Using GPUs to compute the multilevel summation of electrostatic forces

David J. Hardy
Theoretical and Computational Biophysics Group Beckman Institute for Advanced Science and Technology

University of Illinois at Urbana-Champaign http://www.ks.uiuc.edu/Research/gpu/

Multiscale Molecular Modelling,
Edinburgh, June 30 - July 3, 2010

Outline

- Multilevel summation method (MSM)
- GPU architecture and kernel design considerations
- GPU kernel design alternatives for short-range non-bonded interactions
- GPU kernel for MSM long-range part
- Initial performance results for speeding up MD

Multilevel Summation Method

Skeel, et al., J. Comp. Chem. 23:673-684, 2002.

- Fast algorithm for N -body electrostatics
- Calculates sum of smoothed pairwise potentials interpolated from a hierarchal nesting of grids
- Advantages over PME (particle-mesh Ewald) and/or FMM (fast multipole method):
- Algorithm has linear time complexity
- Allows non-periodic or periodic boundaries
- Produces continuous forces for dynamics (advantage over FMM)
- Avoids 3D FFTs for better parallel scaling (advantage over PME)
- Permits polynomial splittings (no erfc() evaluation, as used by PME)
- Spatial separation allows use of multiple time steps
- Can be extended to other types of pairwise interactions

MSM Main Ideas

- Split the $1 / r$ potential into a short-range cutoff part plus smoothed parts that are successively more slowly varying. All but the top level potential are cut off.
- Smoothed potentials are interpolated from successively coarser grids.
- Finest grid spacing h and smallest cutoff distance a are doubled at each successive level.
Split the $1 / r$ potential

MSM Calculation

$$
\text { force }=\underset{\text { short-range }}{\text { part }}+\underset{\text { part }}{\text { exact }} \underset{\text { interpolated }}{\text { long-range }}
$$

Computational Steps

GPU Computing Concepts

- Heterogeneous computing model
- CPU host manages GPU devices, memories, invokes "kernels"
- GPU hardware supports standard integer and floating point types and math operations, designed for fine-grained data parallelism
- Hundreds of "threads" grouped together into a "block" performing SIMD execution
- Need hundreds of blocks (~10,000-30,000 threads) to fully utilize hardware
- Great speedups attainable (with commodity hardware)
- 10x - 20x over one CPU core are common
- 100x or more possible in some cases
- Programming toolkits (CUDA and OpenCL) in $\mathrm{C} / \mathrm{C}++$ dialects, allowing GPUs to be integrated into legacy software

$$
\begin{gathered}
\text { SP = Streaming Processor } \\
\text { SFU = Special Function Unit } \\
\text { Tex = Texture Unit }
\end{gathered}
$$

NVIDIA Fermi New Features

- ECC memory support
- LI (64 KB) and L2 (768 KB) caches
- 512 cores, faster arithmetic ("madd") by $2 x$
- HOWEVER: memory bandwidth increases only 20-30\%
- Support for additional functions in SFU: erfc() for PME!
- HOWEVER: no commensurate improvement in SFU performance
- Improved double precision performance and accuracy
- Improved integer performance
- Allow multiple kernel execution
- Could prove extremely important for keeping GPU fully utilized

GPU Kernel Design (CUDA)

- Problem must offer substantial data parallelism
- Data access using gather memory patterns (reads) rather than scatter (writes)
- Increase arithmetic intensity through effective use of memory subsystems
- registers: the fastest memory, but smallest in size
- constant memory: near register-speed when all threads together read a single location (fast broadcast)
- shared memory: near register-speed when all threads access without bank conflicts
- texture cache: can improve performance for irregular memory access
- global memory: large but slow, coalesced access for best performance
- May benefit from trading memory access for more arithmetic

Additional GPU Considerations

- Coalescing reads and writes from global memory
- Avoiding bank conflicts accessing shared memory
- Avoiding branch divergence
- Synchronizing threads within thread blocks
- Atomic memory operations can provide synchronization across thread blocks
- "Stream" management for invoking kernels and transferring memory asynchronously
- Page-locked host memory to speed up memory transfers between CPU and GPU

Designing GPU Kernels for Short-range Non-bonded Forces

- Calculate both electrostatics and van der Waals interactions (need atom coordinates and parameters)
- Spatial hashing of atoms into bins (best done on CPU)
- Should we use pairlists?
- Reduces computation, increases and delocalizes memory access
- Should we make use of Newton's 3rd Law to reduce work?
- Is single precision enough? Do we need double precision?
- How might we handle non-bonded exclusions?
- Detect and omit excluded pairs (use bit masks)
- Ignore, fix with CPU (use force clamping)

