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Outline

• Explore CUDA algorithms for computing electrostatic 
fields around molecules
– Detailed look at a few CUDA implementations of a simple 

direct Coulomb summation algorithm
– Multi-GPU direct Coulomb summation
– Cutoff (range-limited) summation algorithm

• CUDA acceleration of parallel molecular dynamics 
simulation on GPU clusters with NAMD
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Calculating Electrostatic Potential Maps

• Used in molecular 
structure building, 
analysis, visualization, 
simulation

• Electrostatic potentials 
evaluated on a uniformly 
spaced 3-D lattice

• Each lattice point contains 
sum of electrostatic 
contributions of all atoms
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Direct Coulomb Summation
• At each lattice point, sum potential contributions 

for all atoms in the simulated structure: 
potential[j] +=  charge[i] / Rij

Atom[i]

Rij: distance 
from lattice[j] 

to Atom[i]
Lattice point j 

being evaluated
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DCS Algorithm Design Observations

• Atom list has the smallest memory footprint,  best choice for 
the inner loop (both CPU and GPU)

• Lattice point coordinates are computed on-the-fly
• Atom coordinates are made relative to the origin of the 

potential map, eliminating redundant arithmetic
• Arithmetic can be significantly reduced by precalculating and 

reusing distance components, e.g. create a new array containing 
X, Q, and dy^2 + dz^2, updated on-the-fly for each row (CPU)

• Vectorized CPU versions benefit greatly from SSE instructions
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Single Slice DCS: Simple (Slow) C Version 
void cenergy(float *energygrid, dim3 grid, float gridspacing, float z, const float *atoms, int

numatoms) {
int i,j,n;
int atomarrdim = numatoms * 4;
for (j=0; j<grid.y; j++) {

float y = gridspacing * (float) j;
for (i=0; i<grid.x; i++) {
float x = gridspacing * (float) i;
float energy = 0.0f;
for (n=0; n<atomarrdim; n+=4) {     // calculate potential contribution of each atom
float dx = x - atoms[n    ];
float dy = y - atoms[n+1];
float dz = z - atoms[n+2];
energy += atoms[n+3] / sqrtf(dx*dx + dy*dy + dz*dz);

}
energygrid[grid.x*grid.y*k + grid.x*j + i] = energy;

}
}

}
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Direct Coulomb Summation on the GPU
• GPU outruns a CPU core by 44x
• Work is decomposed into tens of thousands of independent 

threads, multiplexed onto hundreds of GPU processor cores
• Single-precision FP arithmetic is adequate for intended 

application
• Numerical accuracy can be further improved  by compensated 

summation, spatially ordered summation groupings, or 
accumulation of potential in double-precision

• Starting point for more sophisticated algorithms
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DCS Observations for GPU 
Implementation

• Straightforward implementation has a low ratio of FLOPS to 
memory operations (for a GPU…)

• The innermost loop will consume operands VERY quickly
• Since atoms are read-only, they are ideal candidates for texture 

memory or constant memory
• GPU implementations must access constant memory 

efficiently, avoid shared memory bank conflicts, and overlap 
computations with global memory latency

• Map is padded out to a multiple of the thread block size:
– Eliminates conditional handling at the edges, thus also eliminating the 

possibility of branch divergence
– Assists with memory coalescing
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Global Memory

Texture Texture Texture Texture Texture Texture Texture TextureTexture
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Cache

Parallel Data
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Parallel Data
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Cache

Parallel Data
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Parallel Data
Cache

Parallel Data
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Parallel Data
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GPUConstant Memory

Direct Coulomb Summation on the GPU

Host

Atomic
Coordinates

Charges
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DCS CUDA Block/Grid Decomposition 
(non-unrolled)

Padding waste

Grid of thread blocks:

0,0 0,1

1,0 1,1

…

…

… … …

Thread blocks: 
64-256 threads

Threads compute
1 potential each
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DCS Version 1: Const+Precalc
187 GFLOPS, 18.6 Billion Atom 

Evals/Sec
• Pros:

– Pre-compute dz^2 for entire slice
– Inner loop over read-only atoms, const memory ideal
– If all threads read the same const data at the same time, performance is 

similar to reading a register

• Cons:
– Const memory only holds ~4000 atom coordinates and charges
– Potential summation must be done in multiple kernel invocations per 

slice, with const atom data updated for each invocation
– Host must shuffle data in/out for each pass
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DCS Version 1: Kernel Structure
…
float curenergy = energygrid[outaddr]; // start global mem read very early
float coorx = gridspacing * xindex;
float coory = gridspacing * yindex;
int atomid;
float energyval=0.0f;

for (atomid=0; atomid<numatoms; atomid++) {
float dx = coorx - atominfo[atomid].x;
float dy = coory - atominfo[atomid].y;
energyval += atominfo[atomid].w * rsqrtf(dx*dx + dy*dy + atominfo[atomid].z);

