
© John E. Stone, 2007-2009
University of Illinois, Urbana-Champaign

1

VSCSE Summer School 2009

Many-core Processors for Science and
Engineering Applications

Lecture 8: Application Case Study –
Accelerating Molecular Dynamics

Experimentation

Guest Lecture by John Stone
Theoretical and Computational Biophysics Group

NIH Resource for Macromolecular Modeling and Bioinformatics
Beckman Institute for Advanced Science and Technology

http://www.ks.uiuc.edu/Research/gpu/

© John E. Stone, 2007-2009
University of Illinois, Urbana-Champaign

2

VMD – “Visual Molecular Dynamics”
• Visualization and analysis of molecular dynamics simulations, sequence data,

volumetric data, quantum chemistry simulations, particle systems, …
• User extensible with scripting and plugins
• http://www.ks.uiuc.edu/Research/vmd/

© John E. Stone, 2007-2009
University of Illinois, Urbana-Champaign

3

Integrating CUDA Kernels Into VMD

• VMD: molecular
visualization and analysis

• State-of-the-art simulations
require more viz/analysis
power than ever before

• For some algorithms, CUDA
can bring what was
previously supercomputer
class performance to an
appropriately equipped
desktop workstation Ribosome: 260,790 atoms

before adding solvent/ions

© John E. Stone, 2007-2009
University of Illinois, Urbana-Champaign

4

Range of VMD Usage Scenarios

• Users run VMD on a diverse range of hardware:
laptops, desktops, clusters, and supercomputers

• Typically used as a desktop science application,
for interactive 3D molecular graphics and analysis

• Can also be run in pure text mode for numerically
intensive analysis tasks, batch mode movie
rendering, etc…

• GPU acceleration provides an opportunity to make
some slow, or batch calculations capable of being
run interactively, or on-demand…

© John E. Stone, 2007-2009
University of Illinois, Urbana-Champaign

5

Molecular orbital

calculation and display:

factor of 120x faster

CUDA Acceleration in VMD

Electrostatic field

calculation, ion placement:

factor of 20x to 44x faster

Imaging of gas migration
pathways in proteins with
implicit ligand sampling:

factor of 20x to 30x faster

© John E. Stone, 2007-2009
University of Illinois, Urbana-Champaign

6

Electrostatic Potential Maps

• Electrostatic potentials evaluated
on 3-D lattice:

• Applications include:
– Ion placement for structure

building
– Time-averaged potentials for

simulation
– Visualization and analysis

Isoleucine tRNA synthetase

© John E. Stone, 2007-2009
University of Illinois, Urbana-Champaign

7

Overview of Direct Coulomb
Summation (DCS) Algorithm

• One of several ways to compute the electrostatic potentials on a
grid, ideally suited for the GPU

• Methods such as multilevel summation can achieve much
higher performance at the cost of additional complexity

• Begin with DCS for computing electrostatic maps:
– conceptually simple algorithm well suited to the GPU
– easy to fully explore
– requires very little background knowledge, unlike other methods

• DCS: for each lattice point, sum potential contributions for all
atoms in the simulated structure:

potential[j] += atom[i].charge / rij

© John E. Stone, 2007-2009
University of Illinois, Urbana-Champaign

8

Direct Coulomb Summation (DCS)
Algorithm Detail

• Each lattice point accumulates electrostatic potential
contribution from all atoms:

potential[j] += atom[i].charge / rij

atom[i]

rij: distance
from lattice[j]

to atom[i]
Lattice point j

being evaluated

© John E. Stone, 2007-2009
University of Illinois, Urbana-Champaign

9

DCS Computational Considerations

• Attributes of DCS algorithm for computing electrostatic maps:
– Highly data parallel
– Starting point for more sophisticated algorithms
– Single-precision FP arithmetic is adequate for intended uses
– Numerical accuracy can be further improved by compensated

summation, spatially ordered summation groupings, or with the use of
double-precision accumulation

– Interesting test case since potential maps are useful for various
visualization and analysis tasks

• Forms a template for related spatially evaluated function
summation algorithms in CUDA

© John E. Stone, 2007-2009
University of Illinois, Urbana-Champaign

10

Single Slice DCS: Simple (Slow) C Version
void cenergy(float *energygrid, dim3 grid, float gridspacing, float z, const float *atoms,

int numatoms) {
int i,j,n;
int atomarrdim = numatoms * 4;
for (j=0; j<grid.y; j++) {

float y = gridspacing * (float) j;
for (i=0; i<grid.x; i++) {
float x = gridspacing * (float) i;
float energy = 0.0f;
for (n=0; n<atomarrdim; n+=4) { // calculate potential contribution of each atom
float dx = x - atoms[n];
float dy = y - atoms[n+1];
float dz = z - atoms[n+2];
energy += atoms[n+3] / sqrtf(dx*dx + dy*dy + dz*dz);

}
energygrid[grid.x*grid.y*k + grid.x*j + i] = energy;

}
}

}

© John E. Stone, 2007-2009
University of Illinois, Urbana-Champaign

11

DCS Algorithm Design Observations

• Electrostatic maps used for ion placement require evaluation of
~20 potential lattice points per atom for a typical biological
structure

• Atom list has the smallest memory footprint, best choice for the
inner loop (both CPU and GPU)

• Lattice point coordinates are computed on-the-fly
• Atom coordinates are made relative to the origin of the

potential map, eliminating redundant arithmetic
• Arithmetic can be significantly reduced by precalculating and

reusing distance components, e.g. create a new array containing
X, Q, and dy^2 + dz^2, updated on-the-fly for each row (CPU)

• Vectorized CPU versions benefit greatly from SSE instructions

© John E. Stone, 2007-2009
University of Illinois, Urbana-Champaign

12

An Approach to Writing CUDA Kernels

• Find an algorithm that can expose substantial parallelism, we’ll
ultimately need thousands of independent threads…

• Identify appropriate GPU memory or texture subsystems used
to store data used by kernel

• Are there trade-offs that can be made to exchange computation
for more parallelism?
– Though counterintuitive, past successes resulted from this strategy
– “Brute force” methods that expose significant parallelism do

surprisingly well on current GPUs

• Analyze the real-world use case for the problem and select the
kernel for the problem sizes that will be heavily used

© John E. Stone, 2007-2009
University of Illinois, Urbana-Champaign

13

Direct Coulomb Summation Runtime

GPU
underutilized

GPU fully utilized,
~40x faster than CPU

Accelerating molecular modeling applications with graphics processors.
J. Stone, J. Phillips, P. Freddolino, D. Hardy, L. Trabuco, K. Schulten.

