
NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

An Introduction to OpenCL

John Stone
Theoretical and Computational Biophysics Group

Beckman Institute for Advanced Science and Technology
University of Illinois at Urbana-Champaign

http://www.ks.uiuc.edu/Research/gpu/
gpucomputing.net Webcast,

December 10, 2009

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Aims of This Talk
• Give a rapid introduction to OpenCL for people

that may already be somewhat familiar with GPUs
and data-parallel programming concepts

• Rather than merely duplicating content found in
existing OpenCL tutorials, I will delve more into
details not (yet) covered in other online materials
I’ve found

• Show short sections of real OpenCL kernels used
in scientific software

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Online OpenCL Materials

• Khronos OpenCL headers, specification, etc:
http://www.khronos.org/registry/cl/

• Khronos OpenCL samples, tutorials, etc:
http://www.khronos.org/developers/resources/opencl/

• AMD OpenCL Resources:
http://developer.amd.com/gpu/ATIStreamSDK/pages/
TutorialOpenCL.aspx

• NVIDIA OpenCL Resources:
http://www.nvidia.com/object/cuda_opencl.html

http://www.khronos.org/registry/cl/
http://www.khronos.org/developers/resources/opencl/
http://developer.amd.com/gpu/ATIStreamSDK/pages/TutorialOpenCL.aspx
http://developer.amd.com/gpu/ATIStreamSDK/pages/TutorialOpenCL.aspx
http://www.nvidia.com/object/cuda_opencl.html

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

What is OpenCL?
• Cross-platform parallel computing API and C-like

language for heterogeneous computing devices
• Code is portable across various target devices:

– Correctly-written OpenCL code will produce correct
results across multiple types of OpenCL devices

– Performance of a given kernel is not guaranteed
across different target devices

• OpenCL implementations already exist for AMD
and NVIDIA GPUs, x86 CPUs, IBM Cell

• OpenCL could in principle also support various
DSP chips, FPGAs, and other hardware

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Supporting Diverse Accelerator Hardware in
Production Codes….

• Development of HPC-oriented scientific
software is already challenging

• Maintaining unique code paths for each
accelerator type is costly and
impractical beyond a certain point

• Diversity and rapid evolution of
accelerators exacerbates these issues

• OpenCL ameliorates several key
problems:
– Targets CPUs, GPUs, and other accelerator

devices
– Common language for writing

computational “kernels”
– Common API for managing execution on

target device

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Performance Variation of OpenCL Kernels
• Targets a broader range of CPU-like and GPU-like

devices than CUDA
– Targets devices produced by multiple vendors
– Many features of OpenCL are optional and may not be

supported on all devices

• OpenCL codes must be prepared to deal with
much greater hardware diversity

• A single OpenCL kernel will likely not achieve
peak performance on all device types

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Apparent Weaknesses of OpenCL 1.0
•OpenCL is a low-level API

–Developers are responsible for a lot of plumbing, lots of
objects/handles to keep track of

–Even a basic OpenCL “hello world” is much more code to
write than doing the same thing in the CUDA runtime API

•Developers are responsible for enforcing thread-safety
–Some types of multi-accelerator codes are much more difficult

to write than in the CUDA runtime API currently
•Great need for OpenCL middleware and/or libraries

–Simplified device management, integration of large numbers of
kernels into legacy apps, auto-selection of best kernels for
device...

–Tools to better support OpenCL apps in large HPC
environments, e.g. clusters

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

OpenCL Data Parallel Model
• Work is submitted to devices by launching kernels
• Kernels run over global dimension index ranges

(NDRange), broken up into “work groups”, and
“work items”

• Work items executing within the same work group
can synchronize with each other with barriers or
memory fences

• Work items in different work groups can’t sync
with each other, except by launching a new kernel

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

OpenCL NDRange Configuration

0,0 0,1

1,0 1,1

…

…

… … …

Work Group

Work Item

Global Size(0)

G
lo

ba
l S

iz
e(

1)

Local Size(0)

Lo
ca

l S
iz

e(
1)

Group ID

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

OpenCL Hardware Abstraction
• OpenCL exposes CPUs,

GPUs, and other
Accelerators as “devices”

• Each “device” contains one
or more “compute units”,
i.e. cores, SMs, etc...

