
NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Accelerating Molecular Modeling
Applications with GPU Computing

John Stone
Theoretical and Computational Biophysics Group

Beckman Institute for Advanced Science and Technology
University of Illinois at Urbana-Champaign

http://www.ks.uiuc.edu/Research/gpu/
Supercomputing 2009

Portland, OR, November 18, 2009

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

VMD – “Visual Molecular Dynamics”
• Visualization and analysis of molecular dynamics simulations,

sequence data, volumetric data, quantum chemistry simulations,
particle systems, …

• User extensible with scripting and plugins
• http://www.ks.uiuc.edu/Research/vmd/

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Range of VMD Usage Scenarios
• Users run VMD on a diverse range of hardware:

laptops, desktops, clusters, and supercomputers
• Typically used as a desktop application, for

interactive 3D molecular graphics and analysis
• Can also be run in pure text mode for numerically

intensive analysis tasks, batch mode movie
rendering, etc…

• GPU acceleration provides an opportunity to make
some slow, or batch calculations capable of being
run interactively, or on-demand…

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Molecular orbital

calculation and display

100x to 120x faster

Electrostatic field

calculation, ion placement

20x to 44x faster

Imaging of gas migration
pathways in proteins with
implicit ligand sampling

20x to 30x faster

CUDA Acceleration in VMD

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Electrostatic Potential Maps
• Electrostatic potentials

evaluated on 3-D lattice:

• Applications include:
– Ion placement for

structure building
– Time-averaged potentials

for simulation
– Visualization and

analysis Isoleucine tRNA synthetase

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Multilevel Summation Main Ideas
• Split the 1/r potential into a short-range cutoff part plus

smoothed parts that are successively more slowly varying.
All but the top level potential are cut off.

• Smoothed potentials are interpolated from successively
coarser lattices.

• Finest lattice spacing h and smallest cutoff distance a are
doubled at each successive level.

=

+

+

atoms

h-lattice

2h-lattice

Split the 1/r potential Interpolate the smoothed potentials

a 2a

1/r

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Multilevel Summation Calculation
map

potential
exact

short-range
interactions

interpolated
long-range
interactions

+=

short-range cutoff

interpolationanterpolation

h-lattice cutoff

2h-lattice cutoff

4h-lattice

restriction

restriction

prolongation

prolongation
long-range

parts

atom
charges

map
potentials

Computational Steps

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Multilevel Summation on the GPU

Computational steps CPU (s) w/ GPU (s) Speedup

Short-range cutoff 480.07 14.87 32.3

Long-range anterpolation 0.18

restriction 0.16

lattice cutoff 49.47 1.36 36.4

prolongation 0.17

interpolation 3.47

Total 533.52 20.21 26.4

Performance profile for 0.5 Å map of potential for 1.5 M atoms.
Hardware platform is Intel QX6700 CPU and NVIDIA GTX 280.

Accelerate short-range cutoff and lattice cutoff parts

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Photobiology of Vision and Photosynthesis
Investigations of the chromatophore, a photosynthetic organelle

Full chromatophore model will permit structural, chemical and kinetic
investigations at a structural systems biology level

Light

Electrostatic field of chromatophore model
from multilevel summation method:

computed with 3 GPUs (G80) in ~90 seconds,
46x faster than single CPU core

Electrostatics needed to build full
structural model, place ions, study

macroscopic properties

Partial model:
~10M atoms

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Computing Molecular Orbitals
• Visualization of MOs aids in

understanding the chemistry of
molecular system

• MO spatial distribution is
correlated with electron
probability density

• Calculation of high resolution
MO grids can require tens to
hundreds of seconds on CPUs

• >100x speedup allows
interactive animation of MOs
@ 10 FPS C60

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Molecular Orbital Computation and Display Process

Read QM simulation log file, trajectory

Compute 3-D grid of MO wavefunction amplitudes
Most performance-demanding step, run on GPU…

Extract isosurface mesh from 3-D MO grid

Apply user coloring/texturing
and render the resulting surface

Preprocess MO coefficient data
eliminate duplicates, sort by type, etc…

For current frame and MO index,
retrieve MO wavefunction coefficients

One-time
initialization

For each trj frame, for
each MO shown

Initialize Pool of GPU
Worker Threads

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

CUDA Block/Grid Decomposition

Padding optimizes glob. mem
perf, guaranteeing coalescing

Grid of thread blocks:

0,0 0,1

1,0 1,1

…

… …

…
Small 8x8 thread
blocks afford large
per-thread register
count, shared mem.
Threads compute
one MO lattice
point each.

