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Outline

• Multilevel summation method (MSM)

• GPU architecture and kernel design considerations

• GPU kernel design alternatives for short-range 
non-bonded interactions

• GPU kernel for MSM long-range part

• Initial performance results for speeding up MD
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Multilevel Summation Method
• Fast algorithm for N-body electrostatics

• Calculates sum of smoothed pairwise potentials interpolated 
from a hierarchal nesting of grids

• Advantages over PME (particle-mesh Ewald) and/or FMM (fast 
multipole method):

- Algorithm has linear time complexity

- Allows non-periodic or periodic boundaries

- Produces continuous forces for dynamics (advantage over FMM)

- Avoids 3D FFTs for better parallel scaling (advantage over PME)

- Permits polynomial splittings (no erfc() evaluation, as used by PME)

- Spatial separation allows use of multiple time steps

- Can be extended to other types of pairwise interactions

Skeel, et al., J. Comp. Chem. 23:673-684, 2002.
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MSM Main Ideas 
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• Split the 1/r potential into a short-range cutoff part plus smoothed parts that 
are successively more slowly varying.  All but the top level potential are cut off.

• Smoothed potentials are interpolated from successively coarser grids.

• Finest grid spacing h and smallest cutoff distance a are doubled at each 
successive level. 

1/r

r0



NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

MSM Calculation 
force

exact
short-range

part

interpolated
long-range

part
+=

Computational Steps

short-range cutoff

interpolationanterpolation

h-grid cutoff

2h-grid cutoff

4h-grid

restriction

restriction

prolongation

prolongationlong-range
parts

positions
charges forces



NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

GPU Computing Concepts
• Heterogeneous computing model

- CPU host manages GPU devices, memories, invokes “kernels”

• GPU hardware supports standard integer and floating point types 
and math operations, designed for fine-grained data parallelism

- Hundreds of “threads” grouped together into a “block” 
performing SIMD execution

- Need hundreds of blocks (~10,000 - 30,000 threads) to fully 
utilize hardware

• Great speedups attainable (with commodity hardware)

- 10x - 20x over one CPU core are common

- 100x or more possible in some cases

• Programming toolkits (CUDA and OpenCL) in C/C++ dialects, 
allowing GPUs to be integrated into legacy software
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SP = Streaming Processor
SFU = Special Function Unit

Tex = Texture Unit
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NVIDIA Fermi New Features

• ECC memory support

• L1 (64 KB) and L2 (768 KB) caches

• 512 cores, faster arithmetic (“madd”) by 2x

- HOWEVER:  memory bandwidth increases only 20 - 30%

• Support for additional functions in SFU:  erfc() for PME!

- HOWEVER:  no commensurate improvement in SFU performance 

• Improved double precision performance and accuracy

• Improved integer performance

• Allow multiple kernel execution

- Could prove extremely important for keeping GPU fully utilized
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GPU Kernel Design (CUDA)
• Problem must offer substantial data parallelism 

• Data access using gather memory patterns (reads) rather than 
scatter (writes)

• Increase arithmetic intensity through effective use of memory 
subsystems

- registers:  the fastest memory, but smallest in size

- constant memory:  near register-speed when all threads together read 
a single location (fast broadcast)

- shared memory:  near register-speed when all threads access without 
bank conflicts

- texture cache:  can improve performance for irregular memory access

- global memory:  large but slow, coalesced access for best performance

• May benefit from trading memory access for more arithmetic
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Additional GPU Considerations
• Coalescing reads and writes from global memory

• Avoiding bank conflicts accessing shared memory

• Avoiding branch divergence

• Synchronizing threads within thread blocks

• Atomic memory operations can provide synchronization 
across thread blocks

• “Stream” management for invoking kernels and transferring 
memory asynchronously

• Page-locked host memory to speed up memory transfers 
between CPU and GPU
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Designing GPU Kernels for 
Short-range Non-bonded Forces
• Calculate both electrostatics and van der Waals 

interactions (need atom coordinates and parameters)

• Spatial hashing of atoms into bins (best done on CPU)

• Should we use pairlists?

- Reduces computation, increases and delocalizes memory access

• Should we make use of Newton’s 3rd Law to reduce work?

• Is single precision enough?  Do we need double precision? 

• How might we handle non-bonded exclusions?

- Detect and omit excluded pairs (use bit masks)

- Ignore, fix with CPU (use force clamping)
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Designing GPU Kernels for 
Short-range Non-bonded Forces
• How do we map work to the GPU threads?

- Fine-grained:  assign threads to sum forces on atoms

- Extremely fine-grained:  assign threads to pairwise interactions

• How do we decompose work into thread blocks?

