
© David Kirk/NVIDIA and Wen-mei W. Hwu
Urbana, Illinois, August 18-22, 2008

1

VSCSE Summer School 2008

Accelerators for Science and Engineering
Applications: GPUs and Multi-cores

Lecture 8: Application Case Study – Accelerating
Molecular Dynamics Experimentation

© David Kirk/NVIDIA and Wen-mei W. Hwu
Urbana, Illinois, August 18-22, 2008

2

Acknowledgement

• Additional Information and References:
– http://www.ks.uiuc.edu/Research/gpu/

• Acknowledgement, questions, source code requests:
– John Stone (johns@ks.uiuc.edu)
– Klaus Schulten, Jim Phillips, David Hardy
– Theoretical and Computational Biophysics Group, NIH

Resource for Macromolecular Modeling and Bioinformatics
Beckman Institute for Advanced Science and Technology

• NIH support: P41-RR05969

© David Kirk/NVIDIA and Wen-mei W. Hwu
Urbana, Illinois, August 18-22, 2008

3

Outline

• Explore CUDA algorithms for computing electrostatic
fields around molecules
– Detailed look at a few CUDA implementations of a simple

direct Coulomb summation algorithm
– Multi-GPU direct Coulomb summation
– Cutoff (range-limited) summation algorithm

• CUDA acceleration of parallel molecular dynamics
simulation on GPU clusters with NAMD

© David Kirk/NVIDIA and Wen-mei W. Hwu
Urbana, Illinois, August 18-22, 2008

4

Calculating Electrostatic Potential Maps

• Used in molecular
structure building,
analysis, visualization,
simulation

• Electrostatic potentials
evaluated on a uniformly
spaced 3-D lattice

• Each lattice point contains
sum of electrostatic
contributions of all atoms

© David Kirk/NVIDIA and Wen-mei W. Hwu
Urbana, Illinois, August 18-22, 2008

5

Direct Coulomb Summation
• At each lattice point, sum potential contributions

for all atoms in the simulated structure:
potential[j] += charge[i] / Rij

Atom[i]

Rij: distance
from lattice[j]

to Atom[i]
Lattice point j

being evaluated

© David Kirk/NVIDIA and Wen-mei W. Hwu
Urbana, Illinois, August 18-22, 2008

6

DCS Algorithm Design Observations

• Atom list has the smallest memory footprint, best choice for
the inner loop (both CPU and GPU)

• Lattice point coordinates are computed on-the-fly
• Atom coordinates are made relative to the origin of the

potential map, eliminating redundant arithmetic
• Arithmetic can be significantly reduced by precalculating and

reusing distance components, e.g. create a new array containing
X, Q, and dy^2 + dz^2, updated on-the-fly for each row (CPU)

• Vectorized CPU versions benefit greatly from SSE instructions

© David Kirk/NVIDIA and Wen-mei W. Hwu
Urbana, Illinois, August 18-22, 2008

7

Single Slice DCS: Simple (Slow) C Version
void cenergy(float *energygrid, dim3 grid, float gridspacing, float z, const float *atoms, int

numatoms) {
int i,j,n;
int atomarrdim = numatoms * 4;
for (j=0; j<grid.y; j++) {

float y = gridspacing * (float) j;
for (i=0; i<grid.x; i++) {
float x = gridspacing * (float) i;
float energy = 0.0f;
for (n=0; n<atomarrdim; n+=4) { // calculate potential contribution of each atom
float dx = x - atoms[n];
float dy = y - atoms[n+1];
float dz = z - atoms[n+2];
energy += atoms[n+3] / sqrtf(dx*dx + dy*dy + dz*dz);

}
energygrid[grid.x*grid.y*k + grid.x*j + i] = energy;

}
}

}

© David Kirk/NVIDIA and Wen-mei W. Hwu
Urbana, Illinois, August 18-22, 2008

8

Direct Coulomb Summation on the GPU
• GPU outruns a CPU core by 44x
• Work is decomposed into tens of thousands of independent

threads, multiplexed onto hundreds of GPU processor cores
• Single-precision FP arithmetic is adequate for intended

application
• Numerical accuracy can be further improved by compensated

summation, spatially ordered summation groupings, or
accumulation of potential in double-precision

