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VMD – “Visual Molecular Dynamics”
• Visualization and analysis of molecular dynamics simulations, sequence data, 

volumetric data, quantum chemistry simulations, particle systems, …
• User extensible with scripting and plugins
• http://www.ks.uiuc.edu/Research/vmd/
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Integrating CUDA Kernels Into VMD

• VMD: molecular 
visualization and analysis

• State-of-the-art simulations 
require more viz/analysis 
power than ever before

• For some algorithms, CUDA 
can bring what was 
previously supercomputer 
class performance to an 
appropriately equipped 
desktop workstation Ribosome: 260,790 atoms 

before adding solvent/ions
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Range of VMD Usage Scenarios

• Users run VMD on a diverse range of hardware: 
laptops, desktops, clusters, and supercomputers

• Typically used as a desktop science application, 
for interactive 3D molecular graphics and analysis

• Can also be run in pure text mode for numerically 
intensive analysis tasks, batch mode movie 
rendering, etc…

• GPU acceleration provides an opportunity to make 
some slow, or batch calculations capable of being 
run interactively, or on-demand…
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Molecular orbital  

calculation and display:

factor of 120x faster

CUDA Acceleration in VMD

Electrostatic field 

calculation, ion placement:

factor of 20x to 44x faster

Imaging of gas migration 
pathways in proteins with 
implicit ligand sampling:

factor of 20x to 30x faster
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Electrostatic Potential Maps

• Electrostatic potentials evaluated 
on 3-D lattice:

• Applications include:
– Ion placement for structure 

building
– Time-averaged potentials for 

simulation
– Visualization and analysis

Isoleucine tRNA synthetase
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Overview of Direct Coulomb 
Summation (DCS) Algorithm

• One of several ways to compute the electrostatic potentials on a
grid, ideally suited for the GPU

• Methods such as multilevel summation can achieve much 
higher performance at the cost of additional complexity 

• Begin with DCS for computing electrostatic maps:
– conceptually simple algorithm well suited to the GPU
– easy to fully explore
– requires very little background knowledge, unlike other methods

• DCS: for each lattice point, sum potential contributions for all
atoms in the simulated structure: 

potential[j] +=  atom[i].charge / rij
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Direct Coulomb Summation (DCS) 
Algorithm Detail

• Each lattice point accumulates electrostatic potential 
contribution from all atoms:

potential[j] +=  atom[i].charge / rij

atom[i]

rij: distance 
from lattice[j] 

to atom[i]
Lattice point j 

being evaluated
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DCS Computational Considerations

• Attributes of DCS algorithm for computing electrostatic maps:
– Highly data parallel
– Starting point for more sophisticated algorithms
– Single-precision FP arithmetic is adequate for intended uses
– Numerical accuracy can be further improved  by compensated 

summation, spatially ordered summation groupings, or with the use of 
double-precision accumulation

– Interesting test case since potential maps are useful for various 
visualization and analysis tasks

• Forms a template for related spatially evaluated function 
summation algorithms in CUDA
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Single Slice DCS: Simple (Slow) C Version 
void cenergy(float *energygrid, dim3 grid, float gridspacing, float z, const float *atoms,

int numatoms) {
int i,j,n;
int atomarrdim = numatoms * 4;
for (j=0; j<grid.y; j++) {

float y = gridspacing * (float) j;
for (i=0; i<grid.x; i++) {
float x = gridspacing * (float) i;
float energy = 0.0f;
for (n=0; n<atomarrdim; n+=4) {     // calculate potential contribution of each atom
float dx = x - atoms[n ];
float dy = y - atoms[n+1];
float dz = z - atoms[n+2];
energy += atoms[n+3] / sqrtf(dx*dx + dy*dy + dz*dz);

}
energygrid[grid.x*grid.y*k + grid.x*j + i] = energy;

}
}

}
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DCS Algorithm Design Observations

• Electrostatic maps used for ion placement require evaluation of 
~20 potential lattice points per atom for a typical biological 
structure

• Atom list has the smallest memory footprint, best choice for the
inner loop (both CPU and GPU)

• Lattice point coordinates are computed on-the-fly
• Atom coordinates are made relative to the origin of the 

potential map, eliminating redundant arithmetic
• Arithmetic can be significantly reduced by precalculating and 

reusing distance components, e.g. create a new array containing 
X, Q, and dy^2 + dz^2, updated on-the-fly for each row (CPU)

• Vectorized CPU versions benefit greatly from SSE instructions
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An Approach to Writing CUDA Kernels

• Find an algorithm that can expose substantial parallelism, we’ll
ultimately need thousands of independent threads…

• Identify appropriate GPU memory or texture subsystems used 
to store data used by kernel

• Are there trade-offs that can be made to exchange computation 
for more parallelism?
– Though counterintuitive, past successes resulted from this strategy
– “Brute force” methods that expose significant parallelism do 

surprisingly well on current GPUs

• Analyze the real-world use case for the problem and select the 
kernel for the problem sizes that will be heavily used
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Direct Coulomb Summation Runtime

GPU 
underutilized

GPU fully utilized, 
~40x faster than CPU

Accelerating molecular modeling applications with graphics processors. 
J. Stone, J. Phillips, P. Freddolino, D. Hardy, L. Trabuco, K. Schulten. 

