High Performance Molecular Visualization and Analysis with GPU Computing John Stone

Theoretical and Computational Biophysics Group Beckman Institute for Advanced Science and Technology University of Illinois at Urbana-Champaign http://www.ks.uiuc.edu/Research/gpu/

BI Imaging and Visualization Forum, October 20, 2009

VMD – "Visual Molecular Dynamics"

- High performance molecular visualization and analysis
- User extensible with scripting and plugins
- http://www.ks.uiuc.edu/Research/vmd/

VMD Handles Diverse Data

Atomic, CG, Particle, QM **Efficiency, Performance, Capacity** Coordinates, Trajectories, Load MD trajectories @ ~1GB/sec Energies, Forces, Improved disk storage efficiency: Secondary Structure, ~5GB for 100M atom model Wavefunctions, ... Model size limited only by RAM Whole cell as particle system **Sequence Data** Multiple Alignments, **Graphics**, Geometry VMD **Phylogenetic Trees Annotations Volumetric Data** Cryo-EM density maps, Electron orbitals, Electrostatic potential, MRI scans, ... Ethane GroEL e for Macromolecular Modeling and Bioinformatics Beckman Institute, UIUC http://www.ks.uiuc.edu/

Programmable Graphics Hardware Evolution

Groundbreaking research systems: AT&T Pixel Machine (1989): 82 x DSP32 processors UNC PixelFlow (1992-98):

64 x (PA-8000 + 8,192 bit-serial SIMD)

SGI RealityEngine (1990s):

Up to 12 i860-XP processors perform vertex operations (*u*code), fixed-func. fragment hardware

All mainstream GPUs now incorporate fully programmable processors

UNC PixelFlow Rack

SGI Reality Engine i860 Vertex Processors

NIH Resource for Macromolecular Modeling and Bioinformatics http://www.ks.uiuc.edu/

Benefits of Programmable Shading for Molecular Visualization

- Potential for superior image quality with better shading algorithms
- Direct rendering of curved surfaces
- Render density map data, solvent surfaces
- Offload work from host CPU to GPU

VMD Ray Traced Sphere Shader

- OpenGL Shading Language (GLSL)
- High-level C-like language with vector types and operations
- Compiled dynamically by the graphics driver at *runtime*
- Compiled machine code executes on GPU

// VMD Sphere Fragment Shader (not for normal geometry)

wid main(void) {
 vec3 raydir = normalize(V);
 vec3 spheredir = spherepos - rayorigin;

// Perform ray-sphere intersection tests based on the code in Tachyon
float b = dot(raydir, spheredir);
float temp = dot(spheredir, spheredir);
float disc = b*b + sphereradsg - temp;

// only calculate the nearest intersection, for speed
if (disc <= 0.0)
 discard; // ray missed sphere entirely, discard fragment</pre>

```
// calculate closest intersection
float tnear = b - sqrt(disc);
```

```
if (tnear < 0.0)
discard;
```

```
// calculate hit point and resulting surface normal
vec3 pnt = rayorigin + tnear * raydir;
vec3 N = normalize(pnt - spherepos);
```

```
// Output the ray-sphere intersection point as the fragment depth
// rather than the depth of the bounding box polygons.
// The eye coordinate Z value must be transformed to normalized device
// coordinates before being assigned as the final fragment depth.
if (vmdprojectionmode == 1) {
    // perspective projection = 0.5 + (hfpn + (f * n / pnt.z)) / diff
    gl_FragDepth = 0.5 + (vmdprojparms[2] + (vmdprojparms[1] * vmdprojparms[1]
3];
} else {
```

```
// orthographic projection = 0.5 + (-hfpn - pnt.z) / diff
gl_FragDepth = 0.5 + (-vmdprojparms[2] - pnt.z) / vmdprojparms[3];
```

```
#ifdef TEXTURE
    // perform texturing operations for volumetric data
    // The only texturing mode that applies to the sphere shader
```


NIH Resource for Macromolecular Modeling and Bioinformatics http://www.ks.uiuc.edu/

"GPGPU" and GPU Computing

- Although graphics-specific, programmable shading languages were (ab)used by early researchers to experiment with using GPUs for general purpose parallel computing, known as "GPGPU"
- Compute-specific GPU languages such as CUDA and OpenCL have eliminated the need for graphics expertise in order to use GPUs for general purpose computation!

