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OverviewOverview
• Molecular modeling applications, need for higher 

performance, increased energy efficiency
• Potential benefits of OpenCL for molecular modeling 

applications
• Early experiences with OpenCL 1.0 beta 

implementations
• Some crude performance results using existing 

OpenCL toolkits, both production and alpha/beta
• Detailed comparison of some OpenCL kernels 

targeting CPUs, GPUs, Cell, etc.
• OpenCL middleware opportunities, existing efforts 
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Computational Biology’s Insatiable 
Demand for Computational Power

• Many simulations still 
fall short of biological 
timescales

• Large simulations 
extremely difficult to 
prepare, analyze

• Performance increases 
allow use of more 
sophisticated models

http://www.ks.uiuc.edu/
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Molecular orbital  

calculation and display

100x to 120x faster

Electrostatic field 

calculation, ion placement

20x to 44x faster
Imaging of gas migration 
pathways in proteins with 
implicit ligand sampling

20x to 30x faster

CUDA+OpenCL Acceleration in VMD

http://www.ks.uiuc.edu/Research/vmd/
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Supporting Diverse Accelerator 
Hardware in Production Codes….

• Development of HPC-oriented 
scientific software is already 
challenging

• Maintaining unique code paths for 
each accelerator type is costly and 
impractical beyond a certain point 

• Diversity and rapid evolution of 
accelerators exacerbates these issues

• OpenCL ameliorates several key 
problems:
- Targets CPUs, GPUs, and other accelerator 

devices
- Common language for writing computational 

“kernels”
- Common API for managing execution on 

target device
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Strengths and Weaknesses of Current
OpenCL Implementations
• Code is portable to multiple OpenCL device types

- Correctly written OpenCL code will run and yield correct results on 
multiple devices

• Performance is not necessarily portable
- Some OpenCL API/language constructs naturally map better to 

some target devices than others
- OpenCL can’t hide significant differences in HW architecture

• Room for improvement in existing OpenCL compilers:
- Sophisticated batch-mode compilers have long provided 

autovectorization and high-end optimization techniques
- Current alpha/beta OpenCL implementations aren’t quite there yet
- Some compiler optimization techniques might be too slow to be 

made available in the typical runtime-compilation usage of OpenCL
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Strengths and Weaknesses of Current
OpenCL Implementations (2)
• OpenCL is a low-level API

- Freedom to wire up your code in a variety of ways
- Developers are responsible for a lot of plumbing, lots of 

objects/handles to keep track of
- A basic OpenCL “hello world” is _much_ more code to write than 

doing the same thing in the CUDA runtime API
• Developers are responsible for enforcing thread-safety 

in many cases
- Some multi-accelerator codes are much more difficult to write than 

in the CUDA runtime API
• Great need for OpenCL middleware and/or libraries

- Simplified device management, integration of large numbers of 
kernels into legacy apps, auto-selection of best kernels for device...

- Tools to better support OpenCL apps in large HPC environments, 
e.g. clusters (more on this at the end of my talk)
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Electrostatic Potential Maps

• Electrostatic potentials 
evaluated on 3-D lattice:

• Applications include:
- Ion placement for structure 

building
- Time-averaged potentials for 

simulation
- Visualization and analysis

Isoleucine tRNA synthetase

Accelerating molecular modeling applications with 
graphics processors.
Stone et al., . J. Comp. Chem., 28:2618-2640, 2007.
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Global Memory
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OpenCL DeviceConstant Memory

Direct Coulomb Summation in OpenCL,
Building Block for Better Algorithms

Host

Atomic
Coordinates

Charges

Work items compute
up to 8 potentials, 

skipping by coalesced
memory width

Work groups:
64-256 work items

NDRange containing
all work items,
decomposed into
work groups 

Lattice padding

Stone et al., J. Comp. Chem., 28:2618-2640, 2007.
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DCS Inner Loop, Scalar OpenCL

…for (atomid=0; atomid<numatoms; atomid++) {
float dy = coory - atominfo[atomid].y;
float dyz2 = (dy * dy) + atominfo[atomid].z;
float dx1 = coorx – atominfo[atomid].x;
float dx2 = dx1 + gridspacing_coalesce;
float dx3 = dx2 + gridspacing_coalesce;
float dx4 = dx3 + gridspacing_coalesce;
float charge = atominfo[atomid].w;
energyvalx1 += charge * native_rsqrt(dx1*dx1 + dyz2);
energyvalx2 += charge * native_rsqrt(dx2*dx2 + dyz2);
energyvalx3 += charge * native_rsqrt(dx3*dx3 + dyz2);
energyvalx4 += charge * native_rsqrt(dx4*dx4 + dyz2);