…

MO 3-D lattice decomposes into
2-D slices (CUDA grids)

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

MO Kernel for One Grid Point (Naive C)

Loop over atoms

Loop over shells

Loop over primitives:
largest component of
runtime, due to expf()

Loop over angular
momenta

(unrolled in real code)

…

for (at=0; at<numatoms; at++) {

int prim_counter = atom_basis[at];

calc_distances_to_atom(&atompos[at], &xdist, &ydist, &zdist, &dist2, &xdiv);

for (contracted_gto=0.0f, shell=0; shell < num_shells_per_atom[at]; shell++) {

int shell_type = shell_symmetry[shell_counter];

for (prim=0; prim < num_prim_per_shell[shell_counter]; prim++) {

float exponent = basis_array[prim_counter];

float contract_coeff = basis_array[prim_counter + 1];

contracted_gto += contract_coeff * expf(-exponent*dist2);

prim_counter += 2;

}

for (tmpshell=0.0f, j=0, zdp=1.0f; j<=shell_type; j++, zdp*=zdist) {

int imax = shell_type - j;

for (i=0, ydp=1.0f, xdp=pow(xdist, imax); i<=imax; i++, ydp*=ydist, xdp*=xdiv)

tmpshell += wave_f[ifunc++] * xdp * ydp * zdp;

}

value += tmpshell * contracted_gto;

shell_counter++;

}

} …..

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

MO GPU Kernel Snippet:
Contracted GTO Loop, Use of Constant Memory

[… outer loop over atoms …]

float dist2 = xdist2 + ydist2 + zdist2;

// Loop over the shells belonging to this atom (or basis function)

for (shell=0; shell < maxshell; shell++) {

float contracted_gto = 0.0f;

// Loop over the Gaussian primitives of this contracted basis function to build the atomic orbital

int maxprim = const_num_prim_per_shell[shell_counter];

int shelltype = const_shell_types[shell_counter];

for (prim=0; prim < maxprim; prim++) {

float exponent = const_basis_array[prim_counter];

float contract_coeff = const_basis_array[prim_counter + 1];

contracted_gto += contract_coeff * __expf(-exponent*dist2);

prim_counter += 2;

}

[… continue on to angular momenta loop …]

Constant memory:
nearly register-
speed when array
elements accessed
in unison by all
peer threads….

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

MO GPU Kernel Snippet:
Unrolled Angular Momenta Loop

/* multiply with the appropriate wavefunction coefficient */

float tmpshell=0;

switch (shelltype) {

case S_SHELL:

value += const_wave_f[ifunc++] * contracted_gto;

break;

[… P_SHELL case …]

case D_SHELL:

tmpshell += const_wave_f[ifunc++] * xdist2;

tmpshell += const_wave_f[ifunc++] * xdist * ydist;

tmpshell += const_wave_f[ifunc++] * ydist2;

tmpshell += const_wave_f[ifunc++] * xdist * zdist;

tmpshell += const_wave_f[ifunc++] * ydist * zdist;

tmpshell += const_wave_f[ifunc++] * zdist2;

value += tmpshell * contracted_gto;

break;

[... Other cases: F_SHELL, G_SHELL, etc …]

} // end switch

Loop unrolling:

•Saves registers
(important for GPUs!)

•Reduces loop control
overhead

•Increases arithmetic
intensity

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Preprocessing of Atoms, Basis Set, and
Wavefunction Coefficients

• Must make effective use of high bandwidth, low-
latency GPU on-chip memory, or CPU cache:
– Overall storage requirement reduced by eliminating

duplicate basis set coefficients
– Sorting atoms by element type allows re-use of basis set

coefficients for subsequent atoms of identical type

• Padding, alignment of arrays guarantees coalesced
GPU global memory accesses, CPU SSE loads

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

GPU Traversal of Atom Type, Basis Set,
Shell Type, and Wavefunction Coefficients

• Loop iterations always access same or consecutive
array elements for all threads in a thread block:
– Yields good constant memory cache performance
– Increases shared memory tile reuse

Monotonically increasing memory references

Different at each
timestep, and for

each MO

Constant for all MOs,
all timesteps

Strictly sequential memory references

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Use of GPU On-chip Memory
• If total data less than 64 kB, use only const mem:

– Broadcasts data to all threads, no global memory accesses!
• For large data, shared memory used as a program-

managed cache, coefficients loaded on-demand:
– Tiles sized large enough to service entire inner loop runs,

broadcast to all 64 threads in a block
– Complications: nested loops, multiple arrays, varying length
– Key to performance is to locate tile loading checks outside of

the two performance-critical inner loops
– Only 27% slower than hardware caching provided by

constant memory (GT200)
– Next-gen “Fermi” GPUs will provide larger on-chip shared

memory, L1/L2 caches, reduced control overhead

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Coefficient array in GPU global memory

Array tile loaded in GPU shared memory. Tile size is a power-of-two,
multiple of coalescing size, and allows simple indexing in inner loops
(array indices are merely offset for reference within loaded tile).

64-Byte memory
coalescing block boundaries

Full tile padding

Surrounding data,
unreferenced

by next batch of
loop iterations

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

MO GPU Kernel Snippet:
Loading Tiles Into Shared Memory On-Demand

[… outer loop over atoms …]

if ((prim_counter + (maxprim<<1)) >= SHAREDSIZE) {

prim_counter += sblock_prim_counter;

sblock_prim_counter = prim_counter & MEMCOAMASK;

s_basis_array[sidx] = basis_array[sblock_prim_counter + sidx];

s_basis_array[sidx + 64] = basis_array[sblock_prim_counter + sidx + 64];

s_basis_array[sidx + 128] = basis_array[sblock_prim_counter + sidx + 128];

s_basis_array[sidx + 192] = basis_array[sblock_prim_counter + sidx + 192];

prim_counter -= sblock_prim_counter;

__syncthreads();

}

for (prim=0; prim < maxprim; prim++) {

float exponent = s_basis_array[prim_counter];

float contract_coeff = s_basis_array[prim_counter + 1];

contracted_gto += contract_coeff * __expf(-exponent*dist2);

prim_counter += 2;

}

[… continue on to angular momenta loop …]

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

VMD MO Performance Results for C60
Sun Ultra 24: Intel Q6600, NVIDIA GTX 280

Kernel Cores/GPUs Runtime (s) Speedup
CPU ICC-SSE 1 46.58 1.00

CPU ICC-SSE 4 11.74 3.97

CPU ICC-SSE-approx** 4 3.76 12.4

CUDA-tiled-shared 1 0.46 100.

CUDA-const-cache 1 0.37 126.

CUDA-const-cache-JIT* 1 0.27 173.
(JIT 40% faster)

C60 basis set 6-31Gd. We used an unusually-high resolution MO grid for
accurate timings. A more typical calculation has 1/8th the grid points.

* Runtime-generated JIT kernel compiled using batch mode CUDA tools
**Reduced-accuracy approximation of expf(),
cannot be used for zero-valued MO isosurfaces

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Performance Evaluation:
Molekel, MacMolPlt, and VMD

Sun Ultra 24: Intel Q6600, NVIDIA GTX 280
C60-A C60-B Thr-A Thr-B Kr-A Kr-B

Atoms 60 60 17 17 1 1

Basis funcs (unique) 300 (5) 900 (15) 49 (16) 170 (59) 19 (19) 84 (84)

Kernel Cores
GPUs

Speedup vs. Molekel on 1 CPU core

Molekel 1* 1.0 1.0 1.0 1.0 1.0 1.0
MacMolPlt 4 2.4 2.6 2.1 2.4 4.3 4.5
VMD GCC-cephes 4 3.2 4.0 3.0 3.5 4.3 6.5
VMD ICC-SSE-cephes 4 16.8 17.2 13.9 12.6 17.3 21.5
VMD ICC-SSE-approx** 4 59.3 53.4 50.4 49.2 54.8 69.8
VMD CUDA-const-cache 1 552.3 533.5 355.9 421.3 193.1 571.6

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

VMD Orbital Dynamics Proof of Concept
One GPU can compute and animate this movie on-the-fly!