}
energygrid[outaddr] = curenergy + energyval;
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• Reuse atom data and partial distance components 
multiple times

• Add each atom’s contribution to several lattice points at 
a time, where distances only differ in one component

DCS CUDA Algorithm: Unrolling Loops

Atom[i]

Distances to 
Atom[i]



© David Kirk/NVIDIA and Wen-mei W. Hwu
Urbana, Illinois, August 18-22, 2008

15

DCS Inner Loop (Unroll and Jam)
…
for (atomid=0; atomid<numatoms; atomid++) {
float dy = coory - atominfo[atomid].y;
float dysqpdzsq = (dy * dy) + atominfo[atomid].z;
float dx1 = coorx1 - atominfo[atomid].x;
float dx2 = coorx2 - atominfo[atomid].x;
float dx3 = coorx3 - atominfo[atomid].x;
float dx4 = coorx4 - atominfo[atomid].x;
energyvalx1 += atominfo[atomid].w * rsqrtf(dx1*dx1 + dysqpdzsq);
energyvalx2 += atominfo[atomid].w * rsqrtf(dx2*dx2 + dysqpdzsq);
energyvalx3 += atominfo[atomid].w * rsqrtf(dx3*dx3 + dysqpdzsq);
energyvalx4 += atominfo[atomid].w * rsqrtf(dx4*dx4 + dysqpdzsq);

}
…
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DCS CUDA Block/Grid 
Decomposition (unrolled)

• This optimization technique (unroll and jam) 
consumes more registers in trade for increased 
arithmetic intensity

• Kernel variations that calculate more than one lattice 
point per thread, result in larger computational tiles:
– Thread count per block must be decreased to reduce 

computational tile size as unrolling is increased
– Otherwise, tile size gets bigger as threads do more than one 

lattice point evaluation, resulting on a significant increase in
padding and wasted computations at edges
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DCS CUDA Block/Grid Decomposition 
(unrolled, coalesced)

Grid of thread blocks:

Padding waste

0,0 0,1

1,0 1,1

…

… …

…

Thread blocks: 
64-256 threads

…

Unrolling increases 
computational tile size

Threads compute
up to 8 potentials, 

skipping by half-warps
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DCS Version 4: Kernel Structure
291.5 GFLOPS, 39.5 Billion Atom Evals/Sec

• Processes 8 lattice points at a time in the inner loop
• Subsequent lattice points computed by each thread 

are offset to guarantee coalesced memory accesses
• Loads and increments 8 potential map lattice points 

from global memory at completion of of the 
summation, avoiding register consumption

• Code is too long to show, but is available by request
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Direct Coulomb Summation Runtime

GPU 
underutilized

GPU fully utilized, 
~40x faster than CPU

Accelerating molecular modeling applications with graphics processors. 
J. Stone, J. Phillips, P. Freddolino, D. Hardy, L. Trabuco, K. Schulten. 

J. Comp. Chem., 28:2618-2640, 2007.

Lower 
is better
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Direct Coulomb Summation Performance

CUDA-Simple: 
14.8x faster,

33% of fastest 
GPU kernel

CUDA-Unroll8clx:
fastest GPU kernel,

44x faster than CPU, 
291 GFLOPS on 

GeForce 8800GTX

GPU computing.  J. Owens, M. Houston, D. Luebke, S. Green, J. Stone, 
J. Phillips. Proceedings of the IEEE, 96:879-899, 2008.

CPU
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Multi-GPU DCS Algorithm:

• One host thread is created for each CUDA GPU, 
attached according to host thread ID:
– First CUDA call binds that thread’s CUDA context to that 

GPU for life

• Map slices are decomposed cyclically onto the 
available GPUs

• Map slices are usually larger than the host memory 
page size, so false sharing and related effects are not a 
problem for this application
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Multi-GPU Direct Coulomb Summation
• Effective memory 

bandwidth scales with the 
number of GPUs utilized

• PCIe bus bandwidth not a 
bottleneck for this algorithm

• 117 billion evals/sec
• 863 GFLOPS
• 131x speedup vs. CPU core
• Power: 700 watts during 

benchmark Quad-core Intel QX6700
Three NVIDIA GeForce 8800GTX 
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Multi-GPU Direct Coulomb Summation

• 4-GPU (2 Quadroplex) 
Opteron node at NCSA

• 157 billion evals/sec
• 1.16 TFLOPS
• 176x speedup vs.         

Intel QX6700 CPU core 
w/ SSE

NCSA GPU Cluster• 4-GPU (GT200)
• 241 billion evals/sec
• 1.78 TFLOPS
• 271x speedup vs.         

