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VMD – “Visual Molecular Dynamics”
• Visualization and analysis of molecular dynamics simulations, 

sequence data, volumetric data, quantum chemistry simulations, 
particle systems, …

• User extensible with scripting and plugins
• http://www.ks.uiuc.edu/Research/vmd/
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Range of VMD Usage Scenarios
• Users run VMD on a diverse range of hardware: 

laptops, desktops, clusters, and supercomputers
• Typically used as a desktop application, for 

interactive 3D molecular graphics and analysis
• Can also be run in pure text mode for numerically 

intensive analysis tasks, batch mode movie 
rendering, etc…

• GPU acceleration provides an opportunity to make 
some slow, or batch calculations capable of being 
run interactively, or on-demand…
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Molecular orbital  

calculation and display

100x to 120x faster

Electrostatic field 

calculation, ion placement

20x to 44x faster

Imaging of gas migration 
pathways in proteins with 
implicit ligand sampling

20x to 30x faster

CUDA Acceleration in VMD
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Electrostatic Potential Maps
• Electrostatic potentials 

evaluated on 3-D lattice:

• Applications include:
– Ion placement for 

structure building
– Time-averaged potentials 

for simulation
– Visualization and 

analysis Isoleucine tRNA synthetase
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Multilevel Summation Main Ideas 
• Split the 1/r potential into a short-range cutoff part plus 

smoothed parts that are successively more slowly varying.  
All but the top level potential are cut off.

• Smoothed potentials are interpolated from successively 
coarser lattices.

• Finest lattice spacing h and smallest cutoff distance a are 
doubled at each successive level. 

=

+

+

atoms

h-lattice

2h-lattice

Split the 1/r potential Interpolate the smoothed potentials

a 2a

1/r



NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Multilevel Summation Calculation
map

potential
exact

short-range
interactions

interpolated
long-range
interactions

+=

short-range cutoff

interpolationanterpolation

h-lattice cutoff

2h-lattice cutoff

4h-lattice

restriction

restriction

prolongation

prolongation
long-range

parts

atom
charges

map
potentials

Computational Steps



NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Multilevel Summation on the GPU

Computational steps CPU (s) w/ GPU (s) Speedup

Short-range cutoff 480.07 14.87 32.3

Long-range anterpolation 0.18

restriction 0.16

lattice cutoff 49.47 1.36 36.4

prolongation 0.17

interpolation 3.47

Total 533.52 20.21 26.4

Performance profile for 0.5 Å map of potential for  1.5 M atoms.
Hardware platform is Intel QX6700 CPU and NVIDIA GTX 280.

Accelerate  short-range cutoff and lattice cutoff parts



NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Photobiology of Vision and Photosynthesis
Investigations of the chromatophore, a photosynthetic organelle

Full chromatophore model will permit structural, chemical and kinetic 
investigations at a structural systems biology level

Light

Electrostatic field of chromatophore model
from multilevel summation method:

computed with 3 GPUs (G80) in ~90 seconds, 
46x faster than single CPU core

Electrostatics needed to build full 
structural model, place ions, study 

macroscopic properties

Partial model:    
~10M atoms
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Computing Molecular Orbitals
• Visualization of MOs aids in 

understanding the chemistry of 
molecular system

• MO spatial distribution is 
correlated with electron 
probability density

• Calculation of high resolution 
MO grids can require tens to 
hundreds of seconds on CPUs

• >100x speedup allows 
interactive animation of MOs 
@ 10 FPS C60
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Molecular Orbital Computation and Display Process

Read QM simulation log file, trajectory

Compute 3-D grid of MO wavefunction amplitudes
Most performance-demanding step, run on GPU…

Extract isosurface mesh from 3-D MO grid 

Apply user coloring/texturing 
and render the resulting surface 

Preprocess MO coefficient data
eliminate duplicates, sort by type, etc…

For current frame and MO index, 
retrieve MO wavefunction coefficients  

One-time 
initialization

For each trj frame, for   
each MO shown

Initialize Pool of GPU 
Worker Threads
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CUDA Block/Grid Decomposition

Padding optimizes glob. mem 
perf, guaranteeing coalescing

Grid of thread blocks:

0,0 0,1

1,0 1,1

…

… …

…
Small 8x8 thread 
blocks afford large 
per-thread register 
count, shared mem.
Threads compute 
one MO lattice 
point each.