J. Comp. Chem., 28:2618-2640, 2007.

Lower 
is better

GPU initialization 
time: ~110ms 
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DCS Observations for GPU 
Implementation

• Naive implementation has a low ratio of FP arithmetic 
operations to memory transactions (at least for a GPU…)

• The innermost loop will consume operands VERY quickly
• Since atoms are read-only, they are ideal candidates for texture 

memory or constant memory
• GPU implementations must access constant memory 

efficiently, avoid shared memory bank conflicts, coalesce 
global memory accesses, and overlap arithmetic with global 
memory latency

• Map is padded out to a multiple of the thread block size:
– Eliminates conditional handling at the edges, thus also eliminating the 

possibility of branch divergence
– Assists with memory coalescing
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CUDA DCS Implementation Overview

• Allocate and initialize potential map memory on host CPU
• Allocate potential map slice buffer on GPU
• Preprocess atom coordinates and charges
• Loop over slices:

– Copy slice from host to GPU
– Loop over groups of atoms until done:

• Copy atom data to GPU
• Run CUDA Kernel on atoms and slice resident on GPU accumulating new 

potential contributions into slice
– Copy slice from GPU back to host

• Free resources
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Global Memory

Texture Texture Texture Texture Texture TextureTexture

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

GPUConstant Memory

Direct Coulomb Summation on the GPU

Host

Atomic
Coordinates

Charges

Threads compute
up to 8 potentials, 

skipping by half-warps

Thread blocks:
64-256 threads

Grid of thread blocks

Lattice padding
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DCS CUDA Block/Grid Decomposition 
(non-unrolled)

Padding waste

Grid of thread blocks:

0,0 0,1

1,0 1,1

…

…

… … …

Thread blocks: 
64-256 threads

Threads compute
1 potential each
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DCS CUDA Block/Grid 
Decomposition (non-unrolled)

• 16x16 CUDA thread blocks are a nice starting size 
with a satisfactory number of threads

• Small enough that there’s not much waste due to 
padding at the edges
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Notes on Benchmarking CUDA Kernels: 
Initialization Overhead

• When a host thread initially binds to a CUDA context, there is 
a small (~100ms) delay during the first CUDA runtime call that 
touches state on the device

• The first time each CUDA kernel is executed, there’s a small 
delay while the driver compiles the device-independent PTX 
intermediate code for the physical device associated with the 
current context

• In most real codes, these sources of one-time initialization 
overhead would occur at application startup and should not be a 
significant factor.

• The exception to this is that newly-created host threads incur 
overhead when they bind to their device, so it’s best to re-use 
existing host threads than to generate them repeatedly
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Notes on Benchmarking CUDA Kernels: 
Power Management, Async Operations

• Modern GPUs (and of course CPUs) incorporate power 
management hardware that reduces clock rates and/or powers 
down functional units when idle

• In order to benchmark peak performance of CUDA kernels, 
both the GPU(s) and CPU(s) must be awoken from their 
respective low-power modes 

• In order to get accurate and repeatable timings, do a “warm up” 
pass prior to running benchmark timings on your kernel and 
any associated I/O

• Call cudaThreadSynchronize() prior to stopping timers to 
verify that any outstanding kernels and I/Os have completed
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DCS Version 1: Const+Precalc
187 GFLOPS, 18.6 Billion Atom 

Evals/Sec
• Pros:

– Pre-compute dz^2 for entire slice
– Inner loop over read-only atoms, const memory ideal
– If all threads read the same const data at the same time, performance is 

similar to reading a register

• Cons:
– Const memory only holds ~4000 atom coordinates and charges
– Potential summation must be done in multiple kernel invocations per 

slice, with const atom data updated for each invocation
– Host must shuffle data in/out for each pass
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…
float curenergy = energygrid[outaddr];
float coorx = gridspacing * xindex;
float coory = gridspacing * yindex;
int atomid;
float energyval=0.0f;
for (atomid=0; atomid<numatoms; atomid++) {
float dx = coorx - atominfo[atomid].x;
float dy = coory - atominfo[atomid].y;
energyval += atominfo[atomid].w *  

rsqrtf(dx*dx + dy*dy + atominfo[atomid].z);
}
energygrid[outaddr] = curenergy + energyval;

DCS Version 1: Kernel Structure
Start global memory reads 
early. Kernel hides some of 

its own latency.