GPU Computing

- Current GPUs provide over >1 TFLOPS of arithmetic capability!
- Massively parallel hardware, hundreds of processing units, throughput oriented architecture
- Commodity devices, omnipresent in modern computers (over a **million GPUs sold per week**)
- Standard integer and floating point types supported
- Programming tools allow software to be written in dialects of familiar C/C++ and integrated into legacy software

What Speedups Can GPUs Achieve?

- Single-GPU speedups of **10x** to **30x** vs. one CPU core are common
- Best speedups can reach **100x** or more, attained on codes dominated by floating point arithmetic, especially native GPU machine instructions, e.g. expf(), rsqrtf(), ...
- Amdahl's Law can prevent legacy codes from achieving peak speedups with shallow GPU acceleration efforts
- GPU acceleration provides an opportunity to make slow, or batch calculations capable of being run interactively, on-demand...

GPU Computing in VMD

Electrostatic field calculation, ion placement: factor of 20x to 44x faster Molecular orbital calculation and display: factor of 120x faster

Imaging of gas migration pathways in proteins with implicit ligand sampling:

factor of 20x to 30x faster

NIH Resource for Macromolecular Modeling and Bioinformatics http://www.ks.uiuc.edu/

Comparison of CPU and GPU Hardware Architecture

CPU: Cache heavy, focused on individual thread performance

Control	ALU	ALU	
	ALU	ALU	
Cache			
DRAM			

GPU: ALU heavy, massively parallel, throughput oriented

National Center for Research Resources

http://www.ks.uiuc.edu/

JC

GPU Peak Single-Precision Performance: Exponential Trend

NIH Resource for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

GPU Peak Memory Bandwidth: Linear Trend

NIH Resource for Macromolecular Modeling and Bioinformatics http://www.ks.uiuc.edu/ Beckman Institute, UIUC

NVIDIA CUDA Overview

- Hardware and software architecture for GPU computing, foundation for building higher level programming libraries, toolkits
- C for CUDA, released in 2007:
 - Data-parallel programming model
 - Work is decomposed into "grids" of "blocks" containing "warps" of "threads", multiplexed onto massively parallel GPU hardware
 - Light-weight, low level of abstraction, exposes many GPU architecture details/features enabling development of high performance GPU kernels

CUDA Threads, Blocks, Grids

- GPUs use hardware multithreading to hide latency and achieve high ALU utilization
- For high performance, a GPU must be **saturated** with concurrent work: >10,000 threads
- "Grids" of hundreds of "thread blocks" are scheduled onto a large array of SIMT cores
- Each core executes several thread blocks of 64-512 threads each, switching among them to hide latencies for slow memory accesses, etc...
- 32 thread "warps" execute in lock-step (e.g. in SIMD-like fashion)

GPU Memory Accessible in CUDA

- Mapped host memory: up to 4GB, ~5.7GB/sec bandwidth (PCIe), accessible by multiple GPUs
- Global memory: up to 4GB, high latency (~600 clock cycles), 140GB/sec bandwidth, accessible by all threads, atomic operations (slow)
- Texture memory: read-only, cached, and interpolated/filtered access to global memory
- Constant memory: 64KB, read-only, cached, fast/low-latency if data elements are accessed in unison by peer threads
- Shared memory:16KB, low-latency, accessible among threads in the same block, fast if accessed without bank conflicts

An Approach to Writing CUDA Kernels

- Find an algorithm that exposes substantial parallelism, thousands of independent threads...
- Loops in a sequential code become a multitude of simultaneously executing threads organized into blocks of cooperating threads, and a grid of independent blocks...
- Identify appropriate GPU memory subsystems for storage of data used by kernel, design data structures accordingly
- Are there trade-offs that can be made to exchange computation for more parallelism?
 - "Brute force" methods that expose significant parallelism do surprisingly well on current GPUs

Electrostatic Potential Maps

• Electrostatic potentials evaluated on 3-D lattice:

$$V_i = \sum_j \frac{q_j}{4\pi\epsilon_0 |\mathbf{r}_j - \mathbf{r}_i|}$$

- Applications include:
 - Ion placement for structure building
 - Time-averaged potentials for simulation
 - Visualization and analysis

