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Goal: A Computational Microscope 
Study the molecular machines in living cells 

Ribosome: target for antibiotics Poliovirus 
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Electrons in 
Vibrating Buckyball 

Cellular Tomography, 

 Cryo-electron Microscopy 

Poliovirus 

Ribosome Sequences 

VMD – “Visual Molecular Dynamics” 

Whole Cell Simulations 

• Visualization and analysis of: 

– molecular dynamics simulations 

– quantum chemistry calculations 

– particle systems and whole cells 

– sequence data 

• User extensible w/ scripting and plugins 

• http://www.ks.uiuc.edu/Research/vmd/ 
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NAMD/VMD Effort Towards Cell-scale Computational Modeling 

organelle 
scale  

in situ membrane 
protein scale  medium 

protein scale 

250,000  

registered  

users! 

Same 

interface 

from 

laptop to  

Blue 

Waters 

Blue Waters Origin 2000 Cray X-MP 

World-leading  

biomedicine 

bioengineering 

... History of NCSA .... 
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First Simulation of a Virus Capsid (2006) 

MD showed that STMV capsid collapses 
without its RNA core 

1 million atoms                             
A huge system for 2006 

Freddolino et al., Structure, 14:437 (2006) 

Satellite Tobacco Mosaic Virus (STMV) 

First MD simulation of a complete virus capsid 

STMV smallest available capsid structure 

STMV simulation, visualization, and analysis 
pushed us toward GPU computing! 
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GPU Computing 

• Commodity devices, omnipresent in modern 
computers (over a million sold per week) 

• Massively parallel hardware, hundreds of processing 
units, throughput oriented architecture 

• Standard integer and floating point types supported 

• Programming tools allow software to be written in 
dialects of familiar C/C++ and integrated into legacy 
software 

• GPU algorithms are often multicore friendly due to 
attention paid to data locality and data-parallel 
work decomposition 
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Peak Arithmetic Performance Trend 
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Peak Memory Bandwidth Trend 
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What Speedups Can GPUs Achieve? 

• Single-GPU speedups of 2.5x to 8x vs. one 
CPU socket are common 

• Best speedups can reach 25x or more, 
attained on codes dominated by  floating 
point arithmetic, especially native GPU 
machine instructions, e.g. expf(), rsqrtf(), … 

• Amdahl’s Law can prevent legacy codes 
from achieving peak speedups with shallow 
GPU acceleration efforts 
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CUDA GPU-Accelerated Trajectory Analysis 

and Visualization in VMD 
VMD GPU-Accelerated Feature or 

Kernel 

Typical speedup vs. multi-

core CPU (e.g. 4-core CPU) 

Molecular orbital display 30x 

Radial distribution function 23x 

Molecular surface display 15x 

Electrostatic field calculation 11x 

Ray tracing w/ shadows,                

AO lighting 

7x 

Ion placement 6x 

MDFF density map synthesis  6x 

Implicit ligand sampling 6x 

Root mean squared fluctuation 6x 

Radius of gyration 5x 

Close contact determination 5x 

Dipole moment calculation 4x 
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Comparison of CPU and GPU           

Hardware Architecture 

CPU: Cache heavy, 
focused on individual 
thread performance  

GPU: ALU heavy, 
massively parallel, 
throughput oriented 



NVIDIA Kepler GPU Streaming Multiprocessor - SMX 

GPC GPC GPC GPC 

1536KB 

Level 2 

Cache 

SMX SMX 

Tex Unit 

48 KB  Tex + Read-only Data Cache 

64 KB L1 Cache / Shared Memory 

3-12 GB DRAM Memory w/ ECC 64 KB Constant Cache 

SP SP SP DP 
SFU LDST 

SP SP SP DP 

16 × Execution block = 

 192 SP, 64 DP,  

32 SFU, 32 LDST 

SP SP SP DP 
SFU LDST 

SP SP SP DP 

 Graphics Processor 

         Cluster 

GPC GPC GPC GPC 
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Hybrid Systems Lead Top500, Green500 