Only dependency on global 
memory read is at the end of 

the kernel…
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DCS CUDA Block/Grid 
Decomposition (unrolled)

• Reuse atom data and partial distance components multiple 
times

• Use “unroll and jam” to unroll the outer loop into the inner 
loop

• Uses more registers, but increases arithmetic intensity 
significantly

• Kernels that unroll the inner loop calculate more than one 
lattice point per thread result in larger computational tiles:
– Thread count per block must be decreased to reduce computational tile 

size as unrolling is increased
– Otherwise, tile size gets bigger as threads do more than one lattice point 

evaluation, resulting on a significant increase in padding and wasted 
computations at edges
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• Add each atom’s contribution to several lattice points 
at a time, distances only differ in one component:
potential[j ] +=  atom[i].charge / rij

potential[j+1] +=  atom[i].charge / ri(j+1)

…

DCS CUDA Algorithm: Unrolling Loops

Atom[i]

Distances to 
Atom[i]
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DCS CUDA Block/Grid Decomposition 
(unrolled)

Padding waste

Grid of thread blocks:

0,0 0,1

1,0 1,1

…

… …

…

Thread blocks: 
64-256 threads

Threads compute
up to 8 potentials

…

Unrolling increases 
computational tile size
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DCS Version 2: Const+Precalc+Loop 
Unrolling

259 GFLOPS, 33.4 Billion Atom Evals/Sec
• Pros:

– Although const memory is very fast, loading values into registers costs 
instruction slots

– We can reduce the number of loads by reusing atom coordinate values 
for multiple voxels, by storing in regs

– By unrolling the X loop by 4, we can compute dy^2+dz^2 once and use 
it multiple times, much like the CPU version of the code does

• Cons:
– Compiler won’t do this type of unrolling for us (yet)
– Uses more registers, one of several finite resources
– Increases effective tile size, or decreases thread count in a block, though 

not a problem at this level
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DCS Version 2: Inner Loop
…for (atomid=0; atomid<numatoms; atomid++) {

float dy = coory - atominfo[atomid].y;
float dysqpdzsq = (dy * dy) + atominfo[atomid].z;
float x = atominfo[atomid].x;
float dx1 = coorx1 - x;
float dx2 = coorx2 - x;
float dx3 = coorx3 - x;
float dx4 = coorx4 - x;
float charge = atominfo[atomid].w;
energyvalx1 += charge * rsqrtf(dx1*dx1 + dysqpdzsq);
energyvalx2 += charge * rsqrtf(dx2*dx2 + dysqpdzsq);
energyvalx3 += charge * rsqrtf(dx3*dx3 + dysqpdzsq);
energyvalx4 += charge * rsqrtf(dx4*dx4 + dysqpdzsq);

}

Compared to non-unrolled 
kernel: memory loads are 

decreased by 4x, and FLOPS 
per evaluation are reduced, but 

register use is increased…
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DCS Version 3: 
Const+Shared+Loop Unrolling+Precalc

268 GFLOPS, 36.4 Billion Atom Evals/Sec

• Pros:
– Loading prior potential values from global memory into 

shared memory frees up several registers, so we can afford 
to unroll by 8 instead of 4

– Using fewer registers allows co-scheduling of more blocks, 
increasing GPU “occupancy”

• Cons:
– Bumping against hardware limits (uses all const memory, 

most shared memory, and a largish number of registers)
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DCS Version 3: Kernel Structure

• Loads 8 potential map lattice points from global 
memory at startup, and immediately stores them into 
shared memory before going into inner loop. We 
would otherwise consume too many registers and lose 
performance (on G80 at least…)

• Processes 8 lattice points at a time in the inner loop
• Additional performance gains are achievable by 

coalescing global memory reads at start/end
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DCS Version 3: Inner Loop
…for (v=0; v<8; v++)

curenergies[tid + nthr * v] = energygrid[outaddr + v];
float coorx = gridspacing * xindex;
float coory = gridspacing * yindex;
float energyvalx1=0.0f;  […….] float energyvalx8=0.0f;
for (atomid=0; atomid<numatoms; atomid++) {

float dy = coory - atominfo[atomid].y;
float dysqpdzsq = (dy * dy) + atominfo[atomid].z;
float dx = coorx - atominfo[atomid].x;
energyvalx1 += atominfo[atomid].w * rsqrtf(dx*dx + dysqpdzsq);
dx += gridspacing;

[…]
energyvalx8 += atominfo[atomid].w * rsqrtf(dx*dx + dysqpdzsq);

}
__syncthreads(); // guarantee that shared memory values are ready for reading by all threads
energygrid[outaddr      ] = energyvalx1 + curenergies[tid                 ];

[…]
energygrid[outaddr + 7] = energyvalx2 + curenergies[tid + nthr * 7];
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DCS Version 4: 
Const+Loop Unrolling+Coalescing

291.5 GFLOPS, 39.5 Billion Atom Evals/Sec

• Pros:
– Simplified structure compared to version 3, no use of shared memory, 

register pressure kept at bay by doing global memory operations only at 
the end of the kernel

– Using fewer registers allows co-scheduling of more blocks, increasing 
GPU “occupancy”

– Doesn’t have as strict of a thread block dimension requirement as 
version 3, computational tile size can be smaller