• Each “compute unit”
contains one or more SIMD
“processing elements”

OpenCL Device
Compute Unit

PEPEPEPE
PEPEPEPE

Compute Unit
PEPEPEPE

PEPEPEPE

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

OpenCL Memory Systems
• __global – large, high latency
• __private – on-chip device registers
• __local – memory accessible from multiple PEs or

work items. May be SRAM or DRAM, must
query…

• __constant – read-only constant cache
• Device memory is managed explicitly by the

programmer, as with CUDA
• Pinned memory buffer allocations are created

using the CL_MEM_USE_HOST_PTR flag

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

OpenCL Context
• Contains one or more devices
• OpenCL memory objects are

associated with a context, not
a specific device

• clCreateBuffer() emits error if
an allocation is too large for
any device in the context

• Each device needs its own
work queue(s)

• Memory transfers are
associated with a command
queue (thus a specific device)

OpenCL Device

OpenCL Device

OpenCL Context

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

OpenCL Programs

• An OpenCL “program”
contains one or more
“kernels” and any
supporting routines that run
on a target device

• An OpenCL kernel is the
basic unit of code that can
be executed on a target
device

Kernel A

Kernel B

Kernel C

Misc support
functions

OpenCL Program

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

OpenCL Kernels
• Code that actually

executes on target
devices

• Analogous to CUDA
kernels

• Kernel body is
instantiated once for
each work item

• Each OpenCL work
item gets a unique
index, like a CUDA
thread does

__kernel void
vadd(__global const float *a,

__global const float *b,
__global float *result) {

int id = get_global_id(0);
result[id] = a[id] + b[id];

}

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

OpenCL Execution on
Multiple Devices

OpenCL Device

Cmd QueueKernelApplication

Cmd QueueKernel

OpenCL Device

OpenCL Context

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

OpenCL Application Example

• The easiest way to really illustrate how OpenCL
works is to explore a simple algorithm
implemented using the OpenCL API

• Since many have been working with CUDA
already, I’ll use the direct Coulomb summation
kernel we originally wrote in CUDA

• I’ll show how CUDA and OpenCL have much in
common, and also highlight some of the new
issues one has to deal with in using OpenCL on
multiple hardware platforms

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Electrostatic Potential Maps
• Electrostatic potentials

evaluated on 3-D lattice:

• Applications include:
– Ion placement for

structure building
– Time-averaged potentials

for simulation
– Visualization and

analysis Isoleucine tRNA synthetase

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Direct Coulomb Summation
• Each lattice point accumulates electrostatic potential

contribution from all atoms:
potential[j] += charge[i] / rij

atom[i]

rij: distance
from lattice[j]

to atom[i]
Lattice point j

being evaluated

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Single Slice DCS: Simple (Slow) C Version
void cenergy(float *energygrid, dim3 grid, float gridspacing, float z, const float *atoms, int numatoms) {

int i,j,n;
int atomarrdim = numatoms * 4;
for (j=0; j<grid.y; j++) {

float y = gridspacing * (float) j;
for (i=0; i<grid.x; i++) {
float x = gridspacing * (float) i;
float energy = 0.0f;
for (n=0; n<atomarrdim; n+=4) { // calculate potential contribution of each atom
float dx = x - atoms[n];
float dy = y - atoms[n+1];
float dz = z - atoms[n+2];
energy += atoms[n+3] / sqrtf(dx*dx + dy*dy + dz*dz);

}
energygrid[grid.x*grid.y*k + grid.x*j + i] = energy;

}
}

}

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Data Parallel Direct Coulomb
Summation Algorithm

• Work is decomposed into tens of thousands of
independent calculations
– multiplexed onto all of the processing units on the target

device (hundreds in the case of modern GPUs)
• Single-precision FP arithmetic is adequate for intended

application
• Numerical accuracy can be improved by compensated

summation, spatially ordered summation groupings, or
accumulation of potential in double-precision

• Starting point for more sophisticated linear-time
algorithms like multilevel summation

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

DCS Data Parallel Decomposition
(unrolled, coalesced)

Grid of thread blocks:

Padding waste

0,0 0,1

1,0 1,1

…

… …

…

Work Groups:
64-256 work items

…

Unrolling increases
computational tile size

Work items compute up to
8 potentials, skipping by
memory coalescing width

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Global Memory

Texture Texture Texture Texture Texture TextureTexture

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

GPUConstant Memory

Direct Coulomb Summation in OpenCL
Host

Atomic
Coordinates

Charges

Work items compute
up to 8 potentials,

skipping by coalesced
memory width

Work groups:
64-256 work items

NDRange containing
all work items,
decomposed into
work groups

Lattice padding

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Direct Coulomb Summation
Kernel Setup

OpenCL:
__kernel void clenergy(…) {
unsigned int xindex = (get_global_id(0) -

get_local_id(0)) * UNROLLX +
get_local_id(0);

unsigned int yindex = get_global_id(1);
unsigned int outaddr = get_global_size(0) *

UNROLLX * yindex + xindex;

CUDA:
__global__ void cuenergy (…) {
unsigned int xindex = blockIdx.x *

blockDim.x * UNROLLX +
threadIdx.x;

unsigned int yindex = blockIdx.y *
blockDim.y + threadIdx.y;

unsigned int outaddr = gridDim.x *
blockDim.x * UNROLLX * yindex
+ xindex;

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

DCS Inner Loop (CUDA)
…for (atomid=0; atomid<numatoms; atomid++) {

float dy = coory - atominfo[atomid].y;
float dyz2 = (dy * dy) + atominfo[atomid].z;
float dx1 = coorx – atominfo[atomid].x;
float dx2 = dx1 + gridspacing_coalesce;
float dx3 = dx2 + gridspacing_coalesce;
float dx4 = dx3 + gridspacing_coalesce;
float charge = atominfo[atomid].w;
energyvalx1 += charge * rsqrtf(dx1*dx1 + dyz2);
energyvalx2 += charge * rsqrtf(dx2*dx2 + dyz2);
energyvalx3 += charge * rsqrtf(dx3*dx3 + dyz2);
energyvalx4 += charge * rsqrtf(dx4*dx4 + dyz2);

}

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

DCS Inner Loop, Scalar OpenCL
…for (atomid=0; atomid<numatoms; atomid++) {

float dy = coory - atominfo[atomid].y;
float dyz2 = (dy * dy) + atominfo[atomid].z;
float dx1 = coorx – atominfo[atomid].x;
float dx2 = dx1 + gridspacing_coalesce;
float dx3 = dx2 + gridspacing_coalesce;
float dx4 = dx3 + gridspacing_coalesce;
float charge = atominfo[atomid].w;
energyvalx1 += charge * native_rsqrt(dx1*dx1 + dyz2);
energyvalx2 += charge * native_rsqrt(dx2*dx2 + dyz2);
energyvalx3 += charge * native_rsqrt(dx3*dx3 + dyz2);
energyvalx4 += charge * native_rsqrt(dx4*dx4 + dyz2);

}

Well-written CUDA code can
often be easily ported to OpenCL

if C++ features and pointer
arithmetic aren’t used in kernels.

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

DCS Inner Loop, Vectorized OpenCL

float4 gridspacing_u4 = { 0.f, 1.f, 2.f, 3.f };
gridspacing_u4 *= gridspacing_coalesce;
float4 energyvalx=0.0f;

…
for (atomid=0; atomid<numatoms; atomid++) {

float dy = coory - atominfo[atomid].y;
float dyz2 = (dy * dy) + atominfo[atomid].z;
float4 dx = gridspacing_u4 + (coorx – atominfo[atomid].x);
float charge = atominfo[atomid].w;
energyvalx1 += charge * native_rsqrt(dx1*dx1 + dyz2);

}

CPUs, AMD GPUs, and Cell often perform
better with vectorized kernels.

Use of vector types may increase register
pressure; sometimes a delicate balance…

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Wait a Second, Why Two Different
OpenCL Kernels???