• Starting point for more sophisticated algorithms

GPU Global Memory

GPU Thread Execution ManagerHost

Texture Texture Texture Texture Texture Texture Texture TextureTexture

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

© David Kirk/NVIDIA and Wen-mei W. Hwu
Urbana, Illinois, August 18-22, 2008

9

DCS Observations for GPU
Implementation

• Straightforward implementation has a low ratio of FLOPS to
memory operations (for a GPU…)

• The innermost loop will consume operands VERY quickly
• Since atoms are read-only, they are ideal candidates for texture

memory or constant memory
• GPU implementations must access constant memory

efficiently, avoid shared memory bank conflicts, and overlap
computations with global memory latency

• Map is padded out to a multiple of the thread block size:
– Eliminates conditional handling at the edges, thus also eliminating the

possibility of branch divergence
– Assists with memory coalescing

© David Kirk/NVIDIA and Wen-mei W. Hwu
Urbana, Illinois, August 18-22, 2008

10

Global Memory

Texture Texture Texture Texture Texture Texture Texture TextureTexture

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

GPUConstant Memory

Direct Coulomb Summation on the GPU

Host

Atomic
Coordinates

Charges

© David Kirk/NVIDIA and Wen-mei W. Hwu
Urbana, Illinois, August 18-22, 2008

11

DCS CUDA Block/Grid Decomposition
(non-unrolled)

Padding waste

Grid of thread blocks:

0,0 0,1

1,0 1,1

…

…

… … …

Thread blocks:
64-256 threads

Threads compute
1 potential each

© David Kirk/NVIDIA and Wen-mei W. Hwu
Urbana, Illinois, August 18-22, 2008

12

DCS Version 1: Const+Precalc
187 GFLOPS, 18.6 Billion Atom

Evals/Sec
• Pros:

– Pre-compute dz^2 for entire slice
– Inner loop over read-only atoms, const memory ideal
– If all threads read the same const data at the same time, performance is

similar to reading a register

• Cons:
– Const memory only holds ~4000 atom coordinates and charges
– Potential summation must be done in multiple kernel invocations per

slice, with const atom data updated for each invocation
– Host must shuffle data in/out for each pass

© David Kirk/NVIDIA and Wen-mei W. Hwu
Urbana, Illinois, August 18-22, 2008

13

DCS Version 1: Kernel Structure
…
float curenergy = energygrid[outaddr]; // start global mem read very early
float coorx = gridspacing * xindex;
float coory = gridspacing * yindex;
int atomid;
float energyval=0.0f;

for (atomid=0; atomid<numatoms; atomid++) {
float dx = coorx - atominfo[atomid].x;
float dy = coory - atominfo[atomid].y;
energyval += atominfo[atomid].w * rsqrtf(dx*dx + dy*dy + atominfo[atomid].z);

}
energygrid[outaddr] = curenergy + energyval;

© David Kirk/NVIDIA and Wen-mei W. Hwu
Urbana, Illinois, August 18-22, 2008

14

• Reuse atom data and partial distance components
multiple times

• Add each atom’s contribution to several lattice points at
a time, where distances only differ in one component

DCS CUDA Algorithm: Unrolling Loops

Atom[i]

Distances to
Atom[i]

© David Kirk/NVIDIA and Wen-mei W. Hwu
Urbana, Illinois, August 18-22, 2008

15

DCS Inner Loop (Unroll and Jam)
…
for (atomid=0; atomid<numatoms; atomid++) {
float dy = coory - atominfo[atomid].y;
float dysqpdzsq = (dy * dy) + atominfo[atomid].z;
float dx1 = coorx1 - atominfo[atomid].x;
float dx2 = coorx2 - atominfo[atomid].x;
float dx3 = coorx3 - atominfo[atomid].x;
float dx4 = coorx4 - atominfo[atomid].x;
energyvalx1 += atominfo[atomid].w * rsqrtf(dx1*dx1 + dysqpdzsq);
energyvalx2 += atominfo[atomid].w * rsqrtf(dx2*dx2 + dysqpdzsq);
energyvalx3 += atominfo[atomid].w * rsqrtf(dx3*dx3 + dysqpdzsq);
energyvalx4 += atominfo[atomid].w * rsqrtf(dx4*dx4 + dysqpdzsq);

}
…

© David Kirk/NVIDIA and Wen-mei W. Hwu
Urbana, Illinois, August 18-22, 2008

16

DCS CUDA Block/Grid
Decomposition (unrolled)