• Cons:
– The computation tile size is still large, so small potential maps don’t 

perform as well as large ones
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DCS Version 4: Kernel Structure

• Processes 8 lattice points at a time in the inner loop
• Subsequent lattice points computed by each thread 

are offset by a half-warp to guarantee coalesced 
memory accesses

• Loads and increments 8 potential map lattice points 
from global memory at completion of of the 
summation, avoiding register consumption
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DCS Version 4: Inner Loop
…float coory = gridspacing * yindex;

float coorx = gridspacing * xindex;
float gridspacing_coalesce = gridspacing * BLOCKSIZEX;
int atomid;
for (atomid=0; atomid<numatoms; atomid++) {
float dy = coory - atominfo[atomid].y;
float dyz2 = (dy * dy) + atominfo[atomid].z;
float dx1 = coorx - atominfo[atomid].x;

[…]
float dx8 = dx7 + gridspacing_coalesce;
energyvalx1 += atominfo[atomid].w * rsqrtf(dx1*dx1 + dyz2);

[…]
energyvalx8 += atominfo[atomid].w * rsqrtf(dx8*dx8 + dyz2);

}
energygrid[outaddr                               ] += energyvalx1;

[...]
energygrid[outaddr+7*BLOCKSIZEX] += energyvalx7;

Points spaced for 
memory coalescing

Reuse partial distance 
components dy^2 + dz^2

Global memory ops 
occur only at the end 

of the kernel, 
decreases register use
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DCS CUDA Block/Grid Decomposition 
(unrolled, coalesced)

Grid of thread blocks:

Padding waste

0,0 0,1

1,0 1,1

…

… …

…

Thread blocks: 
64-256 threads

…

Unrolling increases 
computational tile size

Threads compute
up to 8 potentials, 

skipping by half-warps
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Direct Coulomb Summation Performance

CUDA-Simple: 
14.8x faster,

33% of fastest 
GPU kernel

CUDA-Unroll8clx:
fastest GPU kernel,

44x faster than CPU, 
291 GFLOPS on 

GeForce 8800GTX

GPU computing.  J. Owens, M. Houston, D. Luebke, S. Green, J. Stone, 
J. Phillips. Proceedings of the IEEE, 96:879-899, 2008.

CPU

Number of thread blocks modulo number of SMs results in 
significant performance variation for small workloads
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Multi-GPU DCS Potential Map 
Calculation

• Both CPU and GPU versions of the code are easily 
parallelized by decomposing the 3-D potential map 
into slices, and computing them concurrently

• Potential maps often have 50-500 slices in the Z 
direction, so plenty of coarse grain parallelism is still 
available via the DCS algorithm
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Multi-GPU DCS Algorithm:

• One host thread is created for each CUDA GPU, attached 
according to host thread ID:
– First CUDA call binds that thread’s CUDA context to that GPU for life
– Map slices are decomposed cyclically onto the available GPUs
– Handling error conditions within child threads is dependent on the 

thread library and, makes dealing with any CUDA errors somewhat 
tricky.  Easiest way to deal with this is with a shared exception 
queue/stack for all of the worker threads.

• Map slices are usually larger than the host memory page size, 
so false sharing and related effects are not a problem for this 
application
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Multi-GPU Direct Coulomb Summation
• Effective memory 

bandwidth scales with the 
number of GPUs utilized

• PCIe bus bandwidth not a 
bottleneck for this 
algorithm

• 117 billion evals/sec
• 863 GFLOPS
• 131x speedup vs. CPU 

core
• Power: 700 watts during 

benchmark

Quad-core Intel QX6700
Three NVIDIA GeForce 8800GTX 
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GPU 1 GPU N…

Multi-GPU Direct 
Coulomb Summation

NCSA GPU Cluster
http://www.ncsa.uiuc.edu/Projects/GPUcluster/

Evals/sec TFLOPS Speedup*

4-GPU (2 Quadroplex) 
Opteron node at NCSA

157 billion 1.16 176

4-GPU GTX 280 (GT200)
In new NCSA Lincoln cluster

241 billion 1.78 271

*Speedups relative to Intel QX6700 CPU core w/ SSE
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Multi-GPU DCS Performance:
Initial Ion Placement Lattice Calculation

• Original virus DCS ion placement 
ran for 110 CPU-hours on SGI 
Altix Itanium2

• Same calculation now takes 1.35 
GPU-hours

• 27 minutes (wall clock) if three 
GPUs are used concurrently

• CUDA Initial ion placement 
lattice calculation performance:

– 82 times faster for virus (STMV) 
structure

– 110 times faster for ribosome
• Three GPUs give performance 

equivalent to ~330 Altix CPUs for 
the ribosome case

Satellite Tobacco Mosaic Virus (STMV)
Ion Placement
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Multi-Level Summation Method for Coulomb 
Potential

Infinite vs. Cutoff Potentials
• Infinite range potential:

– All atoms contribute to all lattice points
– Summation algorithm has quadratic complexity