• Four of the top ten Top500 systems are 

hybrid architectures 

– #1 NSCC Tianhe-2 

– #2 ORNL Titan 

– #6 CSCS Piz Daint 

– #7 TACC Stampede 

• All of top ten Green500 systems are      

GPU-based hybrid architectures 
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Hybrid Architectures Becoming 

Common for Mid-range Systems 

• Upcoming LSU Cluster: ~960 GPUs 

• 2013: Indiana Big Red II: ~600 GPUs 

• 2012: Georgia Tech Keeneland: 792 GPUs 
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Top HPC Applications 

Molecular 
Dynamics 

AMBER 
CHARMM 
DESMOND 

GROMACS 
LAMMPS 

NAMD 

Quantum 
Chemistry 

Abinit 
Gaussian 

GAMESS 
NWChem 

Material Science 
CP2K 

QMCPACK 

Quantum 
Espresso 

VASP 

Weather & 
Climate 

COSMO 
GEOS-5 
HOMME 

CAM-SE 
NEMO 

NIM 
WRF 

Lattice QCD Chroma MILC 

Plasma Physics GTC GTS 

Structural 
Mechanics 

ANSYS 
Mechanical 

LS-DYNA 
Implicit 

MSC Nastran 

OptiStruct 
Abaqus/Standard 

Fluid Dynamics ANSYS Fluent 
Culises 

(OpenFOAM) 

Solid Growth of GPU Accelerated 

Apps 

Accelerated, In Development 

# of GPU-Accelerated 
Apps 

2011 2012 2013 

Courtesy NVIDIA 
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Major Approaches For Programming 

Hybrid Architectures 
• Use drop-in libraries in place of CPU-based libraries 

– Little or no code development 

– Speedups limited by Amdahl’s Law and overheads associated 

with data movement between CPUs and GPU accelerators 

– Examples: MAGMA, BLAS-variants, FFT libraries, etc. 

• Generate accelerator code as a variant of CPU source, e.g. 

using OpenMP w/ OpenACC, similar methods 

• Write lower-level accelerator-specific code, e.g. using 

CUDA, OpenCL, other approaches 
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GPU Accelerated Libraries 
“Drop-in” Acceleration for your 

Applications 

Linear Algebra 
FFT, BLAS,  

SPARSE, Matrix 

Numerical & Math 
RAND, Statistics 

Data Struct. & AI 
Sort, Scan, Zero Sum 

Visual Processing 
Image & Video 

NVIDIA 

cuFFT,  

cuBLAS,  

cuSPARSE 

NVIDIA 

Math 
Lib 

NVIDIA 
cuRAND 

NVIDIA 

NPP 

NVIDIA 

Video 
Encode 

GPU AI – 
Board 
Games 

GPU AI – 
Path 

Finding 

Courtesy NVIDIA 
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OpenACC: Open, Simple, Portable 

• Open Standard 

• Easy, Compiler-Driven Approach 

• Portable on GPUs and Xeon Phi 
main() { 

  … 

  <serial code> 

  … 

  #pragma acc kernels 

  {  

  <compute intensive code> 

  } 

  … 

} 

Compiler 

Hint CAM-SE Climate 

6x Faster on GPU 

Top Kernel: 50% of Runtime 

Courtesy NVIDIA 
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OpenACC-stndard.org confidential 

1
9 

Linux GCC Compiler to Support 

GPU Accelerators 

•Open Source 

•GCC Efforts by Samsung & Mentor Graphics 

 

•Pervasive Impact  

•Free to all Linux users 

 

•Mainstream 

•Most Widely Used HPC Compiler 

Oscar Hernandez 

Oak Ridge National Laboratories 

Incorporating OpenACC into GCC is an excellent example of open source and open 
standards working together to make accelerated computing broadly accessible to 

all Linux developers. 

