 5800, 2x Tesla C1060 GPUs,

Uses persistent thread pool to avoid GPU init overhead

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Future Work

• Continued focus on low-latency GPU kernel
launch/scheduling mechanisms

• Public release of the multi-GPU framework
for easy use in other codes

• Add implementations that interoperate with
or build on top of libraries like BOOST

• Possibly contribute patches for other
libraries like TBB

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Acknowledgements

• Theoretical and Computational
Biophysics Group, IMPACT group,
NVIDIA Center of Excellence,
University of Illinois at Urbana-
Champaign

• CUDA team at NVIDIA
• NIH support: P41-RR05969

	Experiences with Multi-GPU Acceleration in VMD
	VMD – “Visual Molecular Dynamics”
	Range of VMD Usage Scenarios
	CUDA Acceleration in VMD
	Need for Multi-GPU �CUDA Acceleration in VMD
	CUDA Runtime API Basics
	One Host Thread Per GPU�(Strategy used by VMD)
	Host Thread Contexts Cannot Directly Share GPU Memory, Must Communicate/Share on Host Side
	CUDA Runtime APIs for Enumerating and Selecting GPU Devices
	Launching/Collecting Host Threads� (POSIX Threads)
	VMD Threading and �Work Distribution Abstractions
	Why Not TBB, Library X, Y, …
	Classification of VMD Workloads
	Direct Coulomb Summation Runtime
	Multi-GPU Direct Coulomb Summation
	Multi-GPU Data-parallel Decomposition
	Multi-GPU Static Load Balance,�Static Work Decomposition
	Multi-GPU �Static Work Decomposition
	Multi-GPU Load Balance
	Multi-GPU Dynamic Load Balance,�Shared Work Iterator
	Multi-GPU Shared Work Iterator
	Multi-GPU Runtime �Error/Exception Handling
	Molecular Orbital Computation and Display Process
	VMD Multi-GPU Molecular Orbital �Performance Results for C60
	Future Work
	Acknowledgements