J. Comp. Chem., 28:2618-2640, 2007.

Lower
is better

GPU initialization
time: ~110ms

© John E. Stone, 2007-2009
University of Illinois, Urbana-Champaign

14

DCS Observations for GPU
Implementation

• Naive implementation has a low ratio of FP arithmetic
operations to memory transactions (at least for a GPU…)

• The innermost loop will consume operands VERY quickly
• Since atoms are read-only, they are ideal candidates for texture

memory or constant memory
• GPU implementations must access constant memory

efficiently, avoid shared memory bank conflicts, coalesce
global memory accesses, and overlap arithmetic with global
memory latency

• Map is padded out to a multiple of the thread block size:
– Eliminates conditional handling at the edges, thus also eliminating the

possibility of branch divergence
– Assists with memory coalescing

© John E. Stone, 2007-2009
University of Illinois, Urbana-Champaign

15

CUDA DCS Implementation Overview

• Allocate and initialize potential map memory on host CPU
• Allocate potential map slice buffer on GPU
• Preprocess atom coordinates and charges
• Loop over slices:

– Copy slice from host to GPU
– Loop over groups of atoms until done:

• Copy atom data to GPU
• Run CUDA Kernel on atoms and slice resident on GPU accumulating new

potential contributions into slice
– Copy slice from GPU back to host

• Free resources

© John E. Stone, 2007-2009
University of Illinois, Urbana-Champaign

16

Global Memory

Texture Texture Texture Texture Texture TextureTexture

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

GPUConstant Memory

Direct Coulomb Summation on the GPU

Host

Atomic
Coordinates

Charges

Threads compute
up to 8 potentials,

skipping by half-warps

Thread blocks:
64-256 threads

Grid of thread blocks

Lattice padding

© John E. Stone, 2007-2009
University of Illinois, Urbana-Champaign

17

DCS CUDA Block/Grid Decomposition
(non-unrolled)

Padding waste

Grid of thread blocks:

0,0 0,1

1,0 1,1

…

…

… … …

Thread blocks:
64-256 threads

Threads compute
1 potential each

© John E. Stone, 2007-2009
University of Illinois, Urbana-Champaign

18

DCS CUDA Block/Grid
Decomposition (non-unrolled)

• 16x16 CUDA thread blocks are a nice starting size
with a satisfactory number of threads

• Small enough that there’s not much waste due to
padding at the edges

© John E. Stone, 2007-2009
University of Illinois, Urbana-Champaign

19

Notes on Benchmarking CUDA Kernels:
Initialization Overhead

• When a host thread initially binds to a CUDA context, there is
a small (~100ms) delay during the first CUDA runtime call that
touches state on the device

• The first time each CUDA kernel is executed, there’s a small
delay while the driver compiles the device-independent PTX
intermediate code for the physical device associated with the
current context

• In most real codes, these sources of one-time initialization
overhead would occur at application startup and should not be a
significant factor.

• The exception to this is that newly-created host threads incur
overhead when they bind to their device, so it’s best to re-use
existing host threads than to generate them repeatedly

© John E. Stone, 2007-2009
University of Illinois, Urbana-Champaign

20

Notes on Benchmarking CUDA Kernels:
Power Management, Async Operations

• Modern GPUs (and of course CPUs) incorporate power
management hardware that reduces clock rates and/or powers
down functional units when idle

• In order to benchmark peak performance of CUDA kernels,
both the GPU(s) and CPU(s) must be awoken from their
respective low-power modes

• In order to get accurate and repeatable timings, do a “warm up”
pass prior to running benchmark timings on your kernel and
any associated I/O

• Call cudaThreadSynchronize() prior to stopping timers to
verify that any outstanding kernels and I/Os have completed

© John E. Stone, 2007-2009
University of Illinois, Urbana-Champaign

21

DCS Version 1: Const+Precalc
187 GFLOPS, 18.6 Billion Atom

Evals/Sec
• Pros:

– Pre-compute dz^2 for entire slice
– Inner loop over read-only atoms, const memory ideal
– If all threads read the same const data at the same time, performance is

similar to reading a register

• Cons:
– Const memory only holds ~4000 atom coordinates and charges
– Potential summation must be done in multiple kernel invocations per

slice, with const atom data updated for each invocation
– Host must shuffle data in/out for each pass

© John E. Stone, 2007-2009
University of Illinois, Urbana-Champaign

22

…
float curenergy = energygrid[outaddr];
float coorx = gridspacing * xindex;
float coory = gridspacing * yindex;
int atomid;
float energyval=0.0f;
for (atomid=0; atomid<numatoms; atomid++) {
float dx = coorx - atominfo[atomid].x;
float dy = coory - atominfo[atomid].y;
energyval += atominfo[atomid].w *

rsqrtf(dx*dx + dy*dy + atominfo[atomid].z);
}
energygrid[outaddr] = curenergy + energyval;

DCS Version 1: Kernel Structure
Start global memory reads
early. Kernel hides some of

its own latency.

Only dependency on global
memory read is at the end of

the kernel…

© John E. Stone, 2007-2009
University of Illinois, Urbana-Champaign

23

DCS CUDA Block/Grid
Decomposition (unrolled)

• Reuse atom data and partial distance components multiple
times

• Use “unroll and jam” to unroll the outer loop into the inner
loop

• Uses more registers, but increases arithmetic intensity
significantly

• Kernels that unroll the inner loop calculate more than one
lattice point per thread result in larger computational tiles:
– Thread count per block must be decreased to reduce computational tile

size as unrolling is increased
– Otherwise, tile size gets bigger as threads do more than one lattice point

evaluation, resulting on a significant increase in padding and wasted
computations at edges

© John E. Stone, 2007-2009
University of Illinois, Urbana-Champaign

24

• Add each atom’s contribution to several lattice points
at a time, distances only differ in one component:
potential[j] += atom[i].charge / rij

potential[j+1] += atom[i].charge / ri(j+1)

…

DCS CUDA Algorithm: Unrolling Loops

Atom[i]

Distances to
Atom[i]

© John E. Stone, 2007-2009
University of Illinois, Urbana-Champaign

25

DCS CUDA Block/Grid Decomposition
(unrolled)

Padding waste

Grid of thread blocks:

0,0 0,1

1,0 1,1

…

… …

…

Thread blocks:
64-256 threads

Threads compute
up to 8 potentials

…

Unrolling increases
computational tile size

© John E. Stone, 2007-2009
University of Illinois, Urbana-Champaign

26

DCS Version 2: Const+Precalc+Loop
Unrolling

259 GFLOPS, 33.4 Billion Atom Evals/Sec
• Pros:

– Although const memory is very fast, loading values into registers costs
instruction slots

– We can reduce the number of loads by reusing atom coordinate values
for multiple voxels, by storing in regs

– By unrolling the X loop by 4, we can compute dy^2+dz^2 once and use
it multiple times, much like the CPU version of the code does

• Cons:
– Compiler won’t do this type of unrolling for us (yet)
– Uses more registers, one of several finite resources
– Increases effective tile size, or decreases thread count in a block, though

not a problem at this level

© John E. Stone, 2007-2009
University of Illinois, Urbana-Champaign

27

DCS Version 2: Inner Loop
…for (atomid=0; atomid<numatoms; atomid++) {

float dy = coory - atominfo[atomid].y;
float dysqpdzsq = (dy * dy) + atominfo[atomid].z;
float x = atominfo[atomid].x;
float dx1 = coorx1 - x;
float dx2 = coorx2 - x;
float dx3 = coorx3 - x;
float dx4 = coorx4 - x;
float charge = atominfo[atomid].w;
energyvalx1 += charge * rsqrtf(dx1*dx1 + dysqpdzsq);
energyvalx2 += charge * rsqrtf(dx2*dx2 + dysqpdzsq);
energyvalx3 += charge * rsqrtf(dx3*dx3 + dysqpdzsq);
energyvalx4 += charge * rsqrtf(dx4*dx4 + dysqpdzsq);

}

Compared to non-unrolled
kernel: memory loads are

decreased by 4x, and FLOPS
per evaluation are reduced, but

register use is increased…

© John E. Stone, 2007-2009
University of Illinois, Urbana-Champaign

28

DCS Version 3:
Const+Shared+Loop Unrolling+Precalc

268 GFLOPS, 36.4 Billion Atom Evals/Sec

• Pros:
– Loading prior potential values from global memory into

shared memory frees up several registers, so we can afford
to unroll by 8 instead of 4

– Using fewer registers allows co-scheduling of more blocks,
increasing GPU “occupancy”

• Cons:
– Bumping against hardware limits (uses all const memory,

most shared memory, and a largish number of registers)

© John E. Stone, 2007-2009
University of Illinois, Urbana-Champaign

29

DCS Version 3: Kernel Structure

• Loads 8 potential map lattice points from global
memory at startup, and immediately stores them into
shared memory before going into inner loop. We
would otherwise consume too many registers and lose
performance (on G80 at least…)

• Processes 8 lattice points at a time in the inner loop
• Additional performance gains are achievable by

coalescing global memory reads at start/end

© John E. Stone, 2007-2009
University of Illinois, Urbana-Champaign

30

DCS Version 3: Inner Loop
…for (v=0; v<8; v++)

curenergies[tid + nthr * v] = energygrid[outaddr + v];
float coorx = gridspacing * xindex;
float coory = gridspacing * yindex;
float energyvalx1=0.0f; […….] float energyvalx8=0.0f;
for (atomid=0; atomid<numatoms; atomid++) {

float dy = coory - atominfo[atomid].y;
float dysqpdzsq = (dy * dy) + atominfo[atomid].z;
float dx = coorx - atominfo[atomid].x;
energyvalx1 += atominfo[atomid].w * rsqrtf(dx*dx + dysqpdzsq);
dx += gridspacing;

[…]
energyvalx8 += atominfo[atomid].w * rsqrtf(dx*dx + dysqpdzsq);

}
__syncthreads(); // guarantee that shared memory values are ready for reading by all threads
energygrid[outaddr] = energyvalx1 + curenergies[tid];

[…]
energygrid[outaddr + 7] = energyvalx2 + curenergies[tid + nthr * 7];

© John E. Stone, 2007-2009
University of Illinois, Urbana-Champaign

31

DCS Version 4:
Const+Loop Unrolling+Coalescing

291.5 GFLOPS, 39.5 Billion Atom Evals/Sec

• Pros:
– Simplified structure compared to version 3, no use of shared memory,

register pressure kept at bay by doing global memory operations only at
the end of the kernel

– Using fewer registers allows co-scheduling of more blocks, increasing
GPU “occupancy”

– Doesn’t have as strict of a thread block dimension requirement as
version 3, computational tile size can be smaller

• Cons:
– The computation tile size is still large, so small potential maps don’t

perform as well as large ones

© John E. Stone, 2007-2009
University of Illinois, Urbana-Champaign

32

DCS Version 4: Kernel Structure

• Processes 8 lattice points at a time in the inner loop
• Subsequent lattice points computed by each thread

are offset by a half-warp to guarantee coalesced
memory accesses

• Loads and increments 8 potential map lattice points
from global memory at completion of of the
summation, avoiding register consumption

© John E. Stone, 2007-2009
University of Illinois, Urbana-Champaign

33

DCS Version 4: Inner Loop
…float coory = gridspacing * yindex;

float coorx = gridspacing * xindex;
float gridspacing_coalesce = gridspacing * BLOCKSIZEX;
int atomid;
for (atomid=0; atomid<numatoms; atomid++) {
float dy = coory - atominfo[atomid].y;
float dyz2 = (dy * dy) + atominfo[atomid].z;
float dx1 = coorx - atominfo[atomid].x;

[…]
float dx8 = dx7 + gridspacing_coalesce;
energyvalx1 += atominfo[atomid].w * rsqrtf(dx1*dx1 + dyz2);

[…]
energyvalx8 += atominfo[atomid].w * rsqrtf(dx8*dx8 + dyz2);

}
energygrid[outaddr] += energyvalx1;

[...]
energygrid[outaddr+7*BLOCKSIZEX] += energyvalx7;

Points spaced for
memory coalescing

Reuse partial distance
components dy^2 + dz^2

Global memory ops
occur only at the end

of the kernel,
decreases register use

© John E. Stone, 2007-2009
University of Illinois, Urbana-Champaign

34

DCS CUDA Block/Grid Decomposition
(unrolled, coalesced)

Grid of thread blocks:

Padding waste

0,0 0,1

1,0 1,1

…

… …

…

Thread blocks:
64-256 threads

…

Unrolling increases
computational tile size

Threads compute
up to 8 potentials,

skipping by half-warps

© John E. Stone, 2007-2009
University of Illinois, Urbana-Champaign

35

Direct Coulomb Summation Performance

CUDA-Simple:
14.8x faster,

33% of fastest
GPU kernel

CUDA-Unroll8clx:
fastest GPU kernel,

44x faster than CPU,
291 GFLOPS on

GeForce 8800GTX

GPU computing. J. Owens, M. Houston, D. Luebke, S. Green, J. Stone,
J. Phillips. Proceedings of the IEEE, 96:879-899, 2008.