“ 

” 
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GPU Solution: Computing C60 Molecular Orbitals 

Device CPUs,  

GPUs 

Runtime 

(s) 

Speedup 

2x Intel X5550-SSE 8 4.13 1 

GeForce GTX 480 1 0.255 16 

GeForce GTX 480 4 0.081 51 

2-D CUDA grid 
on one GPU 

              

3-D orbital lattice: 
millions of points 

              

Lattice slices 
computed on 

multiple GPUs 
GPU threads 
each compute 

one point. 

CUDA thread 
blocks 
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Molecular Orbital Inner Loop, Hand-Coded x86 SSE 

Hard to Read, Isn’t It?  (And this is the “pretty” version!) 

for (shell=0; shell < maxshell; shell++) { 

    __m128 Cgto = _mm_setzero_ps(); 

    for (prim=0; prim<num_prim_per_shell[shell_counter]; prim++) { 

        float exponent         = -basis_array[prim_counter      ]; 

        float contract_coeff =  basis_array[prim_counter + 1]; 

        __m128 expval = _mm_mul_ps(_mm_load_ps1(&exponent), dist2); 

        __m128 ctmp = _mm_mul_ps(_mm_load_ps1(&contract_coeff), exp_ps(expval)); 

        Cgto = _mm_add_ps(contracted_gto, ctmp); 

        prim_counter += 2; 

    } 

    __m128 tshell = _mm_setzero_ps(); 

    switch (shell_types[shell_counter]) { 

        case S_SHELL: 

            value = _mm_add_ps(value, _mm_mul_ps(_mm_load_ps1(&wave_f[ifunc++]), Cgto));    break; 

        case P_SHELL: 

            tshell = _mm_add_ps(tshell, _mm_mul_ps(_mm_load_ps1(&wave_f[ifunc++]), xdist)); 

            tshell = _mm_add_ps(tshell, _mm_mul_ps(_mm_load_ps1(&wave_f[ifunc++]), ydist)); 

            tshell = _mm_add_ps(tshell, _mm_mul_ps(_mm_load_ps1(&wave_f[ifunc++]), zdist)); 

            value = _mm_add_ps(value, _mm_mul_ps(tshell, Cgto));       break; 

Writing SSE kernels for CPUs requires 
assembly language, compiler intrinsics, 

various libraries, or a really smart 
autovectorizing compiler and lots of luck... 
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for (shell=0; shell < maxshell; shell++) { 

      float contracted_gto = 0.0f; 

      for (prim=0; prim<num_prim_per_shell[shell_counter]; prim++) {  

        float exponent          = const_basis_array[prim_counter     ]; 

        float contract_coeff = const_basis_array[prim_counter + 1]; 

        contracted_gto += contract_coeff * exp2f(-exponent*dist2); 

        prim_counter += 2; 

      } 

      float tmpshell=0; 

      switch (const_shell_symmetry[shell_counter]) { 

        case S_SHELL: 

          value += const_wave_f[ifunc++] * contracted_gto;    break; 

        case P_SHELL: 

          tmpshell += const_wave_f[ifunc++] * xdist; 

          tmpshell += const_wave_f[ifunc++] * ydist 

          tmpshell += const_wave_f[ifunc++] * zdist; 

          value += tmpshell * contracted_gto;   break; 

Molecular Orbital Inner Loop in CUDA 
 

Aaaaahhhh…. 

Data-parallel CUDA kernel 
looks like normal C code for 

the most part…. 
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GPU On-Board Global Memory 

• GPU arithmetic rates dwarf memory bandwidth 

• For Kepler K40 hardware: 

– ~4.3 SP TFLOPS vs. ~288 GB/sec 

– The ratio is roughly 60 FLOPS per memory 

reference for single-precision floating point 

• Peak performance achieved with “coalesced” 

memory access patterns – patterns that result in a 

single hardware memory transaction for a SIMD 

“warp” – a contiguous group of 32 threads 
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Getting Performance From GPUs 

• Don’t worry (much) about counting arithmetic 

operations…at least until you have nothing else left to do 

• GPUs provide tremendous memory bandwidth, but even 

so, memory bandwidth often ends up being the 

performance limiter 

• Keep/reuse data in registers as long as possible 

• The main consideration when programming GPUs is 

accessing memory efficiently, and storing operands in 

the most appropriate memory system according to data 

size and access pattern 
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Using the CPU to Optimize GPU Performance 