…

MO 3-D lattice decomposes into   
2-D slices (CUDA grids)
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MO Kernel for One Grid Point  (Naive C)

Loop over atoms

Loop over shells

Loop over primitives: 
largest component of 
runtime, due to expf()

Loop over angular 
momenta

(unrolled in real code)

…

for (at=0; at<numatoms; at++) {

int prim_counter = atom_basis[at];

calc_distances_to_atom(&atompos[at], &xdist, &ydist, &zdist, &dist2, &xdiv);

for (contracted_gto=0.0f, shell=0; shell < num_shells_per_atom[at]; shell++) {

int shell_type = shell_symmetry[shell_counter];

for (prim=0; prim < num_prim_per_shell[shell_counter];  prim++) {

float exponent      = basis_array[prim_counter ];

float contract_coeff = basis_array[prim_counter + 1];

contracted_gto += contract_coeff * expf(-exponent*dist2);

prim_counter += 2;

}

for (tmpshell=0.0f, j=0, zdp=1.0f; j<=shell_type; j++, zdp*=zdist) {

int imax = shell_type - j; 

for (i=0, ydp=1.0f, xdp=pow(xdist, imax); i<=imax; i++, ydp*=ydist, xdp*=xdiv)

tmpshell += wave_f[ifunc++] * xdp * ydp * zdp;

}

value += tmpshell * contracted_gto;

shell_counter++;

} 

} …..
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MO GPU Kernel Snippet:
Contracted GTO Loop, Use of Constant Memory

[… outer loop over atoms …]

float dist2 = xdist2 + ydist2 + zdist2;

// Loop over the shells belonging to this atom (or basis function)

for (shell=0; shell < maxshell; shell++) {

float contracted_gto = 0.0f;

// Loop over the Gaussian primitives of this contracted basis function to build the atomic orbital

int maxprim = const_num_prim_per_shell[shell_counter];

int shelltype = const_shell_types[shell_counter];

for (prim=0; prim < maxprim;  prim++) {

float exponent   = const_basis_array[prim_counter  ];

float contract_coeff = const_basis_array[prim_counter + 1];

contracted_gto += contract_coeff * __expf(-exponent*dist2);

prim_counter += 2;

}

[… continue on to angular momenta loop …]

Constant memory: 
nearly register-
speed when array 
elements accessed 
in unison by all 
peer threads….
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MO GPU Kernel Snippet:
Unrolled Angular Momenta Loop

/* multiply with the appropriate wavefunction coefficient */

float tmpshell=0;

switch (shelltype) {

case S_SHELL:

value += const_wave_f[ifunc++] * contracted_gto;

break;

[… P_SHELL case …]

case D_SHELL:

tmpshell += const_wave_f[ifunc++] * xdist2;

tmpshell += const_wave_f[ifunc++] * xdist * ydist;

tmpshell += const_wave_f[ifunc++] * ydist2;

tmpshell += const_wave_f[ifunc++] * xdist * zdist;

tmpshell += const_wave_f[ifunc++] * ydist * zdist;

tmpshell += const_wave_f[ifunc++] * zdist2;

value += tmpshell * contracted_gto;

break;

[... Other cases: F_SHELL, G_SHELL, etc …]

} // end switch

Loop unrolling:

•Saves registers 
(important for GPUs!)

•Reduces loop control 
overhead

•Increases arithmetic 
intensity
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Preprocessing of Atoms, Basis Set, and 
Wavefunction Coefficients

• Must make effective use of high bandwidth, low-
latency GPU on-chip memory, or CPU cache:
– Overall storage requirement reduced by eliminating 

duplicate basis set coefficients
– Sorting atoms by element type allows re-use of basis set 

coefficients for subsequent atoms of identical type

• Padding, alignment of arrays guarantees coalesced 
GPU global memory accesses, CPU SSE loads
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GPU Traversal of Atom Type, Basis Set,
Shell Type, and Wavefunction Coefficients