• Cutoff (range-limited) potential:
– Atoms contribute within cutoff distance to lattice points
– Summation algorithm has linear time complexity 
– Has many applications in molecular modeling:

• Replace electrostatic potential with shifted form
• Short-range part for fast methods of approximating full electrostatics
• Used for fast decaying interactions (e.g. Lennard-Jones, Buckingham) 
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Short-range Cutoff Summation
• Each lattice point accumulates electrostatic potential 

contribution from atoms within cutoff distance:
if (rij < cutoff)

potential[j] += (charge[i] / rij) * s(rij)
• Smoothing function s(r) is algorithm dependent

Cutoff radius rij: distance 
from lattice[j] 

to atom[i]

Lattice point j 
being evaluated atom[i]



© John E. Stone, 2007-2009
University of Illinois, Urbana-Champaign

43

Cutoff Summation on the GPU

Global memory Constant memory
Offsets for bin 
neighborhood

Shared memory

atom bin

Potential 
map 

regions Bins of atoms

Each thread block cooperatively 
loads atom bins from surrounding 
neighborhood into shared memory 
for evaluation

Atoms are spatially hashed into fixed-size bins
CPU handles overflowed bins (GPU kernel can be very aggressive)
GPU thread block calculates corresponding region of potential map, 
Bin/region neighbor checks costly; solved with universal table look-up

Look-up table 
encodes “logic” of 
spatial geometry 
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Using the CPU to Improve GPU Performance

• GPU performs best when the work evenly divides into 
the number of threads/processing units

• Optimization strategy: 
– Use the CPU to “regularize” the GPU workload
– Use fixed size bin data structures, with “empty” slots 

skipped or producing zeroed out results
– Handle exceptional or irregular work units on the CPU 

while the GPU processes the bulk of the work
– On average, the GPU is kept highly occupied, attaining a 

much higher fraction of peak performance
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GPU acceleration of cutoff pair potentials for molecular modeling applications. 
C. Rodrigues, D. Hardy, J. Stone, K. Schulten, W. Hwu. Proceedings of the 2008 

Conference On Computing Frontiers, pp. 273-282, 2008.

Cutoff Summation Runtime
GPU cutoff with 

CPU overlap:
17x-21x faster than 

CPU core

If asynchronous 
stream blocks due 
to queue filling, 

performance will 
degrade from 

peak…
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Cutoff Summation Observations

• Use of CPU to handle overflowed bins is very 
effective, overlaps completely with GPU work

• One caveat when using streaming API is to avoid 
overfilling the stream queue with work, as doing so 
can trigger blocking behavior (greatly improved in 
current drivers)

• The use of compensated summation (all GPUs) or 
double-precision (GT200 only) for potential 
accumulation resulted in only a ~10% performance 
penalty vs. pure single-precision arithmetic, while 
reducing the effects of floating point truncation
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Bonus Material!!

• This is a good point at which to address questions
• If time allows I will continue on covering the more 

advanced topics that follow, but it’s important that we 
have addressed any questions about the fundamental 
material presented up to this point before continuing.
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Multilevel Summation
• Approximates full electrostatic potential
• Calculates sum of smoothed pairwise potentials 

interpolated from a hierarchy of lattices
• Advantages over PME and/or FMM:

– Algorithm has linear time complexity
– Permits non-periodic and periodic boundaries
– Produces continuous forces for dynamics (advantage over FMM)
– Avoids 3-D FFTs for better parallel scaling (advantage over PME)
– Spatial separation allows use of multiple time steps
– Can be extended to other pairwise interactions

• Skeel, Tezcan, Hardy, J Comp Chem, 2002 — Computing forces for molecular dynamics
• Hardy, Stone, Schulten, J Paral Comp, 2009 — GPU-acceleration of potential map calculation
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Multilevel Summation Main Ideas

=

+

+

a 2a

atoms

h-lattice

2h-lattice

Split the 1/r potential Interpolate the smoothed potentials

.

.

.
.
.
.

• Split the 1/r potential into a short-range cutoff part plus smoothed parts that are successively more slowly varying.  All but the 
top level potential are cut off.

• The smoothed potentials are interpolated from successively coarser lattices.
• The lattice spacing is doubled at each successive level.  The cutoff distance is also doubled.
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Multilevel Summation Calculation

map
potential

exact
short-range
interactions

interpolated
long-range
interactions

+=

short-range cutoff

interpolationanterpolation

h-lattice cutoff

2h-lattice cutoff
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long-range
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map
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Multilevel Summation on the GPU

Computational steps CPU (s) w/ GPU (s) Speedup

Short-range cutoff 480.07 14.87 32.3

Long-range anterpolation 0.18

restriction 0.16

lattice cutoff 49.47 1.36 36.4

prolongation 0.17

interpolation 3.47

Total 533.52 20.21 26.4

Performance profile for 0.5 Å map of potential for  1.5 M atoms.
Hardware platform is Intel QX6700 CPU and NVIDIA GTX 280.