CPU

Number of thread blocks modulo number of SMs results in
significant performance variation for small workloads

© John E. Stone, 2007-2009
University of Illinois, Urbana-Champaign

36

Multi-GPU DCS Potential Map
Calculation

• Both CPU and GPU versions of the code are easily
parallelized by decomposing the 3-D potential map
into slices, and computing them concurrently

• Potential maps often have 50-500 slices in the Z
direction, so plenty of coarse grain parallelism is still
available via the DCS algorithm

© John E. Stone, 2007-2009
University of Illinois, Urbana-Champaign

37

Multi-GPU DCS Algorithm:

• One host thread is created for each CUDA GPU, attached
according to host thread ID:
– First CUDA call binds that thread’s CUDA context to that GPU for life
– Map slices are decomposed cyclically onto the available GPUs
– Handling error conditions within child threads is dependent on the

thread library and, makes dealing with any CUDA errors somewhat
tricky. Easiest way to deal with this is with a shared exception
queue/stack for all of the worker threads.

• Map slices are usually larger than the host memory page size,
so false sharing and related effects are not a problem for this
application

© John E. Stone, 2007-2009
University of Illinois, Urbana-Champaign

38

Multi-GPU Direct Coulomb Summation
• Effective memory

bandwidth scales with the
number of GPUs utilized

• PCIe bus bandwidth not a
bottleneck for this
algorithm

• 117 billion evals/sec
• 863 GFLOPS
• 131x speedup vs. CPU

core
• Power: 700 watts during

benchmark

Quad-core Intel QX6700
Three NVIDIA GeForce 8800GTX

© John E. Stone, 2007-2009
University of Illinois, Urbana-Champaign

39

GPU 1 GPU N…

Multi-GPU Direct
Coulomb Summation

NCSA GPU Cluster
http://www.ncsa.uiuc.edu/Projects/GPUcluster/

Evals/sec TFLOPS Speedup*

4-GPU (2 Quadroplex)
Opteron node at NCSA

157 billion 1.16 176

4-GPU GTX 280 (GT200)
In new NCSA Lincoln cluster

241 billion 1.78 271

*Speedups relative to Intel QX6700 CPU core w/ SSE

© John E. Stone, 2007-2009
University of Illinois, Urbana-Champaign

40

Multi-GPU DCS Performance:
Initial Ion Placement Lattice Calculation

• Original virus DCS ion placement
ran for 110 CPU-hours on SGI
Altix Itanium2

• Same calculation now takes 1.35
GPU-hours

• 27 minutes (wall clock) if three
GPUs are used concurrently

• CUDA Initial ion placement
lattice calculation performance:

– 82 times faster for virus (STMV)
structure

– 110 times faster for ribosome
• Three GPUs give performance

equivalent to ~330 Altix CPUs for
the ribosome case

Satellite Tobacco Mosaic Virus (STMV)
Ion Placement

© John E. Stone, 2007-2009
University of Illinois, Urbana-Champaign

41

Multi-Level Summation Method for Coulomb
Potential

Infinite vs. Cutoff Potentials
• Infinite range potential:

– All atoms contribute to all lattice points
– Summation algorithm has quadratic complexity

• Cutoff (range-limited) potential:
– Atoms contribute within cutoff distance to lattice points
– Summation algorithm has linear time complexity
– Has many applications in molecular modeling:

• Replace electrostatic potential with shifted form
• Short-range part for fast methods of approximating full electrostatics
• Used for fast decaying interactions (e.g. Lennard-Jones, Buckingham)

© John E. Stone, 2007-2009
University of Illinois, Urbana-Champaign

42

Short-range Cutoff Summation
• Each lattice point accumulates electrostatic potential

contribution from atoms within cutoff distance:
if (rij < cutoff)

potential[j] += (charge[i] / rij) * s(rij)
• Smoothing function s(r) is algorithm dependent

Cutoff radius rij: distance
from lattice[j]

to atom[i]

Lattice point j
being evaluated atom[i]

© John E. Stone, 2007-2009
University of Illinois, Urbana-Champaign

43

Cutoff Summation on the GPU

Global memory Constant memory
Offsets for bin
neighborhood

Shared memory

atom bin

Potential
map

regions Bins of atoms

Each thread block cooperatively
loads atom bins from surrounding
neighborhood into shared memory
for evaluation

Atoms are spatially hashed into fixed-size bins
CPU handles overflowed bins (GPU kernel can be very aggressive)
GPU thread block calculates corresponding region of potential map,
Bin/region neighbor checks costly; solved with universal table look-up

Look-up table
encodes “logic” of
spatial geometry

© John E. Stone, 2007-2009
University of Illinois, Urbana-Champaign

44

Using the CPU to Improve GPU Performance

• GPU performs best when the work evenly divides into
the number of threads/processing units

• Optimization strategy:
– Use the CPU to “regularize” the GPU workload
– Use fixed size bin data structures, with “empty” slots

skipped or producing zeroed out results
– Handle exceptional or irregular work units on the CPU

while the GPU processes the bulk of the work
– On average, the GPU is kept highly occupied, attaining a

much higher fraction of peak performance

© John E. Stone, 2007-2009
University of Illinois, Urbana-Champaign

45

GPU acceleration of cutoff pair potentials for molecular modeling applications.
C. Rodrigues, D. Hardy, J. Stone, K. Schulten, W. Hwu. Proceedings of the 2008

Conference On Computing Frontiers, pp. 273-282, 2008.

Cutoff Summation Runtime
GPU cutoff with

CPU overlap:
17x-21x faster than

CPU core

If asynchronous
stream blocks due
to queue filling,

performance will
degrade from

peak…

© John E. Stone, 2007-2009
University of Illinois, Urbana-Champaign

46

Cutoff Summation Observations

• Use of CPU to handle overflowed bins is very
effective, overlaps completely with GPU work

• One caveat when using streaming API is to avoid
overfilling the stream queue with work, as doing so
can trigger blocking behavior (greatly improved in
current drivers)

• The use of compensated summation (all GPUs) or
double-precision (GT200 only) for potential
accumulation resulted in only a ~10% performance
penalty vs. pure single-precision arithmetic, while
reducing the effects of floating point truncation

© John E. Stone, 2007-2009
University of Illinois, Urbana-Champaign

47

Bonus Material!!