- Non-uniform:  assign thread blocks to bins

- Uniform:  assign thread blocks to entries of the force matrix

• How do we compute potential energies or the virial?

• How do we calculate expensive functional forms?

- PME requires erfc():  is it faster to use an interpolation table?

• Other issues:  supporting NBFix parameters
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GPU Kernel for Short-range MSM

• CPU sorts atoms into bins, copies 
bins to GPU global memory

• Each bin is assigned to a thread block

• Threads are assigned to individual 
atoms

• Loop over surrounding 
neighborhood of bins, summing 
forces and energies from their atoms

• Calculation for MSM involves rsqrt() 
plus several multiplies and adds

• CPU copies forces and energies back 
from GPU global memory
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GPU Kernel for Short-range MSM
• Each thread accumulates atom force 

and energies in registers

• Bin neighborhood index offsets 
stored in constant memory

• Load atom bin data into shared 
memory; atom data and bin “depth” 
are carefully chosen to permit 
coalesced reads from global memory

• Check for and omit excluded pairs

• Thread block performs sum 
reduction of energies

• Coalesced writing of forces and 
energies (with padding) to GPU 
global memory

• CPU sums energies from bins
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• Spatially decompose data 
and communication.
• Separate but related work 
decomposition.
• “Compute objects” 
facilitate iterative, 
measurement-based load 
balancing system.

NAMD Hybrid Decomposition
Kale et al., J. Comp. Phys. 151:283-312, 1999.



NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

NAMD Non-bonded Forces on GPU
• Decompose work into pairs of “patches” (bins), identical to NAMD structure.
• Each patch-pair is calculated by an SM (thread block).

16kB Shared Memory
Patch A Coordinates & Parameters

32kB Registers
Patch B Coords, Params, & Forces

Texture Unit
Force Table
Interpolation

Constants
Exclusions

8kB cache
8kB cache

32-way SIMD Multiprocessor
32-256 multiplexed threads

768 MB Main Memory, no cache, 300+ cycle latency

Force computation on single multiprocessor (GeForce 8800 GTX has 16)

Stone et al., J. Comp. Chem. 28:2618-2640, 2007.
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MSM Grid Interactions
• Potential summed from grid point charges within cutoff

• Uniform spacing enables distance-based interactions to be 
precomputed as stencil of “weights”

• Weights at each level are identical up to scaling factor (!)

• Calculate as 3D convolution of weights

- stencil size up to 23x23x23

Cutoff radius

Accumulate potential

Sphere of 
grid point 
charges
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MSM Grid Interactions on GPU
• Store weights in constant memory (padded up to next multiple of 4)

• Thread block calculates 4x4x4 region of potentials (stored contiguously)

• Pack all regions over all levels into 1D array (each level padded with zero-charge region)

• Store map of level array offsets in constant memory

• Kernel has thread block loop over surrounding regions of charge (load into shared memory)

• All grid levels are calculated concurrently, scaled by level factor (keeps GPU from running out 
of work at upper grid levels)

Shared memory

Global memory Constant memory

Grid 
potential 
regions

Each thread block cooperatively loads 
regions of grid charge into shared memory, 
multiply by weights from constant memory

Grid 
charge 
regions

Stencil of weights

Subset of grid 
charge regions

Hardy, et al., J. Paral. Comp. 35:164-177, 2009.
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Apply Weights Using Sliding Window

• Thread block must collectively use same value from 
constant memory 

• Read 8x8x8 grid charges (8 regions) into shared memory

• Window of size 4x4x4 maintains same relative distances 

• Slide window by 4 shifts along each dimension



NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

Initial Results

Box of 21950 flexible waters,
12 A cutoff, 1ps

CPU only with GPU
Speedup vs.
NAMD/CPU

NAMD with PME 1199.8 s 210.5 s 5.7 x

NAMD-Lite with MSM 5183.3 s
(4598.6 short, 572.23 long)

176.6 s
(93.9 short, 63.1 long)

6.8 x
(19% over NAMD/GPU)

(GPU: NVIDIA GTX-285, using CUDA 3.0;  CPU: 2.4 GHz Intel Core 2 Q6600 quad core)
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Concluding Remarks

• Redesign of MD algorithms for GPUs is important:

- Commodity GPUs offer great speedups for well-constructed codes

- CPU single core performance is not improving

- Multicore CPUs benefit from redesign efforts (e.g., OpenCL can 
target multicore CPUs)

• MSM offers advantages that benefit GPUs:

- Short-range splitting using polynomial of r2

- Calculation on uniform grids

• More investigation into alternative designs for MD algorithms
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