Accelerate  short-range cutoff and lattice cutoff parts
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Photobiology of Vision and Photosynthesis
Investigations of the chromatophore, a photosynthetic organelle

Full chromatophore model will permit structural, chemical and kinetic 
investigations at a structural systems biology level

Light

Electrostatic field of chromatophore model
from multilevel summation method:

computed with 3 GPUs (G80) in ~90 seconds, 
46x faster than single CPU core

Electrostatics needed to build full 
structural model, place ions, study 

macroscopic properties

Partial model:    
~10M atoms
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Molecular Orbitals
• Visualization of MOs aids in 

understanding the chemistry 
of molecular system

• MO spatial distribution is 
correlated with probability 
density for an electron(s)

• Algorithms for computing 
other interesting properties are 
similar, and can share code

High Performance Computation and Interactive Display of Molecular
Orbitals on GPUs and Multi-core CPUs.       
J. Stone, J. Saam, D. Hardy, K. Vandivort, W. Hwu, K. Schulten,   
2nd Workshop on General-Purpose Computation on Graphics
Pricessing Units (GPGPU-2), ACM International Conference 
Proceeding Series, volume 383, pp. 9-18, 2009.
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Computing Molecular Orbitals
• Calculation of high 

resolution MO grids can 
require tens to hundreds of 
seconds in existing tools

• Existing tools cache MO 
grids as much as possible 
to avoid recomputation:
– Doesn’t eliminate the wait 

for initial calculation, 
hampers interactivity

– Cached grids consume 
100x-1000x more memory 
than MO coefficients C60
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Animating Molecular Orbitals
• Animation of (classical 

mechanics) molecular 
dynamics trajectories 
provides insight into 
simulation results

• To do the same for QM or 
QM/MM simulations one 
must compute MOs at ~10 
FPS or more

• >100x speedup (GPU) over 
existing tools now makes 
this possible!

C60
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Molecular Orbital Computation and Display Process

Read QM simulation log file, trajectory

Compute 3-D grid of MO wavefunction amplitudes
Most performance-demanding step, run on GPU…

Extract isosurface mesh from 3-D MO grid 

Apply user coloring/texturing 
and render the resulting surface 

Preprocess MO coefficient data
eliminate duplicates, sort by type, etc…

For current frame and MO index, 
retrieve MO wavefunction coefficients  

One-time 
initialization

For each trj frame, for   
each MO shown

Initialize Pool of GPU 
Worker Threads
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CUDA Block/Grid Decomposition

Padding optimizes glob. mem 
perf, guaranteeing coalescing

Grid of thread blocks:

0,0 0,1

1,0 1,1

…

… …

…
Small 8x8 thread 
blocks afford large 
per-thread register 
count, shared mem.
Threads compute 
one MO lattice 
point each.

…

MO 3-D lattice decomposes into   
2-D slices (CUDA grids)
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MO Kernel for One Grid Point  (Naive C)

Loop over atoms

Loop over shells

Loop over primitives: 
largest component of 
runtime, due to expf()

Loop over angular 
momenta

(unrolled in real code)

… 
for (at=0; at<numatoms; at++) {

int prim_counter = atom_basis[at];
calc_distances_to_atom(&atompos[at], &xdist, &ydist, &zdist, &dist2, &xdiv);
for (contracted_gto=0.0f, shell=0; shell < num_shells_per_atom[at]; shell++) {

int shell_type = shell_symmetry[shell_counter];
for (prim=0; prim < num_prim_per_shell[shell_counter];  prim++) {

float exponent      = basis_array[prim_counter ];
float contract_coeff = basis_array[prim_counter + 1];
contracted_gto += contract_coeff * expf(-exponent*dist2);
prim_counter += 2;

}
for (tmpshell=0.0f, j=0, zdp=1.0f; j<=shell_type; j++, zdp*=zdist) {

int imax = shell_type - j; 
for (i=0, ydp=1.0f, xdp=pow(xdist, imax); i<=imax; i++, ydp*=ydist, xdp*=xdiv)

tmpshell += wave_f[ifunc++] * xdp * ydp * zdp;
}
value += tmpshell * contracted_gto;
shell_counter++;

} 
} …..
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Preprocessing of Atoms, Basis Set, and 
Wavefunction Coefficients

• Must make effective use of high bandwidth, low-
latency GPU on-chip memory, or CPU cache:
– Overall storage requirement reduced by eliminating 

duplicate basis set coefficients
– Sorting atoms by element type allows re-use of basis set 

coefficients for subsequent atoms of identical type

• Padding, alignment of arrays guarantees coalesced 
GPU global memory accesses, CPU SSE loads
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GPU Traversal of Atom Type, Basis Set,
Shell Type, and Wavefunction Coefficients

• Loop iterations always access same or consecutive 
array elements for all threads in a thread block:
– Yields good constant memory cache performance
– Increases shared memory tile reuse