Isoleucine tRNA synthetase

Direct Coulomb Summation

• Each lattice point accumulates electrostatic potential contribution from all atoms:

potential[j] += charge[i] / r_{ij}

Direct Coulomb Summation on the GPU

- GPU outruns a CPU core by 44x
- Work is decomposed into tens of thousands of independent threads, multiplexed onto hundreds of GPU processing units
- Single-precision FP arithmetic is adequate for intended application
- Numerical accuracy can be improved by compensated summation, spatially ordered summation groupings, or accumulation of potential in double-precision
- Starting point for more sophisticated linear-time algorithms like multilevel summation

DCS CUDA Block/Grid Decomposition

Direct Coulomb Summation on the GPU

Direct Coulomb Summation Runtime

Accelerating molecular modeling applications with graphics processors. J. Stone, J. Phillips, P. Freddolino, D. Hardy, L. Trabuco, K. Schulten. *J. Comp. Chem.*, 28:2618-2640, 2007.

NIH Resource for Macromolecular Modeling and Bioinformatics http://www.ks.uiuc.edu/

Direct Coulomb Summation Performance

J. Phillips. *Proceedings of the IEEE*, 96:879-899, 2008.

Cutoff Summation

• Each lattice point accumulates electrostatic potential contribution from atoms within cutoff distance:

if $(r_{ij} < cutoff)$

potential[j] += (charge[i] / r_{ij}) * s(r_{ij})

• Smoothing function s(r) is algorithm dependent

Cutoff Summation on the GPU

Atoms are spatially hashed into fixed-size bins CPU handles overflowed bins (GPU kernel can be very aggressive) GPU thread block calculates corresponding region of potential map, Bin/region neighbor checks costly; solved with universal table look-up

NIH Resource for Macromolecular Modeling and Bioinformatics http://www.ks.uiuc.edu/

Cutoff Summation Runtime

GPU acceleration of cutoff pair potentials for molecular modeling applications.C. Rodrigues, D. Hardy, J. Stone, K. Schulten, W. Hwu. *Proceedings of the 2008 Conference On Computing Frontiers*, pp. 273-282, 2008.

http://www.ks.u1uc.edu/

JC

Multilevel summation of electrostatic potentials using graphics processing units.

D. Hardy, J. Stone, K. Schulten. J. Parallel Computing, 35:164-177, 2009.

NIH Resource for Macromolecular Modeling and Bioinformatics http://www.ks.uiuc.edu/

Photobiology of Vision and Photosynthesis Investigations of the chromatophore, a photosynthetic organelle

Electrostatics needed to build full structural model, place ions, study macroscopic properties Electrostatic field of chromatophore model from multilevel summation method: computed with 3 GPUs (G80) in ~90 seconds, 46x faster than single CPU core

Full chromatophore model will permit structural, chemical and kinetic investigations at a structural systems biology level

NIH Resource for Macromolecular Modeling and Bioinformatics http://www.ks.uiuc.edu/

Computing Molecular Orbitals

- Visualization of MOs aids in understanding the chemistry of molecular system
- MO spatial distribution is correlated with electron probability density
- Calculation of high resolution MO grids can require tens to hundreds of seconds on CPUs
- >100x speedup allows interactive animation of MOs
 @ 10 FPS

Molecular Orbital Computation and Display Process

CUDA Block/Grid Decomposition

National Center In

MO Kernel for One Grid Point (Naive C)

<pre>for (at=0; at<numatoms; at++)="" int="" prim_counter="atom_basis[at];</pre" {=""></numatoms;></pre>	Loop over atoms	
calc_distances_to_atom(&atompos[at], &xdist, &ydist, &zdist, &dist2, &xdiv);		
<pre>for (contracted_gto=0.0f, shell=0; shell < num_shells_per_atom[at]; shell++) { int shell_type = shell_symmetry[shell_counter];</pre>	Loop over shells	
<pre>for (prim=0; prim < num_prim_per_shell[shell_counter]; prim++) { float exponent = basis_array[prim_counter]; float contract_coeff = basis_array[prim_counter + 1]; contracted_gto += contract_coeff * expf(-exponent*dist2); prim_counter += 2; }</pre>	Loop over primitives: largest component of runtime, due to expf()	
<pre>for (tmpshell=0.0f, j=0, zdp=1.0f; j<=shell_type; j++, zdp*=zdist) { int imax = shell_type - j; for (i=0, ydp=1.0f, xdp=pow(xdist, imax); i<=imax; i++, ydp*=ydist, xdp*=xdiv) tmpshell += wave_f[ifunc++] * xdp * ydp * zdp; }</pre>	Loop over angular momenta (unrolled in real code)	
<pre>value += tmpshell * contracted_gto; shell_counter++; }</pre>		
}		