• This optimization technique (unroll and jam)
consumes more registers in trade for increased
arithmetic intensity

• Kernel variations that calculate more than one lattice
point per thread, result in larger computational tiles:
– Thread count per block must be decreased to reduce

computational tile size as unrolling is increased
– Otherwise, tile size gets bigger as threads do more than one

lattice point evaluation, resulting on a significant increase in
padding and wasted computations at edges

© David Kirk/NVIDIA and Wen-mei W. Hwu
Urbana, Illinois, August 18-22, 2008

17

DCS CUDA Block/Grid Decomposition
(unrolled, coalesced)

Grid of thread blocks:

Padding waste

0,0 0,1

1,0 1,1

…

… …

…

Thread blocks:
64-256 threads

…

Unrolling increases
computational tile size

Threads compute
up to 8 potentials,

skipping by half-warps

© David Kirk/NVIDIA and Wen-mei W. Hwu
Urbana, Illinois, August 18-22, 2008

18

DCS Version 4: Kernel Structure
291.5 GFLOPS, 39.5 Billion Atom Evals/Sec

• Processes 8 lattice points at a time in the inner loop
• Subsequent lattice points computed by each thread

are offset to guarantee coalesced memory accesses
• Loads and increments 8 potential map lattice points

from global memory at completion of of the
summation, avoiding register consumption

• Code is too long to show, but is available by request

© David Kirk/NVIDIA and Wen-mei W. Hwu
Urbana, Illinois, August 18-22, 2008

19

Direct Coulomb Summation Runtime

GPU
underutilized

GPU fully utilized,
~40x faster than CPU

Accelerating molecular modeling applications with graphics processors.
J. Stone, J. Phillips, P. Freddolino, D. Hardy, L. Trabuco, K. Schulten.

J. Comp. Chem., 28:2618-2640, 2007.

Lower
is better

© David Kirk/NVIDIA and Wen-mei W. Hwu
Urbana, Illinois, August 18-22, 2008

20

Direct Coulomb Summation Performance

CUDA-Simple:
14.8x faster,

33% of fastest
GPU kernel

CUDA-Unroll8clx:
fastest GPU kernel,

44x faster than CPU,
291 GFLOPS on

GeForce 8800GTX

GPU computing. J. Owens, M. Houston, D. Luebke, S. Green, J. Stone,
J. Phillips. Proceedings of the IEEE, 96:879-899, 2008.

CPU

© David Kirk/NVIDIA and Wen-mei W. Hwu
Urbana, Illinois, August 18-22, 2008

21

Multi-GPU DCS Algorithm:

• One host thread is created for each CUDA GPU,
attached according to host thread ID:
– First CUDA call binds that thread’s CUDA context to that

GPU for life

• Map slices are decomposed cyclically onto the
available GPUs

• Map slices are usually larger than the host memory
page size, so false sharing and related effects are not a
problem for this application

© David Kirk/NVIDIA and Wen-mei W. Hwu
Urbana, Illinois, August 18-22, 2008

22

Multi-GPU Direct Coulomb Summation
• Effective memory

bandwidth scales with the
number of GPUs utilized

• PCIe bus bandwidth not a
bottleneck for this algorithm

• 117 billion evals/sec
• 863 GFLOPS
• 131x speedup vs. CPU core
• Power: 700 watts during

benchmark Quad-core Intel QX6700
Three NVIDIA GeForce 8800GTX

© David Kirk/NVIDIA and Wen-mei W. Hwu
Urbana, Illinois, August 18-22, 2008

23

Multi-GPU Direct Coulomb Summation

• 4-GPU (2 Quadroplex)
Opteron node at NCSA

• 157 billion evals/sec
• 1.16 TFLOPS
• 176x speedup vs.

Intel QX6700 CPU core
w/ SSE

NCSA GPU Cluster• 4-GPU (GT200)
• 241 billion evals/sec
• 1.78 TFLOPS
• 271x speedup vs.