}

Well-written CUDA code can 
often be easily ported to OpenCL 

if C++  features and pointer 
arithmetic aren’t used in kernels.
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DCS Inner Loop, Vectorized OpenCL

float4 gridspacing_u4 = { 0.f, 1.f, 2.f, 3.f };
gridspacing_u4 *= gridspacing_coalesce;
float4 energyvalx=0.0f;

…
for (atomid=0; atomid<numatoms; atomid++) {

float dy = coory - atominfo[atomid].y;
float dyz2 = (dy * dy) + atominfo[atomid].z;
float4 dx = gridspacing_u4 + (coorx – atominfo[atomid].x);
float charge = atominfo[atomid].w;
energyvalx1 += charge * native_rsqrt(dx1*dx1 + dyz2);

}

CPUs, AMD GPUs, and Cell often perform better 
with vectorized kernels.

Use of vector types may increase register 
pressure; sometimes a delicate balance…
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Apples to Oranges Performance Results: Apples to Oranges Performance Results: 
OpenCLOpenCL Direct Coulomb Summation KernelsDirect Coulomb Summation Kernels

MADD, RSQRT = 2 FLOPS  All other FP instructions = 1 FLOP

OpenCL Target Device OpenCL 
“cores”

Scalar Kernel:
Ported from original 
CUDA kernel

4-Vector Kernel:
Replaced manually 
unrolled loop iterations 
with float4 vector ops

AMD 2.2GHz Opteron 148 CPU        
(a very old Linux test box)

1 0.30 Bevals/sec,
2.19 GFLOPS

0.49 Bevals/sec,
3.59 GFLOPS

Intel 2.2Ghz Core2 Duo,            
(Apple MacBook Pro)

2 0.88 Bevals/sec,
6.55 GFLOPS   

2.38 Bevals/sec,
17.56 GFLOPS

IBM QS22 CellBE
*** __constant not implemented yet

16 2.33 Bevals/sec,
17.16 GFLOPS ****

6.21 Bevals/sec,
45.81 GFLOPS ****

AMD Radeon 4870 GPU 10 41.20 Bevals/sec,
303.93 GFLOPS

31.49 Bevals/sec,
232.24 GFLOPS

NVIDIA GeForce GTX 285 GPU 30 75.26 Bevals/sec,
555.10 GFLOPS

73.37 Bevals/sec,
541.12 GFLOPS



© Copyright John E. Stone, 2009 - Page 13

Getting More Performance:Getting More Performance:
Adapting DCS Kernel to Adapting DCS Kernel to OpenCL OpenCL on Cellon Cell

OpenCL Target
Device

Scalar Kernel:
Ported directly 
from original CUDA 
kernel

4-Vector Kernel:
Replaced manually 
unrolled loop 
iterations with float4 
vector ops

Async Copy Kernel:
Replaced __constant 
accesses with use of
async_work_group_copy(),
use float16 vector ops

IBM QS22 CellBE
*** __constant 
not implemented

2.33 Bevals/sec,
17.16 GFLOPS ****

6.21 Bevals/sec,
45.81 GFLOPS ****

16.22 Bevals/sec,
119.65 GFLOPS

Replacing the use of constant memory with loads of atom data to __local memory via 
async_work_group_copy() increases performance significantly since Cell doesn’t 
implement __constant memory yet.  
Tests show that the speed of native_rsqrt() is currently a performance limiter for Cell.  
Replacing native_rsqrt() with a multiply results in a ~3x increase in execution rate.
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Computing Molecular Orbitals

• Visualization of MOs aids in 
understanding the chemistry of 
molecular system

• MO spatial distribution is 
correlated with electron 
probability density

• Calculation of high resolution 
MO grids can require tens to 
hundreds of seconds on CPUs

• >100x speedup allows 
interactive animation of MOs @ 
10 FPS C60

High Performance Computation and Interactive Display of Molecular
Orbitals on GPUs and Multi-core CPUs.  Stone et al., GPGPU-2, ACM 
International Conference Proceeding Series, volume 383, pp. 9-18, 2009
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Molecular Orbital Inner Loop, Hand-Coded SSE
Hard to Read, Isn’t It?  (And this is the “pretty” version!)