• Existing OpenCL implementations don’t
necessarily autovectorize your code to the native
hardware’s SIMD vector width

• Although you can run the same code on very
different devices and get the correct answer,
performance will vary wildly…

• In many cases, getting peak performance on
multiple device types or hardware from different
vendors will presently require multiple OpenCL
kernels

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

OpenCL Host Code
• Roughly analogous to CUDA driver API:

– Memory allocations, memory copies, etc
– Image objects (i.e. textures)
– Create and manage device context(s) and

associate work queue(s), etc…
– OpenCL uses reference counting on all objects

• OpenCL programs are normally compiled
entirely at runtime, which must be managed
by host code

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

OpenCL Context Setup Code (simple)
cl_int clerr = CL_SUCCESS;

cl_context clctx = clCreateContextFromType(0, CL_DEVICE_TYPE_ALL, NULL,
NULL, &clerr);

size_t parmsz;

clerr = clGetContextInfo(clctx, CL_CONTEXT_DEVICES, 0, NULL, &parmsz);

cl_device_id* cldevs = (cl_device_id *) malloc(parmsz);

clerr = clGetContextInfo(clctx, CL_CONTEXT_DEVICES, parmsz, cldevs, NULL);

cl_command_queue clcmdq = clCreateCommandQueue(clctx, cldevs[0], 0, &clerr);

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

OpenCL Kernel Compilation Example
const char* clenergysrc =

"__kernel __attribute__((reqd_work_group_size(BLOCKSIZEX, BLOCKSIZEY, 1))) \n"

"void clenergy(int numatoms, float gridspacing, __global float *energy, __constant float4 *atominfo) { \n“
[…etc and so forth…]

cl_program clpgm;

clpgm = clCreateProgramWithSource(clctx, 1, &clenergysrc, NULL, &clerr);

char clcompileflags[4096];

sprintf(clcompileflags, "-DUNROLLX=%d -cl-fast-relaxed-math -cl-single-precision-
constant -cl-denorms-are-zero -cl-mad-enable", UNROLLX);

clerr = clBuildProgram(clpgm, 0, NULL, clcompileflags, NULL, NULL);

cl_kernel clkern = clCreateKernel(clpgm, "clenergy", &clerr);

OpenCL kernel source code as a big string

Gives raw source code string(s) to OpenCL

Set compiler flags, compile source, and
retreive a handle to the “clenergy” kernel

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Getting PTX for OpenCL Kernel on NVIDIA GPU
cl_uint numdevs;
clerr = clGetProgramInfo(clpgm, CL_PROGRAM_NUM_DEVICES, sizeof(numdevs),

&numdevs, NULL);
printf("number of devices: %d\n", numdevs);
char **ptxs = (char **) malloc(numdevs * sizeof(char *));
size_t *ptxlens = (size_t *) malloc(numdevs * sizeof(size_t));
clerr = clGetProgramInfo(clpgm, CL_PROGRAM_BINARY_SIZES, numdevs *

sizeof(size_t *), ptxlens, NULL);
for (int i=0; i<numdevs; i++)
ptxs[i] = (char *) malloc(ptxlens[i]+1);

clerr = clGetProgramInfo(clpgm, CL_PROGRAM_BINARIES, numdevs * sizeof(char *),
ptxs, NULL);

if (ptxlens[0] > 1)
printf("Resulting PTX compilation from build:\n’%s’\n“, ptxs[0]);

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

OpenCL Kernel Launch (abridged)
doutput = clCreateBuffer(clctx, CL_MEM_READ_WRITE, volmemsz, NULL, NULL);
datominfo = clCreateBuffer(clctx, CL_MEM_READ_ONLY, MAXATOMS * sizeof(cl_float4),

NULL, NULL);
[…]
clerr = clSetKernelArg(clkern, 0, sizeof(int), &runatoms);
clerr = clSetKernelArg(clkern, 1, sizeof(float), &zplane);
clerr = clSetKernelArg(clkern, 2, sizeof(cl_mem), &doutput);
clerr = clSetKernelArg(clkern, 3, sizeof(cl_mem), &datominfo);
cl_event event;
clerr = clEnqueueNDRangeKernel(clcmdq, clkern, 2, NULL, Gsz, Bsz, 0, NULL, &event);
clerr = clWaitForEvents(1, &event);
clerr = clReleaseEvent(event);
[…]
clEnqueueReadBuffer(clcmdq, doutput, CL_TRUE, 0, volmemsz, energy, 0, NULL, NULL);
clReleaseMemObject(doutput);
clReleaseMemObject(datominfo);

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Apples to Oranges Performance Results: Apples to Oranges Performance Results:
OpenCLOpenCL Direct Coulomb Summation KernelsDirect Coulomb Summation Kernels