Intel QX6700 CPU core 
w/ SSE

http://www.ncsa.uiuc.edu/Projects/GPUcluster/
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Cutoff Summation
• At each lattice point, sum potential contributions for 

atoms within cutoff radius:
if (distance to atom[i] < cutoff)
potential += (charge[i] / r) * s(r)

• Smoothing function s(r) is algorithm dependent

Cutoff radius r: distance to 
Atom[i]

Lattice point being 
evaluated Atom[i]
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Infinite vs. Cutoff Potentials
• Infinite range potential:

– All atoms contribute to all lattice points
– Summation algorithm has quadratic complexity

• Cutoff (range-limited) potential:
– Atoms contribute within cutoff distance to lattice points
– Summation algorithm has linear time complexity 
– Has many applications in molecular modeling:

• Replace electrostatic potential with shifted form
• Short-range part for fast methods of approximating full 

electrostatics
• Used for fast decaying interactions (e.g. Lennard-Jones, 

Buckingham)



© David Kirk/NVIDIA and Wen-mei W. Hwu
Urbana, Illinois, August 18-22, 2008

26

Process atom bins 
for current potential 

map region

Cutoff Summation on the GPU

Atoms

Atoms spatially hashed into fixed-
size “bins” in global memory

Global memory

Constant memory

Bin-Region 
neighborlist

Shared memory
Atom bin

Potential 
map 

regions

Bins
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Using the CPU to Improve
GPU Performance

• GPU performs best when the work evenly 
divides into the number of threads/processing 
units

• Optimization strategy: 
– Use the CPU to “regularize” the GPU workload
– Handle exceptional or irregular work units on the 

CPU while the GPU processes the bulk of the work
– On average, the GPU is kept highly occupied, 

attaining a much higher fraction of peak performance
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GPU acceleration of cutoff pair potentials for molecular modeling applications. 
C. Rodrigues, D. Hardy, J. Stone, K. Schulten, W. Hwu. Proceedings of the 2008 

Conference On Computing Frontiers, pp. 273-282, 2008.

Cutoff Summation Runtime
GPU cutoff with 

CPU overlap:
17x-21x faster than 

CPU core
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Hybrid of spatial and force decomposition:

•Spatial decomposition of atoms into cubes 
(called patches)

•For every pair of interacting patches, 
create one object for calculating 
electrostatic interactions

•Recent: Blue Matter, Desmond, etc. use 
this idea in some form

NAMD Parallel Molecular Dynamics

• Designed from the beginning as a parallel program
• Uses the Charm++ philosophy:

– Decompose computation into a large number of objects
– Intelligent Run-time system (Charm++) assigns objects to processors for dynamic load 

balancing with minimal communication

Kale et al., J. Comp. Phys. 151:283-312, 1999.
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847 objects 100,000

Example 
Configuration

Objects are assigned to processors and queued as data arrives.

108

Phillips et al., SC2002.

Offload to GPU

NAMD Overlapping Execution
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Nonbonded Forces on G80 GPU
• Start with most expensive calculation: direct nonbonded interactions.
• Decompose work into pairs of patches, identical to NAMD structure.
• GPU hardware assigns patch-pairs to multiprocessors dynamically.

16kB Shared Memory
Patch A Coordinates & Parameters

32kB Registers
Patch B Coords, Params, & Forces

Texture Unit
Force Table
Interpolation

Constants
Exclusions

8kB cache
64kB cache

32-way SIMD Multiprocessor
32-256 multiplexed threads

768 MB Main Memory, no cache, 300+ cycle latency

Force computation on single multiprocessor (GeForce 8800 GTX has 16)

Stone et al., J. Comp. Chem. 28:2618-2640, 2007.
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texture<float4> force_table;
__constant__ unsigned int exclusions[];
__shared__ atom jatom[];
atom iatom;      // per-thread atom, stored in registers
float4 iforce;   // per-thread force, stored in registers
for ( int j = 0; j < jatom_count; ++j ) {

float dx = jatom[j].x - iatom.x; float dy = jatom[j].y - iatom.y; float dz = jatom[j].z - iatom.z;
float r2 = dx*dx + dy*dy + dz*dz;
if ( r2 < cutoff2 ) {

float4 ft = texfetch(force_table, 1.f/sqrt(r2));
bool excluded = false;
int indexdiff = iatom.index - jatom[j].index;
if ( abs(indexdiff) <= (int) jatom[j].excl_maxdiff ) {
indexdiff += jatom[j].excl_index;
excluded = ((exclusions[indexdiff>>5] & (1<<(indexdiff&31))) != 0);

}
float f = iatom.half_sigma + jatom[j].half_sigma;  // sigma
f *= f*f;  // sigma^3
f *= f;  // sigma^6
f *= ( f * ft.x + ft.y );  // sigma^12 * fi.x - sigma^6 * fi.y
f *= iatom.sqrt_epsilon * jatom[j].sqrt_epsilon;
float qq = iatom.charge * jatom[j].charge;
if ( excluded ) { f = qq * ft.w; }  // PME correction
else { f += qq * ft.z; }  // Coulomb
iforce.x += dx * f;  iforce.y += dy * f; iforce.z += dz * f;
iforce.w += 1.f;  // interaction count or energy

}
} Stone et al., J. Comp. Chem. 28:2618-2640, 2007.