Designing GPU Kernels for Short-range Non-bonded Forces

- How do we map work to the GPU threads?
- Fine-grained: assign threads to sum forces on atoms
- Extremely fine-grained: assign threads to pairwise interactions
- How do we decompose work into thread blocks?
- Non-uniform: assign thread blocks to bins
- Uniform: assign thread blocks to entries of the force matrix
- How do we compute potential energies or the virial?
- How do we calculate expensive functional forms?
- PME requires $\operatorname{erfc}()$: is it faster to use an interpolation table?
- Other issues: supporting NBFix parameters

GPU Kernel for Short-range MSM

- CPU sorts atoms into bins, copies bins to GPU global memory
- Each bin is assigned to a thread block
- Threads are assigned to individual atoms
- Loop over surrounding neighborhood of bins, summing forces and energies from their atoms
- Calculation for MSM involves rsqrt() plus several multiplies and adds
- CPU copies forces and energies back from GPU global memory

Shared
Memory
Bin of
Atoms

Copy bin into shared memory

GPU Kernel for Short-range MSM

- Each thread accumulates atom force and energies in registers
- Bin neighborhood index offsets stored in constant memory
- Load atom bin data into shared memory; atom data and bin "depth" are carefully chosen to permit coalesced reads from global memory
- Check for and omit excluded pairs
- Thread block performs sum reduction of energies
- Coalesced writing of forces and energies (with padding) to GPU global memory
- CPU sums energies from bins

NAMD Hybrid Decomposition

Kale et al., J. Comp. Phys. 151:283-312, 1999.

- Spatially decompose data and communication.
- Separate but related work decomposition.
- "Compute objects" facilitate iterative, measurement-based load balancing system.

NAMD Non-bonded Forces on GPU

- Decompose work into pairs of "patches" (bins), identical to NAMD structure.
- Each patch-pair is calculated by an SM (thread block).

Force computation on single multiprocessor (GeForce 8800 GTX has 16)

Stone et al., J. Comp. Chem. 28:2618-2640, 2007.

MSM Grid Interactions

- Potential summed from grid point charges within cutoff
- Uniform spacing enables distance-based interactions to be precomputed as stencil of "weights"
- Weights at each level are identical up to scaling factor (!)
- Calculate as 3D convolution of weights
- stencil size up to $23 \times 23 \times 23$

MSM Grid Interactions on GPU

- Store weights in constant memory (padded up to next multiple of 4)
- Thread block calculates $4 \times 4 \times 4$ region of potentials (stored contiguously)
- Pack all regions over all levels into ID array (each level padded with zero-charge region)
- Store map of level array offsets in constant memory
- Kernel has thread block loop over surrounding regions of charge (load into shared memory)
- All grid levels are calculated concurrently, scaled by level factor (keeps GPU from running out of work at upper grid levels)

Hardy, et al.,J. Paral. Comp. 35:164-I77, 2009.

Each thread block cooperatively loads regions of grid charge into shared memory, multiply by weights from constant memory

Global memory

Grid potential regions

Apply Weights Using Sliding Window

- Thread block must collectively use same value from constant memory
- Read $8 \times 8 \times 8$ grid charges (8 regions) into shared memory
- Window of size $4 \times 4 \times 4$ maintains same relative distances
- Slide window by 4 shifts along each dimension

Initial Results

(GPU: NVIDIA GTX-285, using CUDA 3.0; CPU: 2.4 GHz Intel Core 2 Q6600 quad core)

Box of 21950 flexible waters, 12 A cutoff, Ips	CPU only	with GPU	Speedup vs. NAMD/CPU
NAMD with PME	1199.8 s	210.5 s	$5.7 \times$
NAMD-Lite with MSM	5183.3 s (4598.6 short, 572.23 long)	176.6 s (93.9 short, 63.1 long)	$6.8 \times$ (19\% over NAMD/GPU)

Concluding Remarks

- Redesign of MD algorithms for GPUs is important:
- Commodity GPUs offer great speedups for well-constructed codes
- CPU single core performance is not improving
- Multicore CPUs benefit from redesign efforts (e.g., OpenCL can target multicore CPUs)
- MSM offers advantages that benefit GPUs:
- Short-range splitting using polynomial of r^{2}
- Calculation on uniform grids
- More investigation into alternative designs for MD algorithms

Acknowledgments

- Bob Skeel (Purdue University)
- John Stone (University of Illinois at Urbana-Champaign)
- Jim Phillips (University of Illinois at Urbana-Champaign)
- Klaus Schulten (University of Illinois at Urbana-Champaign)
- Funding from NSF and NIH