• GPU performs best when the work evenly divides 

into the number of threads/processing units 

• Optimization strategy:  

– Use the CPU to “regularize” the GPU workload 

– Use fixed size bin data structures, with “empty” slots 

skipped or producing zeroed out results 

– Handle exceptional or irregular work units on the CPU; 

GPU processes the bulk of the work concurrently 

– On average, the GPU is kept highly occupied, attaining a 

high fraction of peak performance 
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GPU On-Chip Memory Systems 

• GPU arithmetic rates dwarf global memory 

bandwidth 

• GPUs include multiple fast on-chip memories to 

help narrow the gap: 

– Registers 

– Constant memory (64KB) 

– Shared memory (48KB / 16KB) 

– Read-only data cache / Texture cache (~48KB) 

• Hardware-assisted 1-D, 2-D, 3-D locality 

• Hardware range clamping, type conversion, interpolation 

 



Avoiding Shared Memory Bank Conflicts: 
Array of Structures (AOS) vs. Structure of Arrays (SOA) 

• SOA: 

typedef struct { 

  float x[1024]; 

  float y[1024]; 

  float z[1024]; 

} myvecs; 

myvecs soa; 

soa.x[threadIdx.x] = 0; 

soa.y[threadIdx.x] = 0; 

• AOS: 

typedef struct { 

  float x; 

  float y;  

  float z; 

} myvec; 

myvec aos[1024]; 

aos[threadIdx.x].x = 0; 

aos[threadIdx.x].y = 0; 
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NAMD Titan XK7 Performance August 2013 

HIV-1: ~1.2 TB/day 
@ 4096 XK7 nodes 



100-million Atom Simulation of Chromatophore 

3.696 ns /day 

Simulation Speed [ns/day] 

Chromatophore 

segment of simulated chromatophore 
showing lipids 

100 million atom simulation 
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VMD Petascale Visualization and Analysis 

• Analyze/visualize large trajectories too 
large to transfer off-site: 

– Compute time-averaged electrostatic fields, 
MDFF quality-of-fit, etc. 

– User-defined parallel analysis operations, 
data types 

– Parallel rendering, movie making 

• Parallel I/O rates up to 275 GB/sec on 
8192 Cray XE6 nodes – can read in   
231 TB in 15 minutes! 

• Multi-level dynamic load balancing 
tested with up to 262,144 CPU cores 

• Supports GPU-accelerated Cray 
XK7 nodes for both visualization and 
analysis usage 

NCSA Blue Waters Hybrid       
Cray XE6 / XK7 Supercomputer 

22,640 XE6 CPU nodes 

4,224 XK7 nodes w/ GPUs support 
fast VMD OpenGL movie 
rendering and visualization 
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VMD for Demanding Analysis Tasks 

Parallel VMD Analysis w/ MPI 

• Compute time-averaged 
electrostatic fields, MDFF 
quality-of-fit, etc. 

• Parallel rendering, movie making 

• User-defined parallel reduction 
operations, data types 

• Parallel I/O on Blue Waters:  

– 109 GB/sec on 512 nodes  

– 275 GB/sec on 8,192 nodes 

• Timeline per-residue SASA 
calc. achieves 800x speedup @ 
1000 BW XE6 nodes 

•  Supports GPU-accelerated 
clusters and supercomputers 

VMD 

VMD 

VMD 

Sequence/Structure Data,  

Trajectory Frames, etc… 

Gathered Results 

Data-parallel 

analysis in 
VMD 

w/ dynamic 
load 

balancing 
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Time-Averaged Electrostatics Analysis 

on Energy-Efficient GPU Cluster 
• 1.5 hour job (CPUs) reduced to 

3 min (CPUs+GPU) 

• Electrostatics of thousands of 
trajectory frames averaged  

• Per-node power consumption on 
NCSA “AC” GPU cluster: 

– CPUs-only:  448 Watt-hours 

– CPUs+GPUs: 43 Watt-hours 

• GPU Speedup: 25.5x 

• Power efficiency gain: 10.5x 

Quantifying the Impact of GPUs on Performance and Energy 
Efficiency in HPC Clusters. J. Enos, C. Steffen, J. Fullop, M. 