Intel QX6700 CPU core
w/ SSE

http://www.ncsa.uiuc.edu/Projects/GPUcluster/

© David Kirk/NVIDIA and Wen-mei W. Hwu
Urbana, Illinois, August 18-22, 2008

24

Cutoff Summation
• At each lattice point, sum potential contributions for

atoms within cutoff radius:
if (distance to atom[i] < cutoff)
potential += (charge[i] / r) * s(r)

• Smoothing function s(r) is algorithm dependent

Cutoff radius r: distance to
Atom[i]

Lattice point being
evaluated Atom[i]

© David Kirk/NVIDIA and Wen-mei W. Hwu
Urbana, Illinois, August 18-22, 2008

25

Infinite vs. Cutoff Potentials
• Infinite range potential:

– All atoms contribute to all lattice points
– Summation algorithm has quadratic complexity

• Cutoff (range-limited) potential:
– Atoms contribute within cutoff distance to lattice points
– Summation algorithm has linear time complexity
– Has many applications in molecular modeling:

• Replace electrostatic potential with shifted form
• Short-range part for fast methods of approximating full

electrostatics
• Used for fast decaying interactions (e.g. Lennard-Jones,

Buckingham)

© David Kirk/NVIDIA and Wen-mei W. Hwu
Urbana, Illinois, August 18-22, 2008

26

Process atom bins
for current potential

map region

Cutoff Summation on the GPU

Atoms

Atoms spatially hashed into fixed-
size “bins” in global memory

Global memory

Constant memory

Bin-Region
neighborlist

Shared memory
Atom bin

Potential
map

regions

Bins

© David Kirk/NVIDIA and Wen-mei W. Hwu
Urbana, Illinois, August 18-22, 2008

27

Using the CPU to Improve
GPU Performance

• GPU performs best when the work evenly
divides into the number of threads/processing
units

• Optimization strategy:
– Use the CPU to “regularize” the GPU workload
– Handle exceptional or irregular work units on the

CPU while the GPU processes the bulk of the work
– On average, the GPU is kept highly occupied,

attaining a much higher fraction of peak performance

© David Kirk/NVIDIA and Wen-mei W. Hwu
Urbana, Illinois, August 18-22, 2008

28

GPU acceleration of cutoff pair potentials for molecular modeling applications.
C. Rodrigues, D. Hardy, J. Stone, K. Schulten, W. Hwu. Proceedings of the 2008

Conference On Computing Frontiers, pp. 273-282, 2008.

Cutoff Summation Runtime
GPU cutoff with

CPU overlap:
17x-21x faster than

CPU core

© David Kirk/NVIDIA and Wen-mei W. Hwu
Urbana, Illinois, August 18-22, 2008

29

Hybrid of spatial and force decomposition:

•Spatial decomposition of atoms into cubes
(called patches)

•For every pair of interacting patches,
create one object for calculating
electrostatic interactions

•Recent: Blue Matter, Desmond, etc. use
this idea in some form

NAMD Parallel Molecular Dynamics

• Designed from the beginning as a parallel program
• Uses the Charm++ philosophy:

– Decompose computation into a large number of objects
– Intelligent Run-time system (Charm++) assigns objects to processors for dynamic load

balancing with minimal communication

Kale et al., J. Comp. Phys. 151:283-312, 1999.

© David Kirk/NVIDIA and Wen-mei W. Hwu
Urbana, Illinois, August 18-22, 2008

30

847 objects 100,000

Example
Configuration

Objects are assigned to processors and queued as data arrives.

108

Phillips et al., SC2002.

Offload to GPU

NAMD Overlapping Execution

© David Kirk/NVIDIA and Wen-mei W. Hwu
Urbana, Illinois, August 18-22, 2008

31

Nonbonded Forces on G80 GPU
• Start with most expensive calculation: direct nonbonded interactions.
• Decompose work into pairs of patches, identical to NAMD structure.
• GPU hardware assigns patch-pairs to multiprocessors dynamically.

16kB Shared Memory
Patch A Coordinates & Parameters

32kB Registers
Patch B Coords, Params, & Forces

Texture Unit
Force Table
Interpolation

Constants
Exclusions

8kB cache
64kB cache

32-way SIMD Multiprocessor
32-256 multiplexed threads

768 MB Main Memory, no cache, 300+ cycle latency

Force computation on single multiprocessor (GeForce 8800 GTX has 16)

Stone et al., J. Comp. Chem. 28:2618-2640, 2007.