• This is a good point at which to address questions
• If time allows I will continue on covering the more

advanced topics that follow, but it’s important that we
have addressed any questions about the fundamental
material presented up to this point before continuing.

© John E. Stone, 2007-2009
University of Illinois, Urbana-Champaign

48

Multilevel Summation
• Approximates full electrostatic potential
• Calculates sum of smoothed pairwise potentials

interpolated from a hierarchy of lattices
• Advantages over PME and/or FMM:

– Algorithm has linear time complexity
– Permits non-periodic and periodic boundaries
– Produces continuous forces for dynamics (advantage over FMM)
– Avoids 3-D FFTs for better parallel scaling (advantage over PME)
– Spatial separation allows use of multiple time steps
– Can be extended to other pairwise interactions

• Skeel, Tezcan, Hardy, J Comp Chem, 2002 — Computing forces for molecular dynamics
• Hardy, Stone, Schulten, J Paral Comp, 2009 — GPU-acceleration of potential map calculation

© John E. Stone, 2007-2009
University of Illinois, Urbana-Champaign

49

Multilevel Summation Main Ideas

=

+

+

a 2a

atoms

h-lattice

2h-lattice

Split the 1/r potential Interpolate the smoothed potentials

.

.

.
.
.
.

• Split the 1/r potential into a short-range cutoff part plus smoothed parts that are successively more slowly varying. All but the
top level potential are cut off.

• The smoothed potentials are interpolated from successively coarser lattices.
• The lattice spacing is doubled at each successive level. The cutoff distance is also doubled.

© John E. Stone, 2007-2009
University of Illinois, Urbana-Champaign

50

Multilevel Summation Calculation

map
potential

exact
short-range
interactions

interpolated
long-range
interactions

+=

short-range cutoff

interpolationanterpolation

h-lattice cutoff

2h-lattice cutoff

4h-lattice

restriction

restriction

prolongation

prolongation
long-range

parts

atom
charges

map
potentials

Computational Steps

© John E. Stone, 2007-2009
University of Illinois, Urbana-Champaign

51

Multilevel Summation on the GPU

Computational steps CPU (s) w/ GPU (s) Speedup

Short-range cutoff 480.07 14.87 32.3

Long-range anterpolation 0.18

restriction 0.16

lattice cutoff 49.47 1.36 36.4

prolongation 0.17

interpolation 3.47

Total 533.52 20.21 26.4

Performance profile for 0.5 Å map of potential for 1.5 M atoms.
Hardware platform is Intel QX6700 CPU and NVIDIA GTX 280.

Accelerate short-range cutoff and lattice cutoff parts

© John E. Stone, 2007-2009
University of Illinois, Urbana-Champaign

52

Photobiology of Vision and Photosynthesis
Investigations of the chromatophore, a photosynthetic organelle

Full chromatophore model will permit structural, chemical and kinetic
investigations at a structural systems biology level

Light

Electrostatic field of chromatophore model
from multilevel summation method:

computed with 3 GPUs (G80) in ~90 seconds,
46x faster than single CPU core

Electrostatics needed to build full
structural model, place ions, study

macroscopic properties

Partial model:
~10M atoms

© John E. Stone, 2007-2009
University of Illinois, Urbana-Champaign

53

Molecular Orbitals
• Visualization of MOs aids in

understanding the chemistry
of molecular system

• MO spatial distribution is
correlated with probability
density for an electron(s)

• Algorithms for computing
other interesting properties are
similar, and can share code

High Performance Computation and Interactive Display of Molecular
Orbitals on GPUs and Multi-core CPUs.
J. Stone, J. Saam, D. Hardy, K. Vandivort, W. Hwu, K. Schulten,
2nd Workshop on General-Purpose Computation on Graphics
Pricessing Units (GPGPU-2), ACM International Conference
Proceeding Series, volume 383, pp. 9-18, 2009.

© John E. Stone, 2007-2009
University of Illinois, Urbana-Champaign

54

Computing Molecular Orbitals
• Calculation of high

resolution MO grids can
require tens to hundreds of
seconds in existing tools

• Existing tools cache MO
grids as much as possible
to avoid recomputation:
– Doesn’t eliminate the wait

for initial calculation,
hampers interactivity

– Cached grids consume
100x-1000x more memory
than MO coefficients C60

© John E. Stone, 2007-2009
University of Illinois, Urbana-Champaign

55

Animating Molecular Orbitals
• Animation of (classical

mechanics) molecular
dynamics trajectories
provides insight into
simulation results

• To do the same for QM or
QM/MM simulations one
must compute MOs at ~10
FPS or more

• >100x speedup (GPU) over
existing tools now makes
this possible!

C60

© John E. Stone, 2007-2009
University of Illinois, Urbana-Champaign

56

Molecular Orbital Computation and Display Process

Read QM simulation log file, trajectory

Compute 3-D grid of MO wavefunction amplitudes
Most performance-demanding step, run on GPU…

Extract isosurface mesh from 3-D MO grid

Apply user coloring/texturing
and render the resulting surface

Preprocess MO coefficient data
eliminate duplicates, sort by type, etc…

For current frame and MO index,
retrieve MO wavefunction coefficients

One-time
initialization

For each trj frame, for
each MO shown

Initialize Pool of GPU
Worker Threads

© John E. Stone, 2007-2009
University of Illinois, Urbana-Champaign

57

CUDA Block/Grid Decomposition

Padding optimizes glob. mem
perf, guaranteeing coalescing

Grid of thread blocks:

0,0 0,1

1,0 1,1

…

… …

…
Small 8x8 thread
blocks afford large
per-thread register
count, shared mem.
Threads compute
one MO lattice
point each.