for (shell=0; shell < maxshell; shell++) {
__m128 Cgto = _mm_setzero_ps();
for (prim=0; prim<num_prim_per_shell[shell_counter]; prim++) {

float exponent      = -basis_array[prim_counter ];
float contract_coeff =  basis_array[prim_counter + 1];
__m128 expval = _mm_mul_ps(_mm_load_ps1(&exponent), dist2);
__m128 ctmp = _mm_mul_ps(_mm_load_ps1(&contract_coeff), exp_ps(expval));
Cgto = _mm_add_ps(contracted_gto, ctmp);
prim_counter += 2;

}
__m128 tshell = _mm_setzero_ps();
switch (shell_types[shell_counter]) {

case S_SHELL:
value = _mm_add_ps(value, _mm_mul_ps(_mm_load_ps1(&wave_f[ifunc++]), Cgto));    break;

case P_SHELL:
tshell = _mm_add_ps(tshell, _mm_mul_ps(_mm_load_ps1(&wave_f[ifunc++]), xdist));
tshell = _mm_add_ps(tshell, _mm_mul_ps(_mm_load_ps1(&wave_f[ifunc++]), ydist));
tshell = _mm_add_ps(tshell, _mm_mul_ps(_mm_load_ps1(&wave_f[ifunc++]), zdist));
value = _mm_add_ps(value, _mm_mul_ps(tshell, Cgto));
break;

Until now, writing SSE kernels for CPUs 
required assembly language, compiler 

intrinsics, various libraries, or a really smart 
autovectorizing compiler and lots of luck...
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Molecular Orbital Inner Loop, OpenCL Vec4
Ahhh, much easier to read!!!
for (shell=0; shell < maxshell; shell++) {

float4 contracted_gto = 0.0f;
for (prim=0; prim < const_num_prim_per_shell[shell_counter];  prim++) {

float exponent = const_basis_array[prim_counter      ];
float contract_coeff = const_basis_array[prim_counter + 1];
contracted_gto += contract_coeff * native_exp2(-exponent*dist2);
prim_counter += 2;

}
float4 tmpshell=0.0f;
switch (const_shell_symmetry[shell_counter]) {

case S_SHELL:
value += const_wave_f[ifunc++] * contracted_gto;       break;

case P_SHELL:
tmpshell += const_wave_f[ifunc++] * xdist;
tmpshell += const_wave_f[ifunc++] * ydist;
tmpshell += const_wave_f[ifunc++] * zdist; 
value += tmpshell * contracted_gto;
break;   

OpenCL’s C-like kernel language 
is easy to read, even 4-way 
vectorized kernels can look 
similar to scalar CPU code.

All 4-way vectors shown in green. 
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Apples to Oranges Performance Results:
OpenCL Molecular Orbital Kernels

Kernel Cores Runtime (s) Speedup
Intel QX6700 CPU ICC-SSE (SSE intrinsics) 1 46.580 1.00

Intel Core2 Duo CPU OpenCL scalar 2 43.342 1.07
Intel QX6700 CPU ICC-SSE (SSE intrinsics) 4 11.740 3.97
Intel Core2 Duo CPU OpenCL vec4 2 8.499 5.36

Cell OpenCL vec4*** no __constant 16 6.075 7.67

Radeon 4870 OpenCL scalar 10 2.108 22.1

Radeon 4870 OpenCL vec4 10 1.016 45.8
GeForce GTX 285 OpenCL vec4 30 0.364 127.9
GeForce GTX 285 CUDA 2.1 scalar 30 0.361 129.0

GeForce GTX 285 OpenCL scalar 30 0.335 139.0

GeForce GTX 285 CUDA 2.0 scalar 30 0.327 142.4

Minor varations in compiler quality can have a strong effect on “tight” kernels.  The two 
results shown for CUDA demonstrate performance variability with compiler revisions, and 
that with vendor effort, OpenCL has the potential to match the performance of other APIs.
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MCUDA for OpenCL
• MCUDA “Multicore CUDA”: Compilation framework 

originally developed to allow retargeting CUDA kernels 
to multicore CPUs
- "MCUDA: An Efficient Implementation of CUDA Kernels on Multi-

cores“, J. Stratton, S. Stone, W. Hwu. Technical report, University 
of Illinois at Urbana-Champaign, IMPACT-08-01, March, 2008. 