Monotonically increasing memory references

Strictly sequential memory references
Different at each 
timestep, and for   

each MO

Constant for all MOs, 
all timesteps
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Use of GPU On-chip Memory
• If total data less than 64 kB, use only const mem:

– Broadcasts data to all threads, no global memory accesses!
• For large data, shared memory used as a program-

managed cache, coefficients loaded on-demand:
– Tile data in shared mem is broadcast to 64 threads in a block
– Nested loops traverse multiple coefficient arrays of varying 

length, complicates things significantly…
– Key to performance is to locate tile loading checks outside of 

the two performance-critical inner loops
– Tiles sized large enough to service entire inner loop runs
– Only 27% slower than hardware caching provided by 

constant memory (GT200)
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Coefficient array in GPU global memory

Array tile loaded in GPU shared memory.  Tile size is a power-of-two, 
multiple of coalescing size, and allows simple indexing in inner loops 
(array indices are merely offset for reference within loaded tile).

64-Byte memory 
coalescing block boundaries

Full tile padding

Surrounding data,
unreferenced

by next batch of 
loop iterations
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VMD MO Performance Results for C60
Sun Ultra 24: Intel Q6600, NVIDIA GTX 280

Kernel Cores/GPUs Runtime (s) Speedup

CPU ICC-SSE 1 46.58 1.00

CPU ICC-SSE 4 11.74 3.97

CPU ICC-SSE-approx** 4 3.76 12.4

CUDA-tiled-shared 1 0.46 100.

CUDA-const-cache 1 0.37 126.

CUDA-const-cache-JIT* 1 0.27 173.
(JIT 40% faster)

C60 basis set 6-31Gd.  We used an unusually-high resolution MO grid for 
accurate timings.  A more typical calculation has 1/8th the grid points.

* Runtime-generated JIT kernel compiled using batch mode CUDA tools
**Reduced-accuracy approximation of expf(),                                    
cannot be used for zero-valued MO isosurfaces
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Performance Evaluation:
Molekel, MacMolPlt, and VMD

Sun Ultra 24: Intel Q6600, NVIDIA GTX 280

C60-A C60-B Thr-A Thr-B Kr-A Kr-B

Atoms 60 60 17 17 1 1

Basis funcs (unique) 300 (5) 900 (15) 49 (16) 170 (59) 19 (19) 84 (84)

Kernel Cores 
GPUs

Speedup vs. Molekel on 1 CPU core

Molekel 1* 1.0 1.0 1.0 1.0 1.0 1.0
MacMolPlt 4 2.4 2.6 2.1 2.4 4.3 4.5
VMD GCC-cephes 4 3.2 4.0 3.0 3.5 4.3 6.5
VMD ICC-SSE-cephes 4 16.8 17.2 13.9 12.6 17.3 21.5

VMD ICC-SSE-approx** 4 59.3 53.4 50.4 49.2 54.8 69.8
VMD CUDA-const-cache 1 552.3 533.5 355.9 421.3 193.1 571.6
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VMD Orbital Dynamics Proof of Concept
One GPU can compute and animate this movie on-the-fly!

CUDA const-cache kernel,     
Sun Ultra 24, GeForce GTX 285 

GPU MO grid calc. 0.016 s

CPU surface gen, 
volume gradient, and 
GPU rendering

0.033 s

Total runtime 0.049 s

Frame rate 20 FPS

With GPU speedups over 100x, previously insignificant CPU 
surface gen, gradient calc, and rendering are now 66% of runtime.
Need GPU-accelerated surface gen next…

threonine
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Multi-GPU Load Balance

• Many early CUDA codes 
assumed all GPUs were 
identical 

• All new NVIDIA cards support 
CUDA, so a typical machine 
may have a diversity of GPUs 
of varying capability

• Static decomposition works 
poorly for non-uniform 
workload, or diverse GPUs,  
e.g. 2 SM, 16 SM, 30 SM

GPU 1
2 SMs

GPU 3
30 SMs

…
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VMD Multi-GPU Molecular Orbital 
Performance Results for C60

Intel Q6600 CPU, 4x Tesla C1060 GPUs,
Uses persistent thread pool to avoid GPU init overhead, 

dynamic scheduler distributes work to GPUs

Kernel Cores/GPUs Runtime (s) Speedup Parallel 
Efficiency

CPU-ICC-SSE 1 46.580 1.00 100%

CPU-ICC-SSE 4 11.740 3.97 99%

CUDA-const-cache 1 0.417 112 100%

CUDA-const-cache 2 0.220 212 94%

CUDA-const-cache 3 0.151 308 92%

CUDA-const-cache 4 0.113 412 92%
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MO Kernel Structure, Opportunity for JIT…
Data-driven, but representative loop trip counts in (…)