• Loop iterations always access same or consecutive 
array elements for all threads in a thread block:
– Yields good constant memory cache performance
– Increases shared memory tile reuse

Monotonically increasing memory references

Different at each 
timestep, and for   

each MO

Constant for all MOs, 
all timesteps

Strictly sequential memory references
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Use of GPU On-chip Memory
• If total data less than 64 kB, use only const mem:

– Broadcasts data to all threads, no global memory accesses!
• For large data, shared memory used as a program-

managed cache, coefficients loaded on-demand:
– Tiles sized large enough to service entire inner loop runs, 

broadcast to all 64 threads in a block
– Complications: nested loops, multiple arrays, varying length
– Key to performance is to locate tile loading checks outside of 

the two performance-critical inner loops
– Only 27% slower than hardware caching provided by 

constant memory (GT200)
– Next-gen “Fermi” GPUs will provide larger on-chip shared 

memory, L1/L2 caches, reduced control overhead
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Coefficient array in GPU global memory

Array tile loaded in GPU shared memory.  Tile size is a power-of-two, 
multiple of coalescing size, and allows simple indexing in inner loops 
(array indices are merely offset for reference within loaded tile).

64-Byte memory 
coalescing block boundaries

Full tile padding

Surrounding data,
unreferenced

by next batch of 
loop iterations
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MO GPU Kernel Snippet:
Loading Tiles Into Shared Memory On-Demand 

[… outer loop over atoms …]

if ((prim_counter + (maxprim<<1)) >= SHAREDSIZE) {

prim_counter += sblock_prim_counter;

sblock_prim_counter = prim_counter & MEMCOAMASK;

s_basis_array[sidx     ] = basis_array[sblock_prim_counter + sidx    ];

s_basis_array[sidx + 64] = basis_array[sblock_prim_counter + sidx +  64];

s_basis_array[sidx + 128] = basis_array[sblock_prim_counter + sidx + 128];

s_basis_array[sidx + 192] = basis_array[sblock_prim_counter + sidx + 192];

prim_counter -= sblock_prim_counter;

__syncthreads();

} 

for (prim=0; prim < maxprim;  prim++) {

float exponent   = s_basis_array[prim_counter    ];

float contract_coeff = s_basis_array[prim_counter + 1];

contracted_gto += contract_coeff * __expf(-exponent*dist2);

prim_counter += 2;

}

[… continue on to angular momenta loop …]
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VMD MO Performance Results for C60
Sun Ultra 24: Intel Q6600, NVIDIA GTX 280

Kernel Cores/GPUs Runtime (s) Speedup
CPU ICC-SSE 1 46.58 1.00

CPU ICC-SSE 4 11.74 3.97

CPU ICC-SSE-approx** 4 3.76 12.4

CUDA-tiled-shared 1 0.46 100.

CUDA-const-cache 1 0.37 126.

CUDA-const-cache-JIT* 1 0.27 173.
(JIT 40% faster)

C60 basis set 6-31Gd.  We used an unusually-high resolution MO grid for 
accurate timings.  A more typical calculation has 1/8th the grid points.

* Runtime-generated JIT kernel compiled using batch mode CUDA tools
**Reduced-accuracy approximation of expf(),                                    
cannot be used for zero-valued MO isosurfaces
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Performance Evaluation:
Molekel, MacMolPlt, and VMD

Sun Ultra 24: Intel Q6600, NVIDIA GTX 280
C60-A C60-B Thr-A Thr-B Kr-A Kr-B

Atoms 60 60 17 17 1 1

Basis funcs (unique) 300 (5) 900 (15) 49 (16) 170 (59) 19 (19) 84 (84)

Kernel Cores 
GPUs

Speedup vs. Molekel on 1 CPU core

Molekel 1* 1.0 1.0 1.0 1.0 1.0 1.0
MacMolPlt 4 2.4 2.6 2.1 2.4 4.3 4.5
VMD GCC-cephes 4 3.2 4.0 3.0 3.5 4.3 6.5
VMD ICC-SSE-cephes 4 16.8 17.2 13.9 12.6 17.3 21.5
VMD ICC-SSE-approx** 4 59.3 53.4 50.4 49.2 54.8 69.8
VMD CUDA-const-cache 1 552.3 533.5 355.9 421.3 193.1 571.6
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VMD Orbital Dynamics Proof of Concept
One GPU can compute and animate this movie on-the-fly!