MADD, RSQRT = 2 FLOPS All other FP instructions = 1 FLOP

OpenCL Target Device OpenCL

“cores”

Scalar Kernel:

Ported from original
CUDA kernel

4-Vector Kernel:

Replaced manually
unrolled loop iterations
with float4 vector ops

AMD 2.2GHz Opteron 148 CPU
(a very old Linux test box)

1 0.30 Bevals/sec,

2.19 GFLOPS

0.49 Bevals/sec,

3.59 GFLOPS

Intel 2.2Ghz Core2 Duo,
(Apple MacBook Pro)

2 0.88 Bevals/sec,

6.55 GFLOPS

2.38 Bevals/sec,

17.56 GFLOPS

IBM QS22 CellBE

*** __constant not implemented yet

16 2.33 Bevals/sec,

17.16 GFLOPS ****

6.21 Bevals/sec,

45.81 GFLOPS ****

AMD Radeon 4870 GPU 10 41.20 Bevals/sec,

303.93 GFLOPS

31.49 Bevals/sec,

232.24 GFLOPS

NVIDIA GeForce GTX 285 GPU 30 75.26 Bevals/sec,

555.10 GFLOPS

73.37 Bevals/sec,

541.12 GFLOPS

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Getting More Performance:Getting More Performance:
Adapting DCS Kernel to Adapting DCS Kernel to OpenCL OpenCL on Cellon Cell

OpenCL Target

Device

Scalar Kernel:

Ported directly from
original CUDA kernel

4-Vector Kernel:

Replaced manually
unrolled loop
iterations with float4
vector ops

Async Copy Kernel:

Replaced __constant
accesses with use of
async_work_group_copy(),

use float16 vector ops

IBM QS22 CellBE

*** __constant not
implemented

2.33 Bevals/sec,

17.16 GFLOPS ****

6.21 Bevals/sec,

45.81 GFLOPS ****

16.22 Bevals/sec,

119.65 GFLOPS

Replacing the use of constant memory with loads of atom data to __local memory via
async_work_group_copy() increases performance significantly since Cell doesn’t
implement __constant memory yet.
Tests show that the speed of native_rsqrt() is currently a performance limiter for Cell.
Replacing native_rsqrt() with a multiply results in a ~3x increase in execution rate.

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Computing Molecular Orbitals
• Visualization of MOs aids in

understanding the chemistry of
molecular system

• MO spatial distribution is
correlated with electron
probability density

• Calculation of high resolution
MO grids can require tens to
hundreds of seconds on CPUs

• >100x speedup allows
interactive animation of MOs
@ 10 FPS

C60
High Performance Computation and Interactive Display of Molecular
Orbitals on GPUs and Multi-core CPUs. Stone et al., GPGPU-2, ACM
International Conference Proceeding Series, volume 383, pp. 9-18, 2009

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Molecular Orbital Inner Loop, Hand-Coded SSE
Hard to Read, Isn’t It? (And this is the “pretty” version!)

for (shell=0; shell < maxshell; shell++) {

__m128 Cgto = _mm_setzero_ps();

for (prim=0; prim<num_prim_per_shell[shell_counter]; prim++) {

float exponent = -basis_array[prim_counter];

float contract_coeff = basis_array[prim_counter + 1];

__m128 expval = _mm_mul_ps(_mm_load_ps1(&exponent), dist2);

__m128 ctmp = _mm_mul_ps(_mm_load_ps1(&contract_coeff), exp_ps(expval));

Cgto = _mm_add_ps(contracted_gto, ctmp);

prim_counter += 2;

}

__m128 tshell = _mm_setzero_ps();

switch (shell_types[shell_counter]) {

case S_SHELL:

value = _mm_add_ps(value, _mm_mul_ps(_mm_load_ps1(&wave_f[ifunc++]), Cgto)); break;

case P_SHELL:

tshell = _mm_add_ps(tshell, _mm_mul_ps(_mm_load_ps1(&wave_f[ifunc++]), xdist));

tshell = _mm_add_ps(tshell, _mm_mul_ps(_mm_load_ps1(&wave_f[ifunc++]), ydist));

tshell = _mm_add_ps(tshell, _mm_mul_ps(_mm_load_ps1(&wave_f[ifunc++]), zdist));

value = _mm_add_ps(value, _mm_mul_ps(tshell, Cgto));

break;

Until now, writing SSE kernels for CPUs
required assembly language, compiler

intrinsics, various libraries, or a really smart
autovectorizing compiler and lots of luck...