Nonbonded Forces
CUDA Code

Force Interpolation

Exclusions

Parameters

Accumulation
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GPU kernels are launched asynchronously, CPU continues
with its own work, polling for GPU completion periodically.
Forces needed by remote nodes are explicitly scheduled to 

be computed ASAP to improve overall performance.

NAMD Overlapping Execution with 
Asynchronous CUDA kernels
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STMV benchmark, 1M atoms,12A cutoff,        
PME every 4 steps, running on

2.4 GHz AMD Opteron + NVIDIA Quadro FX 5600

NAMD Performance on 
NCSA GPU Cluster, April 2008
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NAMD Performance on 
NCSA GPU Cluster, April 2008

• STMV virus (1M atoms)
• 60 GPUs match performance of 

330 CPU cores
• 5.5-7x overall application 

speedup w/ G80-based GPUs
• Overlap with CPU
• Off-node results done first
• Plans for better performance

– Tune or port remaining work
– Balance GPU load

0
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NAMD Performance on 
GT200 GPU Cluster, August 2008

• 8 GT200s, 240 SPs @ 1.3GHz:
– 72x faster than a single CPU core
– 9x overall application speedup vs. 

8 CPU cores
– 32% faster overall than 8 nodes of 

G80 cluster
– GT200 CUDA kernel is 54% faster
– ~8% variation in GPU load

• Cost of double-precision for force 
accumulation is minimal: only 8% 
slower than single-precision
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GPU Kernel Performance, May 2008
GeForce 8800GTX w/ CUDA 1.1, Driver 169.09

http://www.ks.uiuc.edu/Research/gpu/

Calculation / Algorithm Algorithm class Speedup vs. Intel 
QX6700 CPU core

Fluorescence microphotolysis Iterative matrix / stencil 12x

Pairlist calculation Particle pair distance test 10-11x

Pairlist update Particle pair distance test 5-15x

Cutoff electron density sum Particle-grid w/ cutoff 15-23x

MSM long-range Grid-grid w/ cutoff 22x

Direct Coulomb summation Particle-grid 44x

Molecular dynamics           
non-bonded force calc.

N-body cutoff force 
calculations

10x                         
20x (w/ pairlist)

MSM short-range Particle-grid w/ cutoff 24x
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Lessons Learned

• GPU algorithms need fine-grained parallelism and 
sufficient work to fully utilize the hardware

• Fine-grained GPU work decompositions compose 
well with the comparatively coarse-grained 
decompositions used for multicore or distributed 
memory programing

• Much of GPU algorithm optimization revolves 
around efficient use of multiple memory systems 
and latency hiding



© David Kirk/NVIDIA and Wen-mei W. Hwu
Urbana, Illinois, August 18-22, 2008

39

Lessons Learned (2)

• The host CPU can potentially be used to 
“regularize” the computation for the GPU, 
yielding better overall performance

• Overlapping CPU work with GPU can hide 
some communication and unaccelerated
computation
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Publications
http://www.ks.uiuc.edu/Research/gpu/

• Adapting a message-driven parallel application to GPU-accelerated 
clusters.  J. Phillips, J. Stone, K. Schulten.  Proceedings of the 2008 
ACM/IEEE Conference on Supercomputing, (in press)

• GPU acceleration of cutoff pair potentials for molecular modeling 
applications. C. Rodrigues, D. Hardy, J. Stone, K. Schulten, W. Hwu. 
Proceedings of the 2008 Conference On Computing Frontiers, pp. 273-
282, 2008.

• GPU computing.  J. Owens, M. Houston, D. Luebke, S. Green, J. Stone, 
J. Phillips. Proceedings of the IEEE, 96:879-899, 2008.

• Accelerating molecular modeling applications with graphics processors. 
J. Stone, J. Phillips, P. Freddolino, D. Hardy, L. Trabuco, K. Schulten.   
J. Comp. Chem., 28:2618-2640, 2007.

• Continuous fluorescence microphotolysis and correlation spectroscopy. 
A. Arkhipov, J. Hüve, M. Kahms, R. Peters, K. Schulten. Biophysical 
Journal, 93:4006-4017, 2007. 
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