Showerman, G. Shi, K. Esler, V. Kindratenko, J. Stone, J. Phillips.  
The Work in Progress in Green Computing,  pp. 317-324, 2010. 
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Time-Averaged Electrostatics Analysis on  

NCSA Blue Waters 

Preliminary performance for VMD time-averaged electrostatics w/ Multilevel 
Summation Method on the NCSA Blue Waters Early Science System 

NCSA Blue Waters Node Type Seconds per trajectory 

frame for one compute 

node 

Cray XE6 Compute Node: 

32 CPU cores (2xAMD 6200 CPUs) 

9.33 

Cray XK6 GPU-accelerated Compute Node: 

16 CPU cores + NVIDIA X2090 (Fermi) GPU 

2.25 

Speedup for GPU XK6 nodes vs. CPU XE6 nodes XK6 nodes are 4.15x 

faster overall 

Tests on XK7 nodes indicate MSM is CPU-bound with 

the Kepler K20X GPU. 

Performance is not much faster (yet) than Fermi X2090 

Need to move spatial hashing, prolongation, 

interpolation onto the GPU… 

In progress…. 

XK7 nodes 4.3x faster 

overall  
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Multilevel Summation on the GPU 

Computational steps CPU (s) w/ GPU (s) Speedup 

Short-range cutoff 480.07 14.87 32.3 

Long-range anterpolation 0.18 

restriction 0.16 

lattice cutoff 49.47 1.36 36.4 

prolongation 0.17 

interpolation 3.47 

Total 533.52 20.21 26.4 

Performance profile for 0.5 Å map of potential for  1.5 M atoms. 

Hardware platform is Intel QX6700 CPU and NVIDIA GTX 280. 

Accelerate  short-range cutoff  and  lattice cutoff  parts 

 

Multilevel summation of electrostatic potentials using graphics processing units. 
D. Hardy, J. Stone, K. Schulten. J. Parallel Computing, 35:164-177, 2009. 
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X-ray crystallography Electron microscopy 

APS at Argonne FEI microscope 

Molecular Dynamics Flexible Fitting (MDFF)  

Flexible fitting of atomic structures into electron microscopy maps using molecular dynamics.  

L. Trabuco, E. Villa, K. Mitra, J. Frank, and K. Schulten.  Structure, 16:673-683, 2008. 

MDFF 

ORNL Titan 

Acetyl - CoA Synthase 
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GPUs Can Reduce Trajectory Analysis Runtimes  

from Hours to Minutes 

GPUs enable laptops and 
desktop workstations to 

handle tasks that would have 
previously required a cluster, 

or a very long wait… 

 

GPU-accelerated petascale 
supercomputers enable 

analyses that were previously 
impractical, allowing 

detailed study of very large 
structures such as viruses 

GPU-accelerated MDFF Cross Correlation Timeline 

Regions with poor fit               Regions with good fit 
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VMD GPU Cross Correlation Performance 
RHDV 

 

Mm-cpn 

open 

GroEL Aquaporin 

Resolution (Å) 6.5 8 4 3 

Atoms 702K 61K 54K 1.6K 

VMD-CUDA 

Quadro K6000 

0.458s 

34.6x 

0.06s 

25.7x 

0.034s 

36.8x 

0.007s 

55.7x 

VMD-CPU-SSE 

32-threads, 2x Xeon E5-2687W 

0.779s 

20.3x 

0.085s 

18.1x 

0.159s 

7.9x 

0.033s 

11.8x 

Chimera  

1-thread Xeon E5-2687W 

15.86s 

1.0x 

1.54s 

1.0x 

1.25s 

1.0x 

0.39s 

1.0x 

VMD CPU-SEQ (plugin) 