© David Kirk/NVIDIA and Wen-mei W. Hwu
Urbana, Illinois, August 18-22, 2008

32

texture<float4> force_table;
__constant__ unsigned int exclusions[];
__shared__ atom jatom[];
atom iatom; // per-thread atom, stored in registers
float4 iforce; // per-thread force, stored in registers
for (int j = 0; j < jatom_count; ++j) {

float dx = jatom[j].x - iatom.x; float dy = jatom[j].y - iatom.y; float dz = jatom[j].z - iatom.z;
float r2 = dx*dx + dy*dy + dz*dz;
if (r2 < cutoff2) {

float4 ft = texfetch(force_table, 1.f/sqrt(r2));
bool excluded = false;
int indexdiff = iatom.index - jatom[j].index;
if (abs(indexdiff) <= (int) jatom[j].excl_maxdiff) {
indexdiff += jatom[j].excl_index;
excluded = ((exclusions[indexdiff>>5] & (1<<(indexdiff&31))) != 0);

}
float f = iatom.half_sigma + jatom[j].half_sigma; // sigma
f *= f*f; // sigma^3
f *= f; // sigma^6
f *= (f * ft.x + ft.y); // sigma^12 * fi.x - sigma^6 * fi.y
f *= iatom.sqrt_epsilon * jatom[j].sqrt_epsilon;
float qq = iatom.charge * jatom[j].charge;
if (excluded) { f = qq * ft.w; } // PME correction
else { f += qq * ft.z; } // Coulomb
iforce.x += dx * f; iforce.y += dy * f; iforce.z += dz * f;
iforce.w += 1.f; // interaction count or energy

}
} Stone et al., J. Comp. Chem. 28:2618-2640, 2007.

Nonbonded Forces
CUDA Code

Force Interpolation

Exclusions

Parameters

Accumulation

© David Kirk/NVIDIA and Wen-mei W. Hwu
Urbana, Illinois, August 18-22, 2008

33

GPU kernels are launched asynchronously, CPU continues
with its own work, polling for GPU completion periodically.
Forces needed by remote nodes are explicitly scheduled to

be computed ASAP to improve overall performance.

NAMD Overlapping Execution with
Asynchronous CUDA kernels

© David Kirk/NVIDIA and Wen-mei W. Hwu
Urbana, Illinois, August 18-22, 2008

34

STMV benchmark, 1M atoms,12A cutoff,
PME every 4 steps, running on

2.4 GHz AMD Opteron + NVIDIA Quadro FX 5600

NAMD Performance on
NCSA GPU Cluster, April 2008

© David Kirk/NVIDIA and Wen-mei W. Hwu
Urbana, Illinois, August 18-22, 2008

35

NAMD Performance on
NCSA GPU Cluster, April 2008

• STMV virus (1M atoms)
• 60 GPUs match performance of

330 CPU cores
• 5.5-7x overall application

speedup w/ G80-based GPUs
• Overlap with CPU
• Off-node results done first
• Plans for better performance

– Tune or port remaining work
– Balance GPU load

0

1

2

3

4

5

1 2 4 8 16 32 48

se
co

nd
s p

er
 st

ep

CPU only
with GPU
GPU

2.4 GHz Opteron + Quadro FX 5600

STMV Performance

fa
st

er

25.7 13.8 7.8

© David Kirk/NVIDIA and Wen-mei W. Hwu
Urbana, Illinois, August 18-22, 2008

36

NAMD Performance on
GT200 GPU Cluster, August 2008

• 8 GT200s, 240 SPs @ 1.3GHz:
– 72x faster than a single CPU core
– 9x overall application speedup vs.

8 CPU cores
– 32% faster overall than 8 nodes of

G80 cluster
– GT200 CUDA kernel is 54% faster
– ~8% variation in GPU load

• Cost of double-precision for force
accumulation is minimal: only 8%
slower than single-precision

© David Kirk/NVIDIA and Wen-mei W. Hwu
Urbana, Illinois, August 18-22, 2008

37

GPU Kernel Performance, May 2008
GeForce 8800GTX w/ CUDA 1.1, Driver 169.09

http://www.ks.uiuc.edu/Research/gpu/

Calculation / Algorithm Algorithm class Speedup vs. Intel
QX6700 CPU core

Fluorescence microphotolysis Iterative matrix / stencil 12x

Pairlist calculation Particle pair distance test 10-11x

Pairlist update Particle pair distance test 5-15x

Cutoff electron density sum Particle-grid w/ cutoff 15-23x

MSM long-range Grid-grid w/ cutoff 22x

Direct Coulomb summation Particle-grid 44x

Molecular dynamics
non-bonded force calc.