…

MO 3-D lattice decomposes into
2-D slices (CUDA grids)

© John E. Stone, 2007-2009
University of Illinois, Urbana-Champaign

58

MO Kernel for One Grid Point (Naive C)

Loop over atoms

Loop over shells

Loop over primitives:
largest component of
runtime, due to expf()

Loop over angular
momenta

(unrolled in real code)

…
for (at=0; at<numatoms; at++) {

int prim_counter = atom_basis[at];
calc_distances_to_atom(&atompos[at], &xdist, &ydist, &zdist, &dist2, &xdiv);
for (contracted_gto=0.0f, shell=0; shell < num_shells_per_atom[at]; shell++) {

int shell_type = shell_symmetry[shell_counter];
for (prim=0; prim < num_prim_per_shell[shell_counter]; prim++) {

float exponent = basis_array[prim_counter];
float contract_coeff = basis_array[prim_counter + 1];
contracted_gto += contract_coeff * expf(-exponent*dist2);
prim_counter += 2;

}
for (tmpshell=0.0f, j=0, zdp=1.0f; j<=shell_type; j++, zdp*=zdist) {

int imax = shell_type - j;
for (i=0, ydp=1.0f, xdp=pow(xdist, imax); i<=imax; i++, ydp*=ydist, xdp*=xdiv)

tmpshell += wave_f[ifunc++] * xdp * ydp * zdp;
}
value += tmpshell * contracted_gto;
shell_counter++;

}
} …..

© John E. Stone, 2007-2009
University of Illinois, Urbana-Champaign

59

Preprocessing of Atoms, Basis Set, and
Wavefunction Coefficients

• Must make effective use of high bandwidth, low-
latency GPU on-chip memory, or CPU cache:
– Overall storage requirement reduced by eliminating

duplicate basis set coefficients
– Sorting atoms by element type allows re-use of basis set

coefficients for subsequent atoms of identical type

• Padding, alignment of arrays guarantees coalesced
GPU global memory accesses, CPU SSE loads

© John E. Stone, 2007-2009
University of Illinois, Urbana-Champaign

60

GPU Traversal of Atom Type, Basis Set,
Shell Type, and Wavefunction Coefficients

• Loop iterations always access same or consecutive
array elements for all threads in a thread block:
– Yields good constant memory cache performance
– Increases shared memory tile reuse

Monotonically increasing memory references

Strictly sequential memory references
Different at each
timestep, and for

each MO

Constant for all MOs,
all timesteps

© John E. Stone, 2007-2009
University of Illinois, Urbana-Champaign

61

Use of GPU On-chip Memory
• If total data less than 64 kB, use only const mem:

– Broadcasts data to all threads, no global memory accesses!
• For large data, shared memory used as a program-

managed cache, coefficients loaded on-demand:
– Tile data in shared mem is broadcast to 64 threads in a block
– Nested loops traverse multiple coefficient arrays of varying

length, complicates things significantly…
– Key to performance is to locate tile loading checks outside of

the two performance-critical inner loops
– Tiles sized large enough to service entire inner loop runs
– Only 27% slower than hardware caching provided by

constant memory (GT200)

© John E. Stone, 2007-2009
University of Illinois, Urbana-Champaign

62
Coefficient array in GPU global memory

Array tile loaded in GPU shared memory. Tile size is a power-of-two,
multiple of coalescing size, and allows simple indexing in inner loops
(array indices are merely offset for reference within loaded tile).

64-Byte memory
coalescing block boundaries

Full tile padding

Surrounding data,
unreferenced

by next batch of
loop iterations

© John E. Stone, 2007-2009
University of Illinois, Urbana-Champaign

63

VMD MO Performance Results for C60
Sun Ultra 24: Intel Q6600, NVIDIA GTX 280

Kernel Cores/GPUs Runtime (s) Speedup

CPU ICC-SSE 1 46.58 1.00

CPU ICC-SSE 4 11.74 3.97

CPU ICC-SSE-approx** 4 3.76 12.4

CUDA-tiled-shared 1 0.46 100.

CUDA-const-cache 1 0.37 126.

CUDA-const-cache-JIT* 1 0.27 173.
(JIT 40% faster)

C60 basis set 6-31Gd. We used an unusually-high resolution MO grid for
accurate timings. A more typical calculation has 1/8th the grid points.

* Runtime-generated JIT kernel compiled using batch mode CUDA tools
**Reduced-accuracy approximation of expf(),
cannot be used for zero-valued MO isosurfaces

© John E. Stone, 2007-2009
University of Illinois, Urbana-Champaign

64

Performance Evaluation:
Molekel, MacMolPlt, and VMD

Sun Ultra 24: Intel Q6600, NVIDIA GTX 280

C60-A C60-B Thr-A Thr-B Kr-A Kr-B

Atoms 60 60 17 17 1 1

Basis funcs (unique) 300 (5) 900 (15) 49 (16) 170 (59) 19 (19) 84 (84)

Kernel Cores
GPUs

Speedup vs. Molekel on 1 CPU core

Molekel 1* 1.0 1.0 1.0 1.0 1.0 1.0
MacMolPlt 4 2.4 2.6 2.1 2.4 4.3 4.5
VMD GCC-cephes 4 3.2 4.0 3.0 3.5 4.3 6.5
VMD ICC-SSE-cephes 4 16.8 17.2 13.9 12.6 17.3 21.5

VMD ICC-SSE-approx** 4 59.3 53.4 50.4 49.2 54.8 69.8
VMD CUDA-const-cache 1 552.3 533.5 355.9 421.3 193.1 571.6

© John E. Stone, 2007-2009
University of Illinois, Urbana-Champaign

65

VMD Orbital Dynamics Proof of Concept
One GPU can compute and animate this movie on-the-fly!

CUDA const-cache kernel,
Sun Ultra 24, GeForce GTX 285

GPU MO grid calc. 0.016 s

CPU surface gen,
volume gradient, and
GPU rendering

0.033 s

Total runtime 0.049 s

Frame rate 20 FPS

With GPU speedups over 100x, previously insignificant CPU
surface gen, gradient calc, and rendering are now 66% of runtime.
Need GPU-accelerated surface gen next…

threonine

© John E. Stone, 2007-2009
University of Illinois, Urbana-Champaign

66

Multi-GPU Load Balance

• Many early CUDA codes
assumed all GPUs were
identical

• All new NVIDIA cards support
CUDA, so a typical machine
may have a diversity of GPUs
of varying capability

• Static decomposition works
poorly for non-uniform
workload, or diverse GPUs,
e.g. 2 SM, 16 SM, 30 SM

GPU 1
2 SMs

GPU 3
30 SMs

…

© John E. Stone, 2007-2009
University of Illinois, Urbana-Champaign

67

VMD Multi-GPU Molecular Orbital
Performance Results for C60

Intel Q6600 CPU, 4x Tesla C1060 GPUs,
Uses persistent thread pool to avoid GPU init overhead,

dynamic scheduler distributes work to GPUs

Kernel Cores/GPUs Runtime (s) Speedup Parallel
Efficiency

CPU-ICC-SSE 1 46.580 1.00 100%

CPU-ICC-SSE 4 11.740 3.97 99%

CUDA-const-cache 1 0.417 112 100%

CUDA-const-cache 2 0.220 212 94%

CUDA-const-cache 3 0.151 308 92%

CUDA-const-cache 4 0.113 412 92%

© John E. Stone, 2007-2009
University of Illinois, Urbana-Champaign

68

MO Kernel Structure, Opportunity for JIT…
Data-driven, but representative loop trip counts in (…)