1-thread Xeon E5-2687W 

62.89s 

0.25x 

2.9s 

0.53x 

1.57s 

0.79x 

0.04s 

9.7x 

GPU-accelerated analysis and visualization of large structures solved by molecular dynamics 
flexible fitting. J. E. Stone, R. McGreevy, B. Isralewitz, and K. Schulten. Faraday Discussion 169, 2014. 
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VMD RHDV Cross Correlation 

Timeline on Cray XK7 

RHDV 

Atoms 702K 

Traj. Frames 10,000 

Component 

Selections 

720 

Single-node XK7 

(projected) 

336 hours (14 days) 

128-node XK7 3.2 hours 

105x speedup 

2048-node XK7 19.5 minutes 

1035x speedup 

RHDV CC Timeline 

Calculation would take 5 years 
using original serial VMD CC 

plugin on a workstation! 
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Large Memory Remote Visualization & Analysis Nodes 
Would Broaden User Base and Accelerate Discovery 

Simulate Store 

Prepare 

Analyze Visualize 

Store 

Petascale Biology Gateway 
at Illinois NIH Center 

Simulate Store 

Prepare Analyze Visualize 

Virtual Facility 

10 Gb/s 

Copy Copy 

GPUs + 256 GB memory 

$ 

$ $ 

$ 

1 Gb/s 

Supercomputer Supercomputer 

Everybody 
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Ray Tracing Molecular Graphics w/ OptiX+CUDA 

Prototype VMD/OptiX GPU ray 
tracing w/ ambient occlusion lighting  

• Ambient occlusion lighting, 
shadows, reflections, 
transparency, and more… 

• Satellite tobacco mosaic virus 
capsid w/ ~75K atoms 

 Standard OpenGL 
rasterization 
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BW VMD/Tachyon Movie Generation 

360 XE6 nodes for 3h50m @ 4096x2400 
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GPU Ray Tracing of HIV-1 on Blue Waters 

• Ambient occlusion lighting, 

shadows, transparency, 

antialiasing, depth cueing, 

144 rays/pixel minimum 

• 64 million atom virus 

simulation 

• 1000+ movie frames 

• Surface generation and ray 

tracing stages each use >= 

75% of GPU memory 



NIH BTRC for Macromolecular Modeling and Bioinformatics 

http://www.ks.uiuc.edu/ 

Beckman Institute, 
 U. Illinois at Urbana-Champaign 

VMD GPU Ray Tracing of HIV-1 Capsid 
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HIV-1 Parallel HD Movie Rendering on 

Blue Waters Cray XE6/XK7 

 Node Type 

and Count 

Script Load 

Time 

State Load 

Time 

Geometry + 

Ray Tracing 

Total 

Time 

256 XE6 CPUs 7 s 160 s 1,374 s 1,541 s 

512 XE6 CPUs 13 s 211 s 808 s 1,032 s 

  64 XK7 Tesla K20X GPUs 2 s 38 s 655 s 695 s 

128 XK7 Tesla K20X GPUs 4 s 74 s 331 s 410 s 

256 XK7 Tesla K20X GPUs 7 s 110 s 171 s 288 s 

New “TachyonL-OptiX” on XK7 vs. Tachyon on XE6:                 
K20X GPUs yield up to eight times geom+ray tracing speedup 

GPU-Accelerated Molecular Visualization on Petascale Supercomputing Platforms.              
Stone et al. In UltraVis'13: Eighth Workshop on Ultrascale Visualization Proceedings, 2013. 
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Courtesy NVIDIA 

Unified Memory 
Dramatically Lower Developer Effort 

Developer View Today Developer View With 
Unified Memory 

Unified Memory System 
Memory 

GPU 
Memory 
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Courtesy NVIDIA 

Super Simplified Memory 

Management Code 

void sortfile(FILE *fp, int N) { 

  char *data; 

  data = (char *)malloc(N); 

 

  fread(data, 1, N, fp); 

 

  qsort(data, N, 1, compare); 

 

 

  use_data(data); 