CUDA const-cache kernel,     
Sun Ultra 24, GeForce GTX 285 

GPU MO grid calc. 0.016 s

CPU surface gen, 
volume gradient, 
and GPU rendering

0.033 s

Total runtime 0.049 s
Frame rate 20 FPS

With GPU speedups over 100x, previously insignificant CPU 
surface gen, gradient calc, and rendering are now 66% of runtime.
Need GPU-accelerated surface gen next…

threonine
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Multi-GPU Load Balance

• All new NVIDIA cards support 
CUDA, so a typical machine 
may have a diversity of GPUs 
of varying capability

• Static decomposition works 
poorly for non-uniform 
workload, or diverse GPUs,  
e.g. w/ 2 SM, 16 SM, 30 SM

• VMD uses a multithreaded 
dynamic GPU work distribution 
and error handling system

GPU 1
2 SMs

GPU 3
30 SMs

…
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Some Example Multi-GPU Latencies 
Relevant to Interactive Sci-Viz Apps

8.4us       CUDA empty kernel (immediate return)
10.0us       Sleeping barrier primitive (non-spinning

barrier that uses POSIX condition variables to prevent
idle CPU consumption while workers wait at the barrier)

20.3us        pool wake / exec / sleep cycle (no CUDA)
21.4us        pool wake / 1 x (tile fetch) / sleep cycle (no CUDA)
30.0us        pool wake / 1 x (tile fetch / CUDA nop kernel) / sleep cycle,

test CUDA kernel computes an output address from its
thread index, but does no output

1441.0us      pool wake / 100 x (tile fetch / CUDA nop kernel) / sleep cycle
test CUDA kernel computes an output address from its
thread index, but does no output
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VMD Multi-GPU Molecular Orbital 
Performance Results for C60

Intel Q6600 CPU, 4x Tesla C1060 GPUs,
Uses persistent thread pool to avoid GPU init overhead, 

dynamic scheduler distributes work to GPUs

Kernel Cores/GPUs Runtime (s) Speedup Parallel 
Efficiency

CPU-ICC-SSE 1 46.580 1.00 100%

CPU-ICC-SSE 4 11.740 3.97 99%
CUDA-const-cache 1 0.417 112 100%

CUDA-const-cache 2 0.220 212 94%

CUDA-const-cache 3 0.151 308 92%

CUDA-const-cache 4 0.113 412 92%
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VMD Multi-GPU Molecular Orbital 
Performance Results for C60
Using Mapped Host Memory

Intel Q6600 CPU, 3x Tesla C1060 GPUs,
GPU kernel writes output directly to host memory, no 

extra cudaMemcpy() calls to fetch results!
See cudaHostAlloc() + cudaGetDevicePointer()

Kernel Cores/GPUs Runtime (s) Speedup
CPU-ICC-SSE 1 46.580 1.00

CPU-ICC-SSE 4 11.740 3.97
CUDA-const-cache 3 0.151 308.

CUDA-const-cache w/ 
mapped host memory

3 0.137 340.
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NAMD: Molecular Dynamics on GPUs

http://www.ks.uiuc.edu/Research/gpu/
http://www.ks.uiuc.edu/Research/namd/
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Recent NAMD GPU Developments
• Features:

– Full electrostatics with PME
– Multiple timestepping
– 1-4 Exclusions
– Constant-pressure simulation

• Improved force accuracy:
– Patch-centered atom coordinates
– Increased precision of force interpolation

• GPU sharing with coordination via message passing
• Next-gen “Fermi” GPUs:

– Double precision force computations will be almost “free”
– Larger shared memory, increased effective memory bandwidth
– Potential for improved overlap of “local” and “remote” work units
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NAMD Beta 2 Released With CUDA
• CUDA-enabled NAMD binaries for 64-bit Linux are 

available on the NAMD web site now! 
http://www.ks.uiuc.edu/Research/namd/
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