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Overview

• Some use case examples
• Brief overview of CUDA architecture
• Selecting GPU devices
• Creating multiple host threads/processes to 

manage GPUs
• Managing work on multiple GPUs
• Handling exceptions
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GPU 1 GPU N…

Multi-GPU Direct 
Coulomb Summation

NCSA GPU Cluster
http://www.ncsa.uiuc.edu/Projects/GPUcluster/

Evals/sec TFLOPS Speedup*

4-GPU (2 Quadroplex) 
Opteron node at NCSA

157 billion 1.16 176

4-GPU GTX 280 (GT200) 241 billion 1.78 271

*Speedups relative to Intel QX6700 CPU core w/ SSE
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CUDA Architecture Basics
• A single host thread can attach to and 

communicate with a single GPU
• A single GPU can be shared by multiple 

threads/processes, but only one such context 
is active at a time

• In order to use more than one GPU, 
multiple host threads or processes must be 
created



NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

One Host Thread Per GPU

CPU Thread 0 CPU Thread 1 CPU Thread N

GPU 0 GPU 1 GPU N

…

…
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Multiple Host Threads Per GPU

CPU Thread 0 CPU Thread 1 CPU Thread N

GPU 0

…
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Data Exchange Between GPUs

• Limitations with current version of CUDA:
– No way to directly exchange data between 

multiple GPUs using CUDA
– Exchanges must be done on the host side 

outside of CUDA
– Involves host thread/process responsible for 

each device
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Host Thread Contexts Cannot Directly Share GPU 
Memory, Must Communicate on Host Side

CPU Thread 0 CPU Thread 1

GPU 0

CPU Thread 3

GPU 1

Even threads sharing the same GPU cannot exchange
data by reading each other’s GPU memory
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CUDA Runtime APIs for Enumerating 
and Selecting GPU Devices

• Query available hardware: 
– cudaGetDeviceCount()
– cudaGetDeviceProperties()

• Attach a GPU device to a host thread:
– cudaSetDevice()
– This is a permanent binding, once set it cannot be 

subsequently changed
– Binding a GPU device to a host thread has overhead:

• 1st CUDA call after binding takes ~100 milliseconds
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Multi-GPU Data-parallel Decomposition

• Many independent coarse-grain 
computations farmed out to 
pool of GPUs

• Work assignment can be 
explicit in the code, or 
controlled with a dynamic work 
scheduler of some sort

• May need to handle load 
imbalance, GPUs with varying 
capabilities, runtime errors, etc.

GPU 1 GPU N…
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Launching Host Threads (POSIX Threads)
void *cudaworkerthread(void *voidparms); // worker function

…
/* spawn child threads to do the work */
for (i=0; i<numprocs; i++) {
pthread_create(&threads[i], cudaworkerthread, &parms[i]);

}

/* “join” the threads after work is done */
for (i=0; i<numprocs; i++) 
pthread_join(threads[i], NULL);

}
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Multi-GPU Static Load Balance,
Static Work Decomposition

• Static round-robin load 
balance:
– Easy to code, explicit round 

robin decomposition
– Low overhead, works well 

for short calculation runs
– No ability to automatically 

reschedule work on 
error/exception

– Easy to port to multiple OSs

GPU 1 GPU 3…
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Multi-GPU 
Static Work Decomposition

// Each GPU worker thread loops over
// subset of 2-D planes in a 3-D cube…
for (k=thrID; k<numplane; k+=thrCount) {
// Process one plane of work…
// Launch one CUDA kernel for each
//   loop iteration taken…
// Simple scheme, works well when GPUs
//   and work units are nearly identical…
// No provision for in-flight error handling

}

GPU 1 GPU 3…
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Multi-GPU Load Balance
• Many independent coarse-grain 

computations farmed out to pool of 
GPUs

• Many early CUDA codes assumed 
all GPUs were identical (nearly so)

• Now all new NV cards support 
CUDA, so a machine may have a 
diversity of GPUs of varying 
capability

• Static decomposition works poorly if 
you have diverse GPUs, e.g. 2 SM, 
30 SM

GPU 1
2 SMs

GPU 3
30 SMs

…
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Multi-GPU Dynamic Load Balance,
Shared Work Iterator

• Dynamic load balance, single 
shared iterator assigns slices to 
workers:
– Replaces the for loop in static 

decomposition example
– Added overhead from mutex 

locks:
– Can reschedule/retry on 

error/exception by re-adding to 
the shared queue

– Still easy to port to multiple OSs

GPU 1 GPU 3…

Shared work iterator
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Multi-GPU Shared Work Iterator

// Each GPU worker thread loops over
// subset 2-D planes in a 3-D cube…
while (!iterator_next(&parms, &k) {
// Process one plane of work…
// Launch one CUDA kernel for each
//   loop iteration taken…
// Shared iterator automatically 
//   balances load on GPUs
// No provision for complex error handling
//   or “retry” of a work unit on a different GPU

}

GPU 1 GPU 3…

Shared work iterator
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Multi-GPU Runtime 
Error/Exception Handling

• Competition for resources from 
other applications or the 
windowing system can cause 
runtime failures (e.g. GPU out 
of memory half way through an 
algorithm)

• Handling of algorithm 
exceptions (e.g. convergence 
failure, NaN result, etc)

• Need a way to handle and/or 
reschedule failed tiles of work

GPU 1
SM 1.0
128MB

GPU 3
SM 1.3

4096MB

…
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Multi-GPU Load Balance,
Shared Work Queue

• Dynamic load balance, single shared 
work queue:
– Added overhead from loading/draining 

queue
– Potential for mutex contention in fast 

running kernels or fine-grained work 
decomposition

– Can reschedule/retry on error/exception 
by re-adding to the shared queue

– Still relatively easy to port to multiple 
OSs

– Harder to make fastest implementations 
portable since they ideally use lock-free 
algorithms (e.g. STM)

GPU 1 GPU 3…

Shared work queue
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Multi-GPU Load Balance,
Multiple Deques, Work Stealing…

• Dynamic load balance, multiple 
work deques, “work stealing”
– Added overhead from loading/draining 

managing multiple double-ended queues
– Reduced mutex contention in fast 

running kernels since mutexes only 
contended during “work stealing”

– Can reschedule/retry on error/exception 
by re-adding to the shared queue

– Harder to make portable, fastest 
implementations attempt to use lock-free 
algorithms

GPU 1
2 SMs

GPU 3
30 SMs

…

Steal Work From

Slower Running GPU
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