 

  free(data); 

} 

void sortfile(FILE *fp, int N) { 

  char *data; 

  cudaMallocManaged(&data, N); 

 

  fread(data, 1, N, fp); 

 

  qsort<<<...>>>(data,N,1,compare); 

  cudaDeviceSynchronize(); 

 

  use_data(data); 

 

  cudaFree(data); 

} 

CPU Code CUDA 6 Code with Unified Memory 
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GPU PCI-Express DMA 

Simulation of reaction diffusion processes over biologically relevant size and time scales using multi-GPU workstations 

Michael J. Hallock, John E. Stone, Elijah Roberts, Corey Fry, and Zaida Luthey-Schulten. 

Journal of Parallel Computing, 2014. (In press) 

http://dx.doi.org/10.1016/j.parco.2014.03.009 



Future: NVLINK and Stacked Memory 

NVLINK 
GPU high speed 

interconnect 

80-200 GB/s 

Planned support for 

POWER CPUs 

Stacked Memory 
4x Higher Bandwidth (~1 

TB/s) 

3x Larger Capacity 

4x More Energy Efficient 

per bit 



NVLink Enables Data Transfer 
At Speed of CPU Memory 

TESLA 

GPU 
CPU 

DDR Memory Stacked Memory 

NVLink 

80 GB/s 

DDR4 

50-75 

GB/s  

HBM 

1 

Terabyte/s 
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Optimizing GPU Algorithms for Power Consumption 

NVIDIA 
“Carma”, 

“Kayla”, 

“Jetson” 
single board 
computers 

 

 Tegra+GPU 
energy 

efficiency 
testbed 
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GPU Computing Publications 
http://www.ks.uiuc.edu/Research/gpu/ 

• Runtime and Architecture Support for Efficient Data Exchange in Multi-Accelerator 
Applications  Javier Cabezas, Isaac Gelado, John E. Stone, Nacho Navarro, David B. Kirk, and 
Wen-mei Hwu.  IEEE Transactions on Parallel and Distributed Systems, 2014. (Accepted) 

• Unlocking the Full Potential of the Cray XK7 Accelerator  Mark Klein and John E. Stone.       
Cray Users Group, 2014. (In press) 

• Simulation of reaction diffusion processes over biologically relevant size and time scales using 
multi-GPU workstations  Michael J. Hallock, John E. Stone, Elijah Roberts, Corey Fry, and Zaida 
Luthey-Schulten.  Journal of Parallel Computing, 2014. (In press) 

• GPU-Accelerated Analysis and Visualization of Large Structures Solved by Molecular 
Dynamics Flexible Fitting  John E. Stone, Ryan McGreevy, Barry Isralewitz, and Klaus Schulten.  
Faraday Discussion 169, 2014. (In press) 

• GPU-Accelerated Molecular Visualization on Petascale Supercomputing Platforms.                    
J. Stone, K. L. Vandivort, and K. Schulten. UltraVis'13: Proceedings of the 8th International 
Workshop on Ultrascale Visualization, pp. 6:1-6:8, 2013. 

• Early Experiences Scaling VMD Molecular Visualization and Analysis Jobs on Blue Waters.          
J. E. Stone, B. Isralewitz, and K. Schulten.  In proceedings, Extreme Scaling Workshop,  2013. 

• Lattice Microbes: High‐performance stochastic simulation method for the reaction‐diffusion 
master equation.  E. Roberts, J. E. Stone, and Z. Luthey‐Schulten. 
J. Computational Chemistry 34 (3), 245-255, 2013. 
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• Fast Visualization of Gaussian Density Surfaces for Molecular Dynamics and Particle System 

Trajectories. M. Krone, J. E. Stone,  T. Ertl, and K. Schulten. EuroVis Short Papers, pp. 67-71, 

2012. 

• Fast Analysis of Molecular Dynamics Trajectories with Graphics Processing Units – Radial 

Distribution Functions.  B. Levine, J. Stone, and A. Kohlmeyer. J. Comp. Physics, 230(9):3556-

3569, 2011. 