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Molecular Orbital Inner Loop, OpenCL Vec4
Ahhh, much easier to read!!!

for (shell=0; shell < maxshell; shell++) {
float4 contracted_gto = 0.0f;
for (prim=0; prim < const_num_prim_per_shell[shell_counter]; prim++) {

float exponent = const_basis_array[prim_counter];
float contract_coeff = const_basis_array[prim_counter + 1];
contracted_gto += contract_coeff * native_exp2(-exponent*dist2);
prim_counter += 2;

}
float4 tmpshell=0.0f;
switch (const_shell_symmetry[shell_counter]) {

case S_SHELL:
value += const_wave_f[ifunc++] * contracted_gto; break;

case P_SHELL:
tmpshell += const_wave_f[ifunc++] * xdist;
tmpshell += const_wave_f[ifunc++] * ydist;
tmpshell += const_wave_f[ifunc++] * zdist;
value += tmpshell * contracted_gto;
break;

OpenCL’s C-like kernel language
is easy to read, even 4-way
vectorized kernels can look
similar to scalar CPU code.

All 4-way vectors shown in green.

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Apples to Oranges Performance Results:
OpenCL Molecular Orbital Kernels

Kernel Cores Runtime (s) Speedup
Intel QX6700 CPU ICC-SSE (SSE intrinsics) 1 46.580 1.00
Intel Core2 Duo CPU OpenCL scalar 2 43.342 1.07
Intel QX6700 CPU ICC-SSE (SSE intrinsics) 4 11.740 3.97
Intel Core2 Duo CPU OpenCL vec4 2 8.499 5.36
Cell OpenCL vec4*** no __constant 16 6.075 7.67
Radeon 4870 OpenCL scalar 10 2.108 22.1

Radeon 4870 OpenCL vec4 10 1.016 45.8
GeForce GTX 285 OpenCL vec4 30 0.364 127.9
GeForce GTX 285 CUDA 2.1 scalar 30 0.361 129.0
GeForce GTX 285 OpenCL scalar 30 0.335 139.0

GeForce GTX 285 CUDA 2.0 scalar 30 0.327 142.4
Minor varations in compiler quality can have a strong effect on “tight” kernels. The two

results shown for CUDA demonstrate performance variability with compiler revisions, and
that with vendor effort, OpenCL has the potential to match the performance of other APIs.

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Summary
• Incorporating OpenCL into an application requires adding far

more “plumbing” in an application than for the CUDA
runtime API

• Although OpenCL code is portable in terms of correctness,
performance of any particular kernel is not guaranteed across
different device types/vendors

• Apps have to check performance-related properties of target
devices, e.g. whether __local memory is fast/slow (query
CL_DEVICE_LOCAL_MEM_TYPE)

• It remains to be seen how OpenCL “platforms” will allow
apps to concurrently use an AMD CPU runtime and NVIDIA
GPU runtime (may already work on MacOS X?)

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Acknowledgements
• Additional Information and References:

– http://www.ks.uiuc.edu/Research/gpu/
• Questions, source code requests:

– John Stone: johns@ks.uiuc.edu
• Acknowledgements:

• J. Phillips, D. Hardy, J. Saam,
UIUC Theoretical and Computational Biophysics Group,
NIH Resource for Macromolecular Modeling and Bioinformatics

• Prof. Wen-mei Hwu, Christopher Rodrigues, UIUC IMPACT Group
• CUDA team at NVIDIA
• UIUC NVIDIA CUDA Center of Excellence
• NIH support: P41-RR05969

http://www.ks.uiuc.edu/Research/gpu/

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Publications
http://www.ks.uiuc.edu/Research/gpu/

• Probing Biomolecular Machines with Graphics Processors. J. Phillips, J. Stone.
Communications of the ACM, 52(10):34-41, 2009.

• GPU Clusters for High Performance Computing. V. Kindratenko, J. Enos, G. Shi,
M. Showerman, G. Arnold, J. Stone, J. Phillips, W. Hwu. Workshop on Parallel
Programming on Accelerator Clusters (PPAC), IEEE Cluster 2009. In press.