N-body cutoff force
calculations

10x
20x (w/ pairlist)

MSM short-range Particle-grid w/ cutoff 24x

© David Kirk/NVIDIA and Wen-mei W. Hwu
Urbana, Illinois, August 18-22, 2008

38

Lessons Learned

• GPU algorithms need fine-grained parallelism and
sufficient work to fully utilize the hardware

• Fine-grained GPU work decompositions compose
well with the comparatively coarse-grained
decompositions used for multicore or distributed
memory programing

• Much of GPU algorithm optimization revolves
around efficient use of multiple memory systems
and latency hiding

© David Kirk/NVIDIA and Wen-mei W. Hwu
Urbana, Illinois, August 18-22, 2008

39

Lessons Learned (2)

• The host CPU can potentially be used to
“regularize” the computation for the GPU,
yielding better overall performance

• Overlapping CPU work with GPU can hide
some communication and unaccelerated
computation

© David Kirk/NVIDIA and Wen-mei W. Hwu
Urbana, Illinois, August 18-22, 2008

40

Publications
http://www.ks.uiuc.edu/Research/gpu/

• Adapting a message-driven parallel application to GPU-accelerated
clusters. J. Phillips, J. Stone, K. Schulten. Proceedings of the 2008
ACM/IEEE Conference on Supercomputing, (in press)

• GPU acceleration of cutoff pair potentials for molecular modeling
applications. C. Rodrigues, D. Hardy, J. Stone, K. Schulten, W. Hwu.
Proceedings of the 2008 Conference On Computing Frontiers, pp. 273-
282, 2008.

• GPU computing. J. Owens, M. Houston, D. Luebke, S. Green, J. Stone,
J. Phillips. Proceedings of the IEEE, 96:879-899, 2008.

• Accelerating molecular modeling applications with graphics processors.
J. Stone, J. Phillips, P. Freddolino, D. Hardy, L. Trabuco, K. Schulten.
J. Comp. Chem., 28:2618-2640, 2007.

• Continuous fluorescence microphotolysis and correlation spectroscopy.
A. Arkhipov, J. Hüve, M. Kahms, R. Peters, K. Schulten. Biophysical
Journal, 93:4006-4017, 2007.

	VSCSE Summer School 2008��Accelerators for Science and Engineering Applications: GPUs and Multi-cores����Lecture 8: Applicatio
	Acknowledgement
	Outline
	Calculating Electrostatic Potential Maps
	Direct Coulomb Summation
	DCS Algorithm Design Observations
	Single Slice DCS: Simple (Slow) C Version
	Direct Coulomb Summation on the GPU
	DCS Observations for GPU Implementation
	Direct Coulomb Summation on the GPU
	DCS CUDA Block/Grid Decomposition �(non-unrolled)
	DCS Version 1: Const+Precalc�187 GFLOPS, 18.6 Billion Atom Evals/Sec
	DCS Version 1: Kernel Structure
	DCS CUDA Algorithm: Unrolling Loops
	DCS Inner Loop (Unroll and Jam)
	DCS CUDA Block/Grid Decomposition (unrolled)
	DCS CUDA Block/Grid Decomposition � (unrolled, coalesced)
	DCS Version 4: Kernel Structure�291.5 GFLOPS, 39.5 Billion Atom Evals/Sec
	Direct Coulomb Summation Runtime
	Direct Coulomb Summation Performance
	Multi-GPU DCS Algorithm:
	Multi-GPU Direct Coulomb Summation
	Multi-GPU Direct Coulomb Summation
	Cutoff Summation
	Infinite vs. Cutoff Potentials
	Cutoff Summation on the GPU
	Using the CPU to Improve� GPU Performance
	Cutoff Summation Runtime
	NAMD Parallel Molecular Dynamics
	NAMD Overlapping Execution
	Nonbonded Forces on G80 GPU
	NAMD Overlapping Execution with Asynchronous CUDA kernels
	NAMD Performance on �NCSA GPU Cluster, April 2008
	NAMD Performance on �NCSA GPU Cluster, April 2008
	NAMD Performance on �GT200 GPU Cluster, August 2008
	GPU Kernel Performance, May 2008�GeForce 8800GTX w/ CUDA 1.1, Driver 169.09�http://www.ks.uiuc.edu/Research/gpu/
	Lessons Learned
	Lessons Learned (2)
	Publications�http://www.ks.uiuc.edu/Research/gpu/