National Center for Research Resource

Preprocessing of Atoms, Basis Set, and Wavefunction Coefficients

- Must make effective use of high bandwidth, lowlatency GPU on-chip memory, or CPU cache:
 - Overall storage requirement reduced by eliminating duplicate basis set coefficients
 - Sorting atoms by element type allows re-use of basis set coefficients for subsequent atoms of identical type
- Padding, alignment of arrays guarantees coalesced GPU global memory accesses, CPU SSE loads

GPU Traversal of Atom Type, Basis Set, Shell Type, and Wavefunction Coefficients

- Loop iterations always access same or consecutive array elements for all threads in a thread block:
 - Yields good constant memory cache performance
 - Increases shared memory tile reuse

Use of GPU On-chip Memory

- If total data less than 64 kB, use only const mem:
 - Broadcasts data to all threads, no global memory accesses!
- For large data, shared memory used as a programmanaged cache, coefficients loaded on-demand:
 - Tile data in shared mem is broadcast to 64 threads in a block
 - Nested loops traverse multiple coefficient arrays of varying length, complicates things significantly...
 - Key to performance is to locate tile loading checks outside of the two performance-critical inner loops
 - Tiles sized large enough to service entire inner loop runs
 - Only 27% slower than hardware caching provided by constant memory (GT200)

Array tile loaded in GPU shared memory. Tile size is a power-of-two, multiple of coalescing size, and allows simple indexing in inner loops (array indices are merely offset for reference within loaded tile).

Coefficient array in GPU global memory

VMD MO Performance Results for C₆₀ Sun Ultra 24: Intel Q6600, NVIDIA GTX 280

Kernel	Cores/GPUs	Runtime (s)	Speedup
CPU ICC-SSE	1	46.58	1.00
CPU ICC-SSE	4	11.74	3.97
CPU ICC-SSE-approx**	4	3.76	12.4
CUDA-tiled-shared	1	0.46	100.
CUDA-const-cache	1	0.37	126.
CUDA-const-cache-JIT*	1	0.27	173.
			(JIT 40% faster)

 C_{60} basis set 6-31Gd. We used an unusually-high resolution MO grid for accurate timings. A more typical calculation has $1/8^{th}$ the grid points.

* Runtime-generated JIT kernel compiled using batch mode CUDA tools

**Reduced-accuracy approximation of expf(), cannot be used for zero-valued MO isosurfaces

Performance Evaluation: Molekel, MacMolPlt, and VMD Sun Ultra 24: Intel Q6600, NVIDIA GTX 280

			C ₆₀ -A	C ₆₀ -B	Thr-A	Thr-B	Kr-A	Kr-B
	Atoms		60	60	17	17	1	1
Basis funcs (unique)		que)	300 (5)	900 (15)	49 (16)	170 (59)	19 (19)	84 (84)
Kernel		Cores GPUs	Speedup vs. Molekel on 1 CPU core)	
Molekel		1*	1.0 1.0 1.0 1.0 1.0 1.0					
MacMo	lPlt	4	2.4 2.6 2.1 2.4 4.3 4.5					4.5
VMD G	CC-cephes	4	3.2 4.0 3.0 3.5 4.3 6.5					6.5
VMD IO	CC-SSE-cephes	4	16.8 17.2 13.9 12.6 17.3 21.5					21.5
VMD IO	CC-SSE-approx**	4	59.3 53.4 50.4 49.2 54.8 69.					69.8
VMD C	UDA-const-cache	1	552.3	533.5	355.9	421.3	193.1	571.6

VMD Orbital Dynamics Proof of Concept

One GPU can compute and animate this movie on-the-fly!

CUDA const-cache kernel, Sun Ultra 24, GeForce GTX 285

GPU MO grid calc.	0.016 s
CPU surface gen,	0.033 s
volume gradient,	
and GPU rendering	
Total runtime	0.049 s
Frame rate	20 FPS

tryptophane

With GPU speedups over **100x**, previously insignificant CPU surface gen, gradient calc, and rendering are now **66%** of runtime. Need GPU-accelerated surface gen next...