Loop over atoms (1 to ~200) {                  

Loop over electron shells for this atom type (1 to ~6) {

Loop over primitive functions for this shell type (1 to ~6) {

}

Loop over angular momenta for this shell type (1 to ~15) {}

}

}

Unpredictable (at compile-time, since data-driven ) but 
small loop trip counts result in significant loop overhead.  
Dynamic kernel generation and JIT compilation can 
unroll entirely, resulting in 40% speed boost
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Molecular Orbital Computation and Display Process
Dynamic Kernel Generation, Just-In-Time (JIT) C0mpilation

Read QM simulation log file, trajectory

Compute 3-D grid of MO wavefunction amplitudes
using basis set-specific CUDA kernel

Extract isosurface mesh from 3-D MO grid 

Render the resulting surface 

Preprocess MO coefficient data
eliminate duplicates, sort by type, etc…

For current frame and MO index, 
retrieve MO wavefunction coefficients  

One-time 
initialization

Generate/compile basis set-specific CUDA kernel

For each trj frame, for   
each MO shown

Initialize Pool of GPU 
Worker Threads
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….. 

contracted_gto = 1.832937 * expf(-7.868272*dist2);

contracted_gto += 1.405380 * expf(-1.881289*dist2);

contracted_gto += 0.701383 * expf(-0.544249*dist2);

// P_SHELL

tmpshell = const_wave_f[ifunc++] * xdist;

tmpshell += const_wave_f[ifunc++] * ydist;

tmpshell += const_wave_f[ifunc++] * zdist;

value += tmpshell * contracted_gto;

contracted_gto = 0.187618 * expf(-0.168714*dist2);

// S_SHELL

value += const_wave_f[ifunc++] * contracted_gto;

contracted_gto = 0.217969 * expf(-0.168714*dist2);

// P_SHELL

tmpshell = const_wave_f[ifunc++] * xdist;

tmpshell += const_wave_f[ifunc++] * ydist;

tmpshell += const_wave_f[ifunc++] * zdist;

value += tmpshell * contracted_gto;

contracted_gto = 3.858403 * expf(-0.800000*dist2);

// D_SHELL

tmpshell = const_wave_f[ifunc++] * xdist2;

tmpshell += const_wave_f[ifunc++] * ydist2;

tmpshell += const_wave_f[ifunc++] * zdist2;

tmpshell += const_wave_f[ifunc++] * xdist * ydist;

tmpshell += const_wave_f[ifunc++] * xdist * zdist;

tmpshell += const_wave_f[ifunc++] * ydist * zdist;

value += tmpshell * contracted_gto;

….. 

// loop over the shells belonging to this atom (or basis function)

for (shell=0; shell < maxshell; shell++) {

float contracted_gto = 0.0f;

// Loop over the Gaussian primitives of this contracted

// basis function to build the atomic orbital

int maxprim = const_num_prim_per_shell[shell_counter];

int shell_type = const_shell_symmetry[shell_counter];

for (prim=0; prim < maxprim;  prim++) {

float exponent       = const_basis_array[prim_counter   ];

float contract_coeff = const_basis_array[prim_counter + 1];

contracted_gto += contract_coeff * exp2f(-exponent*dist2);

prim_counter += 2;

}

/* multiply with the appropriate wavefunction coefficient */

float tmpshell=0;

switch (shell_type) {

case S_SHELL:

value += const_wave_f[ifunc++] * contracted_gto;

break;

[…..]

case D_SHELL:

tmpshell += const_wave_f[ifunc++] * xdist2;

tmpshell += const_wave_f[ifunc++] * ydist2;

tmpshell += const_wave_f[ifunc++] * zdist2;

tmpshell += const_wave_f[ifunc++] * xdist * ydist;

tmpshell += const_wave_f[ifunc++] * xdist * zdist;

tmpshell += const_wave_f[ifunc++] * ydist * zdist;

value += tmpshell * contracted_gto;

break;

General loop-based 
CUDA kernel

Dynamically-generated 
CUDA kernel (JIT)
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Lessons Learned

• GPU algorithms need fine-grained parallelism and 
sufficient work to fully utilize the hardware

• Much of per-thread GPU algorithm optimization revolves 
around efficient use of multiple memory systems and 
latency hiding

• Concurrency can often be traded for per-thread 
performance, in combination with increased use of 
registers or shared memory

• Fine-grained GPU work decompositions often compose 
well with the comparatively coarse-grained 
decompositions used for multicore or distributed memory 
programing
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Lessons Learned (2)

• The host CPU can potentially be used to “regularize” 
the computation for the GPU, yielding better overall 
performance

• Overlapping CPU work with GPU can hide some 
communication and unaccelerated computation

• Targeted use of double-precision floating point 
arithmetic, or compensated summation can reduce the 
effects of floating point truncation at low cost to 
performance
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Summary

• GPUs are not a magic bullet, but they can perform amazingly 
well when used effectively

• There are many good strategies for extracting high performance 
from individual subsystems on the GPU

• It is wise to begin with a well designed application and a 
thorough understanding of its performance characteristics on 
the CPU before beginning work on the GPU

• By making effective use of multiple GPU subsystems at once, 
tremendous performance levels can potentially be attained
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