Loop over atoms (1 to ~200) {

Loop over electron shells for this atom type (1 to ~6) {

Loop over primitive functions for this shell type (1 to ~6) {

}

Loop over angular momenta for this shell type (1 to ~15) {}

}

}

Unpredictable (at compile-time, since data-driven) but
small loop trip counts result in significant loop overhead.
Dynamic kernel generation and JIT compilation can
unroll entirely, resulting in 40% speed boost

© John E. Stone, 2007-2009
University of Illinois, Urbana-Champaign

69

Molecular Orbital Computation and Display Process
Dynamic Kernel Generation, Just-In-Time (JIT) C0mpilation

Read QM simulation log file, trajectory

Compute 3-D grid of MO wavefunction amplitudes
using basis set-specific CUDA kernel

Extract isosurface mesh from 3-D MO grid

Render the resulting surface

Preprocess MO coefficient data
eliminate duplicates, sort by type, etc…

For current frame and MO index,
retrieve MO wavefunction coefficients

One-time
initialization

Generate/compile basis set-specific CUDA kernel

For each trj frame, for
each MO shown

Initialize Pool of GPU
Worker Threads

© John E. Stone, 2007-2009
University of Illinois, Urbana-Champaign

70

…..

contracted_gto = 1.832937 * expf(-7.868272*dist2);

contracted_gto += 1.405380 * expf(-1.881289*dist2);

contracted_gto += 0.701383 * expf(-0.544249*dist2);

// P_SHELL

tmpshell = const_wave_f[ifunc++] * xdist;

tmpshell += const_wave_f[ifunc++] * ydist;

tmpshell += const_wave_f[ifunc++] * zdist;

value += tmpshell * contracted_gto;

contracted_gto = 0.187618 * expf(-0.168714*dist2);

// S_SHELL

value += const_wave_f[ifunc++] * contracted_gto;

contracted_gto = 0.217969 * expf(-0.168714*dist2);

// P_SHELL

tmpshell = const_wave_f[ifunc++] * xdist;

tmpshell += const_wave_f[ifunc++] * ydist;

tmpshell += const_wave_f[ifunc++] * zdist;

value += tmpshell * contracted_gto;

contracted_gto = 3.858403 * expf(-0.800000*dist2);

// D_SHELL

tmpshell = const_wave_f[ifunc++] * xdist2;

tmpshell += const_wave_f[ifunc++] * ydist2;

tmpshell += const_wave_f[ifunc++] * zdist2;

tmpshell += const_wave_f[ifunc++] * xdist * ydist;

tmpshell += const_wave_f[ifunc++] * xdist * zdist;

tmpshell += const_wave_f[ifunc++] * ydist * zdist;

value += tmpshell * contracted_gto;

…..

// loop over the shells belonging to this atom (or basis function)

for (shell=0; shell < maxshell; shell++) {

float contracted_gto = 0.0f;

// Loop over the Gaussian primitives of this contracted

// basis function to build the atomic orbital

int maxprim = const_num_prim_per_shell[shell_counter];

int shell_type = const_shell_symmetry[shell_counter];

for (prim=0; prim < maxprim; prim++) {

float exponent = const_basis_array[prim_counter];

float contract_coeff = const_basis_array[prim_counter + 1];

contracted_gto += contract_coeff * exp2f(-exponent*dist2);

prim_counter += 2;

}

/* multiply with the appropriate wavefunction coefficient */

float tmpshell=0;

switch (shell_type) {

case S_SHELL:

value += const_wave_f[ifunc++] * contracted_gto;

break;

[…..]

case D_SHELL:

tmpshell += const_wave_f[ifunc++] * xdist2;

tmpshell += const_wave_f[ifunc++] * ydist2;

tmpshell += const_wave_f[ifunc++] * zdist2;

tmpshell += const_wave_f[ifunc++] * xdist * ydist;

tmpshell += const_wave_f[ifunc++] * xdist * zdist;

tmpshell += const_wave_f[ifunc++] * ydist * zdist;

value += tmpshell * contracted_gto;

break;

General loop-based
CUDA kernel

Dynamically-generated
CUDA kernel (JIT)

© John E. Stone, 2007-2009
University of Illinois, Urbana-Champaign

71

Lessons Learned

• GPU algorithms need fine-grained parallelism and
sufficient work to fully utilize the hardware

• Much of per-thread GPU algorithm optimization revolves
around efficient use of multiple memory systems and
latency hiding

• Concurrency can often be traded for per-thread
performance, in combination with increased use of
registers or shared memory

• Fine-grained GPU work decompositions often compose
well with the comparatively coarse-grained
decompositions used for multicore or distributed memory
programing

© John E. Stone, 2007-2009
University of Illinois, Urbana-Champaign

72

Lessons Learned (2)

• The host CPU can potentially be used to “regularize”
the computation for the GPU, yielding better overall
performance

• Overlapping CPU work with GPU can hide some
communication and unaccelerated computation

• Targeted use of double-precision floating point
arithmetic, or compensated summation can reduce the
effects of floating point truncation at low cost to
performance

© John E. Stone, 2007-2009
University of Illinois, Urbana-Champaign

73

Summary

• GPUs are not a magic bullet, but they can perform amazingly
well when used effectively

• There are many good strategies for extracting high performance
from individual subsystems on the GPU

• It is wise to begin with a well designed application and a
thorough understanding of its performance characteristics on
the CPU before beginning work on the GPU

• By making effective use of multiple GPU subsystems at once,
tremendous performance levels can potentially be attained

© John E. Stone, 2007-2009
University of Illinois, Urbana-Champaign

74

Acknowledgements
• Additional Information and References:

– http://www.ks.uiuc.edu/Research/gpu/
– http://www.ks.uiuc.edu/Research/vmd/

• Questions, source code requests:
– John Stone: johns@ks.uiuc.edu

• Acknowledgements:
• D. Hardy, J. Saam, J. Phillips, P. Freddolino, L. Trabuco, J. Cohen,

K. Schulten (UIUC TCB Group)
• Prof. Wen-mei Hwu, Christopher Rodrigues (UIUC IMPACT

Group)
• David Kirk and the CUDA team at NVIDIA
• NIH support: P41-RR05969
• UIUC NVIDIA Center of Excellence

http://www.ks.uiuc.edu/Research/gpu/
http://www.ks.uiuc.edu/Research/vmd/
mailto:johns@ks.uiuc.edu

© John E. Stone, 2007-2009
University of Illinois, Urbana-Champaign

75

Publications
http://www.ks.uiuc.edu/Research/gpu/

• Long time-scale simulations of in vivo diffusion using GPU hardware. E. Roberts, J. Stone,
L. Sepulveda, W. Hwu, Z. Luthey-Schulten. In Eighth IEEE International Workshop on High
Performance Computational Biology, 2009. In press.