• Long time-scale simulations of in vivo diffusion using GPU hardware.
E. Roberts, J. Stone, L. Sepulveda, W. Hwu, Z. Luthey-Schulten. In IPDPS’09:
Proceedings of the 2009 IEEE International Symposium on Parallel & Distributed
Computing, pp. 1-8, 2009.

• High Performance Computation and Interactive Display of Molecular Orbitals on
GPUs and Multi-core CPUs. J. Stone, J. Saam, D. Hardy, K. Vandivort, W. Hwu,
K. Schulten, 2nd Workshop on General-Purpose Computation on Graphics
Pricessing Units (GPGPU-2), ACM International Conference Proceeding Series,
volume 383, pp. 9-18, 2009.

• Multilevel summation of electrostatic potentials using graphics processing units.
D. Hardy, J. Stone, K. Schulten. J. Parallel Computing, 35:164-177, 2009.

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Publications (cont)
http://www.ks.uiuc.edu/Research/gpu/

• Adapting a message-driven parallel application to GPU-accelerated clusters.
J. Phillips, J. Stone, K. Schulten. Proceedings of the 2008 ACM/IEEE Conference
on Supercomputing, IEEE Press, 2008.

• GPU acceleration of cutoff pair potentials for molecular modeling applications.
C. Rodrigues, D. Hardy, J. Stone, K. Schulten, and W. Hwu. Proceedings of the
2008 Conference On Computing Frontiers, pp. 273-282, 2008.

• GPU computing. J. Owens, M. Houston, D. Luebke, S. Green, J. Stone, J. Phillips.
Proceedings of the IEEE, 96:879-899, 2008.

• Accelerating molecular modeling applications with graphics processors. J. Stone,
J. Phillips, P. Freddolino, D. Hardy, L. Trabuco, K. Schulten. J. Comp. Chem.,
28:2618-2640, 2007.

• Continuous fluorescence microphotolysis and correlation spectroscopy. A.
Arkhipov, J. Hüve, M. Kahms, R. Peters, K. Schulten. Biophysical Journal,
93:4006-4017, 2007.

	An Introduction to OpenCL
	Aims of This Talk
	Online OpenCL Materials
	What is OpenCL?
	Supporting Diverse Accelerator Hardware in Production Codes….
	Performance Variation of OpenCL Kernels
	Apparent Weaknesses of OpenCL 1.0
	OpenCL Data Parallel Model
	OpenCL NDRange Configuration
	OpenCL Hardware Abstraction
	OpenCL Memory Systems
	OpenCL Context
	OpenCL Programs
	OpenCL Kernels
	OpenCL Execution on�Multiple Devices
	OpenCL Application Example
	Electrostatic Potential Maps
	Direct Coulomb Summation
	Single Slice DCS: Simple (Slow) C Version
	Data Parallel Direct Coulomb Summation Algorithm
	DCS Data Parallel Decomposition � (unrolled, coalesced)
	Direct Coulomb Summation in OpenCL
	Direct Coulomb Summation �Kernel Setup
	DCS Inner Loop (CUDA)
	DCS Inner Loop, Scalar OpenCL
	DCS Inner Loop, Vectorized OpenCL
	Wait a Second, Why Two Different OpenCL Kernels???
	OpenCL Host Code
	OpenCL Context Setup Code (simple)
	OpenCL Kernel Compilation Example
	Getting PTX for OpenCL Kernel on NVIDIA GPU
	OpenCL Kernel Launch (abridged)
	Apples to Oranges Performance Results: �OpenCL Direct Coulomb Summation Kernels
	Getting More Performance:�Adapting DCS Kernel to OpenCL on Cell
	Computing Molecular Orbitals
	Molecular Orbital Inner Loop, Hand-Coded SSE Hard to Read, Isn’t It? (And this is the “pretty” version!)
	Molecular Orbital Inner Loop, OpenCL Vec4�Ahhh, much easier to read!!!
	Apples to Oranges Performance Results:�OpenCL Molecular Orbital Kernels
	Summary
	Acknowledgements
	Publications�http://www.ks.uiuc.edu/Research/gpu/
	Publications (cont)�http://www.ks.uiuc.edu/Research/gpu/