• Potential extensions to MCUDA for OpenCL:
- Make OpenCL performance portable: generate vectorized 

OpenCL kernels from scalar CUDA or OpenCL kernels, as needed 
by specific target devices

- Translate CUDA kernels to OpenCL
• Availability:
http://impact.crhc.illinois.edu/mcuda.php
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OpenCL on GPU Clusters at NCSA

• Lincoln
- 1536 CPUs, 384 Tesla

GPUs
- Production system 

available via 
NCSA/TeraGrid HPC 
allocation

• AC
- 128 CPUs, 128 Tesla GPUs
- Available for GPU devel & 

experimentation
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NCSA CUDA/OpenCL Wrapper Library
• Virtualize accelerator devices
• Workload manager control of device 

visibility, access, and resource 
allocation

• Transparent monitoring of 
application, accelerator activity:

- Measure accelerator utilization and 
performance by individual HPC codes

- Track accelerator and API usage by user 
community

• Rapid implementation and 
evaluation of HPC-relevant features 
not available in standard CUDA /
OpenCL APIs

• Hope for eventual uptake of proven 
features by vendors and standards 
organizations

CUDA
Driver+Runtime 

Library

OpenCL
Runtime
Library

CUDA+OpenCL 
Wrapper Libraries

HPC Application Using
CUDA or OpenCL

Workload
Manager

Cluster
Monitoring

Kindratenko et al. Workshop on Parallel Programming on 
Accelerator Clusters (PPAC), IEEE Cluster 2009.
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NCSA CUDA/OpenCL Wrapper Library
• Principle of operation:

- Use /etc/ld.so.preload to overload (intercept) a subset of CUDA /
OpenCL device management APIs, e.g. cudaSetDevice(), 
clGetDeviceIDs(), etc…

• Features:
- NUMA affinity mapping:

- Sets application thread affinity to the CPU core nearest to the target device
- Maximizes host-device transfer bandwidth, particularly on multi-GPU hosts

- Shared host, multi-GPU device fencing
- Only GPUs allocated by batch scheduler are visible / accessible to application
- GPU device IDs are virtualized, with a fixed mapping to a physical device per user 

environment
- User always sees allocated GPU devices indexed from 0

- Device ID Rotation
- Virtual to Physical device mapping rotated for each process accessing a GPU 

device
- Allowed for common execution parameters (e.g. Target gpu0 with 4 processes, 

each one gets separate gpu, assuming 4 gpus available)
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NCSA CUDA/OpenCL Wrapper Library
• Memory Scrubber Utility

- Linux kernel does no management of GPU device memory
- Must run between user jobs to ensure security between users
- Independent utility from wrapper, but packaged with it

• CUDA/OpenCL Wrapper Authors:
- Jeremy Enos <jenos at ncsa.uiuc.edu>
- Guochun Shi <gshi at ncsa.uiuc.edu>
- Volodymyr Kindratenko <kindrtnk at illinois.edu>

• Wrapper Software Availability
- NCSA / UIUC Open Source License
- https://sourceforge.net/projects/cudawrapper/
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Publications
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• Probing Biomolecular Machines with Graphics Processors.  J. Phillips, J. Stone.  
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D. Hardy, J. Stone, K. Schulten. J. Parallel Computing, 35:164-177, 2009.
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Publications (cont)
http://www.ks.uiuc.edu/Research/gpu/

• Adapting a message-driven parallel application to GPU-accelerated 
clusters. J. Phillips, J. Stone, K. Schulten.  Proceedings of the 2008 
ACM/IEEE Conference on Supercomputing, IEEE Press, 2008.

• GPU acceleration of cutoff pair potentials for molecular modeling 
applications. C. Rodrigues, D. Hardy, J. Stone, K. Schulten, and W.
Hwu. Proceedings of the 2008 Conference On Computing Frontiers, 
pp. 273-282, 2008.

• GPU computing.  J. Owens, M. Houston, D. Luebke, S. Green, J. Stone, 
J. Phillips. Proceedings of the IEEE, 96:879-899, 2008.

• Accelerating molecular modeling applications with graphics 
processors. J. Stone, J. Phillips, P. Freddolino, D. Hardy, L. Trabuco, 
K. Schulten. J. Comp. Chem., 28:2618-2640, 2007.

• Continuous fluorescence microphotolysis and correlation 
spectroscopy. A. Arkhipov, J. Hüve, M. Kahms, R. Peters, K. Schulten. 
Biophysical Journal, 93:4006-4017, 2007. 
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