CUDA const-cache kernel,
Sun Ultra 24, GeForce GTX 285

GPU MO grid calc. 0.016 s

CPU surface gen,
volume gradient,
and GPU rendering

0.033 s

Total runtime 0.049 s
Frame rate 20 FPS

With GPU speedups over 100x, previously insignificant CPU
surface gen, gradient calc, and rendering are now 66% of runtime.
Need GPU-accelerated surface gen next…

threonine

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Multi-GPU Load Balance

• All new NVIDIA cards support
CUDA, so a typical machine
may have a diversity of GPUs
of varying capability

• Static decomposition works
poorly for non-uniform
workload, or diverse GPUs,
e.g. w/ 2 SM, 16 SM, 30 SM

• VMD uses a multithreaded
dynamic GPU work distribution
and error handling system

GPU 1
2 SMs

GPU 3
30 SMs

…

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Some Example Multi-GPU Latencies
Relevant to Interactive Sci-Viz Apps

8.4us CUDA empty kernel (immediate return)
10.0us Sleeping barrier primitive (non-spinning

barrier that uses POSIX condition variables to prevent
idle CPU consumption while workers wait at the barrier)

20.3us pool wake / exec / sleep cycle (no CUDA)
21.4us pool wake / 1 x (tile fetch) / sleep cycle (no CUDA)
30.0us pool wake / 1 x (tile fetch / CUDA nop kernel) / sleep cycle,

test CUDA kernel computes an output address from its
thread index, but does no output

1441.0us pool wake / 100 x (tile fetch / CUDA nop kernel) / sleep cycle
test CUDA kernel computes an output address from its
thread index, but does no output

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

VMD Multi-GPU Molecular Orbital
Performance Results for C60

Intel Q6600 CPU, 4x Tesla C1060 GPUs,
Uses persistent thread pool to avoid GPU init overhead,

dynamic scheduler distributes work to GPUs

Kernel Cores/GPUs Runtime (s) Speedup Parallel
Efficiency

CPU-ICC-SSE 1 46.580 1.00 100%

CPU-ICC-SSE 4 11.740 3.97 99%
CUDA-const-cache 1 0.417 112 100%

CUDA-const-cache 2 0.220 212 94%

CUDA-const-cache 3 0.151 308 92%

CUDA-const-cache 4 0.113 412 92%

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

VMD Multi-GPU Molecular Orbital
Performance Results for C60
Using Mapped Host Memory

Intel Q6600 CPU, 3x Tesla C1060 GPUs,
GPU kernel writes output directly to host memory, no

extra cudaMemcpy() calls to fetch results!
See cudaHostAlloc() + cudaGetDevicePointer()

Kernel Cores/GPUs Runtime (s) Speedup
CPU-ICC-SSE 1 46.580 1.00

CPU-ICC-SSE 4 11.740 3.97
CUDA-const-cache 3 0.151 308.

CUDA-const-cache w/
mapped host memory

3 0.137 340.

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

NAMD: Molecular Dynamics on GPUs

http://www.ks.uiuc.edu/Research/gpu/
http://www.ks.uiuc.edu/Research/namd/

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Recent NAMD GPU Developments
• Features:

– Full electrostatics with PME
– Multiple timestepping
– 1-4 Exclusions
– Constant-pressure simulation

• Improved force accuracy:
– Patch-centered atom coordinates
– Increased precision of force interpolation

• GPU sharing with coordination via message passing
• Next-gen “Fermi” GPUs:

– Double precision force computations will be almost “free”
– Larger shared memory, increased effective memory bandwidth
– Potential for improved overlap of “local” and “remote” work units

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

NAMD Beta 2 Released With CUDA
• CUDA-enabled NAMD binaries for 64-bit Linux are

available on the NAMD web site now!
http://www.ks.uiuc.edu/Research/namd/

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Acknowledgements
• Additional Information and References:

– http://www.ks.uiuc.edu/Research/gpu/
• Questions, source code requests:

– John Stone: johns@ks.uiuc.edu
• Acknowledgements:

• J. Phillips, D. Hardy, J. Saam,
UIUC Theoretical and Computational Biophysics Group,
NIH Resource for Macromolecular Modeling and Bioinformatics

• Prof. Wen-mei Hwu, Christopher Rodrigues, UIUC IMPACT Group
• CUDA team at NVIDIA
• UIUC NVIDIA CUDA Center of Excellence
• NIH support: P41-RR05969

http://www.ks.uiuc.edu/Research/gpu/

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Publications
http://www.ks.uiuc.edu/Research/gpu/

• Probing Biomolecular Machines with Graphics Processors. J. Phillips, J. Stone.
Communications of the ACM, 52(10):34-41, 2009.