• High Performance Computation and Interactive Display of Molecular Orbitals on GPUs and
Multi-core CPUs. J. Stone, J. Saam, D. Hardy, K. Vandivort, W. Hwu, K. Schulten, 2nd
Workshop on General-Purpose Computation on Graphics Pricessing Units (GPGPU-2),
ACM International Conference Proceeding Series, volume 383, pp. 9-18, 2009.

• Multilevel summation of electrostatic potentials using graphics processing units. D. Hardy, J.
Stone, K. Schulten. J. Parallel Computing, 35:164-177, 2009.

• Adapting a message-driven parallel application to GPU-accelerated clusters. J. Phillips, J.
Stone, K. Schulten. Proceedings of the 2008 ACM/IEEE Conference on Supercomputing,
IEEE Press, 2008.

• GPU acceleration of cutoff pair potentials for molecular modeling applications. C.
Rodrigues, D. Hardy, J. Stone, K. Schulten, and W. Hwu. Proceedings of the 2008
Conference On Computing Frontiers, pp. 273-282, 2008.

• GPU computing. J. Owens, M. Houston, D. Luebke, S. Green, J. Stone, J. Phillips.
Proceedings of the IEEE, 96:879-899, 2008.

• Accelerating molecular modeling applications with graphics processors. J. Stone, J. Phillips,
P. Freddolino, D. Hardy, L. Trabuco, K. Schulten. J. Comp. Chem., 28:2618-2640, 2007.

• Continuous fluorescence microphotolysis and correlation spectroscopy. A. Arkhipov, J.
Hüve, M. Kahms, R. Peters, K. Schulten. Biophysical Journal, 93:4006-4017, 2007.

	VSCSE Summer School 2009��Many-core Processors for Science and Engineering Applications��Lecture 8: Application Case Study – �
	VMD – “Visual Molecular Dynamics”
	Integrating CUDA Kernels Into VMD
	Range of VMD Usage Scenarios
	CUDA Acceleration in VMD
	Electrostatic Potential Maps
	Overview of Direct Coulomb Summation (DCS) Algorithm
	Direct Coulomb Summation (DCS) Algorithm Detail
	DCS Computational Considerations
	Single Slice DCS: Simple (Slow) C Version
	DCS Algorithm Design Observations
	An Approach to Writing CUDA Kernels
	Direct Coulomb Summation Runtime
	DCS Observations for GPU Implementation
	CUDA DCS Implementation Overview
	Direct Coulomb Summation on the GPU
	DCS CUDA Block/Grid Decomposition �(non-unrolled)
	DCS CUDA Block/Grid Decomposition (non-unrolled)
	Notes on Benchmarking CUDA Kernels: Initialization Overhead
	Notes on Benchmarking CUDA Kernels: Power Management, Async Operations
	DCS Version 1: Const+Precalc�187 GFLOPS, 18.6 Billion Atom Evals/Sec
	DCS Version 1: Kernel Structure
	DCS CUDA Block/Grid Decomposition (unrolled)
	DCS CUDA Algorithm: Unrolling Loops
	DCS CUDA Block/Grid Decomposition �(unrolled)
	DCS Version 2: Const+Precalc+Loop Unrolling�259 GFLOPS, 33.4 Billion Atom Evals/Sec
	DCS Version 2: Inner Loop
	DCS Version 3: �Const+Shared+Loop Unrolling+Precalc�268 GFLOPS, 36.4 Billion Atom Evals/Sec
	DCS Version 3: Kernel Structure
	DCS Version 3: Inner Loop
	DCS Version 4: �Const+Loop Unrolling+Coalescing�291.5 GFLOPS, 39.5 Billion Atom Evals/Sec
	DCS Version 4: Kernel Structure
	DCS Version 4: Inner Loop
	DCS CUDA Block/Grid Decomposition � (unrolled, coalesced)
	Direct Coulomb Summation Performance
	Multi-GPU DCS Potential Map Calculation
	Multi-GPU DCS Algorithm:
	Multi-GPU Direct Coulomb Summation
	Multi-GPU Direct Coulomb Summation
	Multi-GPU DCS Performance:�Initial Ion Placement Lattice Calculation
	Multi-Level Summation Method for Coulomb Potential�Infinite vs. Cutoff Potentials
	Short-range Cutoff Summation
	Cutoff Summation on the GPU
	Using the CPU to Improve GPU Performance
	Cutoff Summation Runtime
	Cutoff Summation Observations
	Bonus Material!!
	Multilevel Summation
	Multilevel Summation Main Ideas
	Multilevel Summation Calculation
	Multilevel Summation on the GPU
	Molecular Orbitals
	Computing Molecular Orbitals
	Animating Molecular Orbitals
	Molecular Orbital Computation and Display Process
	CUDA Block/Grid Decomposition
	MO Kernel for One Grid Point (Naive C)
	Preprocessing of Atoms, Basis Set, and �Wavefunction Coefficients
	GPU Traversal of Atom Type, Basis Set,� Shell Type, and Wavefunction Coefficients
	Use of GPU On-chip Memory
	VMD MO Performance Results for C60�Sun Ultra 24: Intel Q6600, NVIDIA GTX 280
	Performance Evaluation:�Molekel, MacMolPlt, and VMD� Sun Ultra 24: Intel Q6600, NVIDIA GTX 280
	VMD Orbital Dynamics Proof of Concept
	Multi-GPU Load Balance
	VMD Multi-GPU Molecular Orbital �Performance Results for C60
	MO Kernel Structure, Opportunity for JIT…�Data-driven, but representative loop trip counts in (…)
	Molecular Orbital Computation and Display Process�Dynamic Kernel Generation, Just-In-Time (JIT) C0mpilation
	Lessons Learned
	Lessons Learned (2)
	Summary
	Acknowledgements
	Publications�http://www.ks.uiuc.edu/Research/gpu/