• Immersive Out-of-Core Visualization of Large-Size and Long-Timescale Molecular Dynamics 

Trajectories. J. Stone, K. Vandivort, and K. Schulten. G. Bebis et al. (Eds.): 7th International 

Symposium on Visual Computing (ISVC 2011), LNCS 6939, pp. 1-12, 2011. 

• Quantifying the Impact of GPUs on Performance and Energy Efficiency in HPC Clusters. J. 

Enos, C. Steffen, J. Fullop, M. Showerman, G. Shi, K. Esler, V. Kindratenko, J. Stone, J Phillips. 

International Conference on Green Computing, pp. 317-324, 2010. 

• GPU-accelerated molecular modeling coming of age.  J. Stone, D. Hardy, I. Ufimtsev, K. 

Schulten.  J. Molecular Graphics and Modeling, 29:116-125, 2010. 

• OpenCL: A Parallel Programming Standard for Heterogeneous Computing. J. Stone, D. 

Gohara, G. Shi.  Computing in Science and Engineering, 12(3):66-73, 2010. 
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• An Asymmetric Distributed Shared Memory Model for Heterogeneous Computing 

Systems.  I. Gelado, J. Stone, J. Cabezas, S. Patel, N. Navarro, W. Hwu.  ASPLOS ’10: 

Proceedings of the 15th International Conference on Architectural Support for Programming 

Languages and Operating Systems, pp. 347-358, 2010. 

• GPU Clusters for High Performance Computing.  V. Kindratenko, J. Enos, G. Shi, M. 

Showerman, G. Arnold, J. Stone, J. Phillips, W. Hwu.  Workshop on Parallel Programming on 

Accelerator Clusters (PPAC), In Proceedings IEEE Cluster 2009, pp. 1-8, Aug. 2009. 

• Long time-scale simulations of in vivo diffusion using GPU hardware.  E. Roberts, J. Stone, 

L. Sepulveda, W. Hwu, Z. Luthey-Schulten. In IPDPS’09: Proceedings of the 2009 IEEE 

International Symposium on Parallel & Distributed Computing, pp. 1-8, 2009. 

• High Performance Computation and Interactive Display of Molecular Orbitals on GPUs 

and Multi-core CPUs.    J. Stone, J. Saam, D. Hardy, K. Vandivort, W. Hwu, K. Schulten, 2nd 

Workshop on General-Purpose Computation on Graphics Pricessing Units (GPGPU-2), ACM 

International Conference Proceeding Series, volume 383, pp. 9-18, 2009. 

• Probing Biomolecular Machines with Graphics Processors.  J. Phillips, J. Stone.  

Communications of the ACM, 52(10):34-41, 2009. 

• Multilevel summation of electrostatic potentials using graphics processing units. D. Hardy, 

J. Stone, K. Schulten. J. Parallel Computing, 35:164-177, 2009. 
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• Adapting a message-driven parallel application to GPU-accelerated clusters.                                      

J. Phillips, J. Stone, K. Schulten.  Proceedings of the 2008 ACM/IEEE Conference on 

Supercomputing, IEEE Press, 2008. 

• GPU acceleration of cutoff pair potentials for molecular modeling applications.                                

C. Rodrigues, D. Hardy, J. Stone, K. Schulten, and W. Hwu. Proceedings of the 2008 Conference 

On Computing Frontiers, pp. 273-282, 2008. 

• GPU computing.  J. Owens, M. Houston, D. Luebke, S. Green, J. Stone, J. Phillips. Proceedings 

of the IEEE, 96:879-899, 2008. 

• Accelerating molecular modeling applications with graphics processors. J. Stone, J. Phillips, 

P. Freddolino, D. Hardy, L. Trabuco, K. Schulten. J. Comp. Chem., 28:2618-2640, 2007. 

• Continuous fluorescence microphotolysis and correlation spectroscopy. A. Arkhipov, J. 

Hüve, M. Kahms, R. Peters, K. Schulten. Biophysical Journal, 93:4006-4017, 2007.  