• GPU Clusters for High Performance Computing. V. Kindratenko, J. Enos, G. Shi,
M. Showerman, G. Arnold, J. Stone, J. Phillips, W. Hwu. Workshop on Parallel
Programming on Accelerator Clusters (PPAC), IEEE Cluster 2009. In press.

• Long time-scale simulations of in vivo diffusion using GPU hardware.
E. Roberts, J. Stone, L. Sepulveda, W. Hwu, Z. Luthey-Schulten. In IPDPS’09:
Proceedings of the 2009 IEEE International Symposium on Parallel & Distributed
Computing, pp. 1-8, 2009.

• High Performance Computation and Interactive Display of Molecular Orbitals on
GPUs and Multi-core CPUs. J. Stone, J. Saam, D. Hardy, K. Vandivort, W. Hwu,
K. Schulten, 2nd Workshop on General-Purpose Computation on Graphics
Pricessing Units (GPGPU-2), ACM International Conference Proceeding Series,
volume 383, pp. 9-18, 2009.

• Multilevel summation of electrostatic potentials using graphics processing units.
D. Hardy, J. Stone, K. Schulten. J. Parallel Computing, 35:164-177, 2009.

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Publications (cont)
http://www.ks.uiuc.edu/Research/gpu/

• Adapting a message-driven parallel application to GPU-accelerated clusters.
J. Phillips, J. Stone, K. Schulten. Proceedings of the 2008 ACM/IEEE Conference
on Supercomputing, IEEE Press, 2008.

• GPU acceleration of cutoff pair potentials for molecular modeling applications.
C. Rodrigues, D. Hardy, J. Stone, K. Schulten, and W. Hwu. Proceedings of the
2008 Conference On Computing Frontiers, pp. 273-282, 2008.

• GPU computing. J. Owens, M. Houston, D. Luebke, S. Green, J. Stone, J. Phillips.
Proceedings of the IEEE, 96:879-899, 2008.

• Accelerating molecular modeling applications with graphics processors. J. Stone,
J. Phillips, P. Freddolino, D. Hardy, L. Trabuco, K. Schulten. J. Comp. Chem.,
28:2618-2640, 2007.

• Continuous fluorescence microphotolysis and correlation spectroscopy. A.
Arkhipov, J. Hüve, M. Kahms, R. Peters, K. Schulten. Biophysical Journal,
93:4006-4017, 2007.

	Accelerating Molecular Modeling Applications with GPU Computing
	VMD – “Visual Molecular Dynamics”
	Range of VMD Usage Scenarios
	CUDA Acceleration in VMD
	Electrostatic Potential Maps
	Multilevel Summation Main Ideas
	Multilevel Summation Calculation
	Multilevel Summation on the GPU
	Computing Molecular Orbitals
	Molecular Orbital Computation and Display Process
	CUDA Block/Grid Decomposition
	MO Kernel for One Grid Point (Naive C)
	MO GPU Kernel Snippet:�Contracted GTO Loop, Use of Constant Memory
	MO GPU Kernel Snippet:�Unrolled Angular Momenta Loop
	Preprocessing of Atoms, Basis Set, and �Wavefunction Coefficients
	GPU Traversal of Atom Type, Basis Set,� Shell Type, and Wavefunction Coefficients
	Use of GPU On-chip Memory
	MO GPU Kernel Snippet:�Loading Tiles Into Shared Memory On-Demand
	VMD MO Performance Results for C60�Sun Ultra 24: Intel Q6600, NVIDIA GTX 280
	Performance Evaluation:�Molekel, MacMolPlt, and VMD� Sun Ultra 24: Intel Q6600, NVIDIA GTX 280
	VMD Orbital Dynamics Proof of Concept
	Multi-GPU Load Balance
	Some Example Multi-GPU Latencies Relevant to Interactive Sci-Viz Apps
	VMD Multi-GPU Molecular Orbital �Performance Results for C60
	VMD Multi-GPU Molecular Orbital �Performance Results for C60 �Using Mapped Host Memory
	NAMD: Molecular Dynamics on GPUs
	Recent NAMD GPU Developments
	NAMD Beta 2 Released With CUDA
	Acknowledgements
	Publications�http://www.ks.uiuc.edu/Research/gpu/
	Publications (cont)�http://www.ks.uiuc.edu/Research/gpu/