VMD Multi-GPU Molecular Orbital Performance Results for C₆₀

Kernel	Cores/GPUs	Runtime (s)	Speedup	Parallel Efficiency
CPU-ICC-SSE	1	46.580	1.00	100%
CPU-ICC-SSE	4	11.740	3.97	99%
CUDA-const-cache	1	0.417	112	100%
CUDA-const-cache	2	0.220	212	94%
CUDA-const-cache	3	0.151	308	92%
CUDA-const-cache	4	0.113	412	92%

Intel Q6600 CPU, 4x Tesla C1060 GPUs, Uses persistent thread pool to avoid GPU init overhead,

NIH Resource for Macromolecular Modeling and Bioinformatics http://www.ks.uiuc.edu/

dynamic scheduler distributes work to GPUs

Future Work

- Near term work on GPU acceleration:
 - Radial distribution functions, histogramming
 - Secondary structure rendering
 - Isosurface extraction, volumetric data processing
 - Principle component analysis
- Replace CPU SSE code with OpenCL
- Port some of the existing CUDA GPU kernels to OpenCL where appropriate

Acknowledgements

- Additional Information and References:
 - http://www.ks.uiuc.edu/Research/gpu/
- Questions, source code requests:
 - John Stone: johns@ks.uiuc.edu
- Acknowledgements:
 - J. Phillips, D. Hardy, J. Saam, UIUC Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Bioinformatics
 - Prof. Wen-mei Hwu, Christopher Rodrigues, UIUC IMPACT Group
 - CUDA team at NVIDIA
 - UIUC NVIDIA CUDA Center of Excellence
 - NIH support: P41-RR05969

Publications http://www.ks.uiuc.edu/Research/gpu/

- Probing Biomolecular Machines with Graphics Processors. J. Phillips, J. Stone. *Communications of the ACM*, 52(10):34-41, 2009.
- GPU Clusters for High Performance Computing. V. Kindratenko, J. Enos, G. Shi, M. Showerman, G. Arnold, J. Stone, J. Phillips, W. Hwu. *Workshop on Parallel Programming on Accelerator Clusters (PPAC)*, IEEE Cluster 2009. In press.
- Long time-scale simulations of in vivo diffusion using GPU hardware.
 E. Roberts, J. Stone, L. Sepulveda, W. Hwu, Z. Luthey-Schulten. In *IPDPS'09: Proceedings of the 2009 IEEE International Symposium on Parallel & Distributed Computing*, pp. 1-8, 2009.
- High Performance Computation and Interactive Display of Molecular Orbitals on GPUs and Multi-core CPUs. J. Stone, J. Saam, D. Hardy, K. Vandivort, W. Hwu, K. Schulten, 2nd Workshop on General-Purpose Computation on Graphics Pricessing Units (GPGPU-2), ACM International Conference Proceeding Series, volume 383, pp. 9-18, 2009.
- Multilevel summation of electrostatic potentials using graphics processing units. D. Hardy, J. Stone, K. Schulten. *J. Parallel Computing*, 35:164-177, 2009.

Publications (cont) http://www.ks.uiuc.edu/Research/gpu/

- Adapting a message-driven parallel application to GPU-accelerated clusters. J. Phillips, J. Stone, K. Schulten. *Proceedings of the 2008 ACM/IEEE Conference on Supercomputing*, IEEE Press, 2008.
- GPU acceleration of cutoff pair potentials for molecular modeling applications. C. Rodrigues, D. Hardy, J. Stone, K. Schulten, and W. Hwu. *Proceedings of the* 2008 Conference On Computing Frontiers, pp. 273-282, 2008.
- GPU computing. J. Owens, M. Houston, D. Luebke, S. Green, J. Stone, J. Phillips. *Proceedings of the IEEE*, 96:879-899, 2008.
- Accelerating molecular modeling applications with graphics processors. J. Stone, J. Phillips, P. Freddolino, D. Hardy, L. Trabuco, K. Schulten. J. Comp. Chem., 28:2618-2640, 2007.
- Continuous fluorescence microphotolysis and correlation spectroscopy. A. Arkhipov, J. Hüve, M. Kahms, R. Peters, K. Schulten. *Biophysical Journal*, 93:4006-4017, 2007.

