
NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

GPU Accelerated Visualization and
Analysis in VMD

and
Recent NAMD Developments

John Stone
Theoretical and Computational Biophysics Group

Beckman Institute for Advanced Science and Technology
University of Illinois at Urbana-Champaign

http://www.ks.uiuc.edu/Research/gpu/
GPU Technology Conference

Fairmont Hotel, San Jose, CA, October 1, 2009

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

VMD – “Visual Molecular Dynamics”
• Visualization and analysis of molecular dynamics simulations,

sequence data, volumetric data, quantum chemistry simulations,
particle systems, …

• User extensible with scripting and plugins
• http://www.ks.uiuc.edu/Research/vmd/

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Range of VMD Usage Scenarios
• Users run VMD on a diverse range of hardware:

laptops, desktops, clusters, and supercomputers
• Typically used as a desktop application, for

interactive 3D molecular graphics and analysis
• Can also be run in pure text mode for numerically

intensive analysis tasks, batch mode movie
rendering, etc…

• GPU acceleration provides an opportunity to make
some slow, or batch calculations capable of being
run interactively, or on-demand…

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Need for Multi-GPU
Acceleration in VMD

• Ongoing increases in supercomputing resources at
NSF centers such as NCSA enable increased
simulation complexity, fidelity, and longer time
scales…

• Drives need for more visualization and analysis
capability at the desktop and on clusters running
batch analysis jobs

• Desktop use is the most compute-resource-limited
scenario, where GPUs can make a big impact…

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Molecular orbital

calculation and display

100x to 120x faster

Electrostatic field

calculation, ion placement

20x to 44x faster

Imaging of gas migration
pathways in proteins with
implicit ligand sampling

20x to 30x faster

CUDA Acceleration in VMD

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Electrostatic Potential Maps
• Electrostatic potentials

evaluated on 3-D lattice:

• Applications include:
– Ion placement for

structure building
– Time-averaged potentials

for simulation
– Visualization and

analysis Isoleucine tRNA synthetase

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Infinite vs. Cutoff Potentials
• Infinite range potential:

– All atoms contribute to all lattice points
– Quadratic time complexity

• Cutoff (range-limited) potential:
– Atoms contribute within cutoff distance to lattice points

resulting in linear time complexity
– Used for fast decaying interactions (e.g. Lennard-Jones,

Buckingham)
• Fast full electrostatics:

– Replace electrostatic potential with shifted form
– Combine short-range part with long-range approximation
– Multilevel summation method (MSM), linear time complexity

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Short-range Cutoff Summation
• Each lattice point accumulates electrostatic potential

contribution from atoms within cutoff distance:
if (rij < cutoff)

potential[j] += (charge[i] / rij) * s(rij)
• Smoothing function s(r) is algorithm dependent

Cutoff radius rij: distance
from lattice[j]

to atom[i]

Lattice point j
being evaluated atom[i]

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Cutoff Summation on the GPU

Global memory Constant memory
Offsets for bin
neighborhood

Shared memory

atom bin

Potential
map

regions Bins of atoms

Each thread block cooperatively
loads atom bins from surrounding
neighborhood into shared memory
for evaluation

Atoms are spatially hashed into fixed-size bins
CPU handles overflowed bins (GPU kernel can be very aggressive)
GPU thread block calculates corresponding region of potential map,
Bin/region neighbor checks costly; solved with universal table look-up

Look-up table
encodes “logic” of
spatial geometry

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Cutoff Summation Performance

GPU acceleration of cutoff pair potentials for molecular modeling
applications. C. Rodrigues, D. Hardy, J. Stone, K. Schulten, W. Hwu.

Proceedings of the 2008 Conference On Computing Frontiers, pp. 273-
282, 2008.

GPU cutoff with
CPU overlap:

17x-21x faster than
CPU core

If asynchronous
stream blocks due

to queue filling,
performance will

degrade from
peak…

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Cutoff Summation Observations
• Use of CPU to handle overflowed bins is very

effective, overlaps completely with GPU work
• Caveat: Overfilling stream queue can trigger

blocking behavior. Recent drivers queue >100
ops before blocking.

• Higher precision:
– Compensated summation (all GPUs) or double-

precision (GT200 only) only a ~10% performance
penalty vs. single-precision arithmetic

– Next-gen “Fermi” GPUs will have an even lower
performance cost for double-precision arithmetic

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Multilevel Summation Method
• Approximates full electrostatic potential
• Calculates sum of smoothed pairwise potentials

interpolated from a hierarchy of lattices
• Advantages over particle-mesh Ewald, fast multipole:

– Algorithm has linear time complexity
– Permits non-periodic and periodic boundaries
– Produces continuous forces for dynamics (advantage

over FMM)
– Avoids 3-D FFTs for better parallel scaling (advantage

over PME)
– Spatial separation allows use of multiple time steps
– Can be extended to other pairwise interactions

• Skeel, Tezcan, Hardy, J Comp Chem, 2002 — Computing forces for molecular dynamics

• Hardy, Stone, Schulten, J Paral Comp, 2009 — GPU-acceleration of potential map calculation

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Multilevel Summation Main Ideas
• Split the 1/r potential into a short-range cutoff part plus

smoothed parts that are successively more slowly varying.
All but the top level potential are cut off.

• Smoothed potentials are interpolated from successively
coarser lattices.

• Finest lattice spacing h and smallest cutoff distance a are
doubled at each successive level.

=

+

+

atoms

h-lattice

2h-lattice

Split the 1/r potential Interpolate the smoothed potentials

a 2a

1/r

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Multilevel Summation Calculation
map

potential
exact

short-range
interactions

interpolated
long-range
interactions

+=

short-range cutoff

interpolationanterpolation

h-lattice cutoff

2h-lattice cutoff

4h-lattice

restriction

restriction

prolongation

prolongation
long-range

parts

atom
charges

map
potentials

Computational Steps

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Lattice Cutoff Summation
• Each lattice point accumulates electrostatic potential contribution from

all lattice point charges within cutoff distance
• Relative distances are the same between points on a uniform lattice,

multiplication by a precomputed stencil of “weights”
• Weights at each level are identical up to a scaling factor (due to choice

of splitting and doubling of lattice spacing and cutoff)
• Calculate as 3D convolution of sub-cube of lattice point charges with

enclosing cube of weights

Cutoff radius

Accumulate potential

Sphere of
lattice point

charges

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Lattice Cutoff Summation on GPU
• Store stencil of weights in constant memory
• Thread blocks calculate 4x4x4 regions of lattice potentials
• Load nearby regions of lattice charges into shared memory
• Evaluate all lattice levels concurrently, scaling by level factor (keeps

GPU from running out of work at upper lattice levels)

Global memory Constant memory

Shared memory

Lattice
potential
regions

Each thread block cooperatively loads
lattice charge regions into shared
memory for evaluation, multiply by
weight stencil from constant memory

Lattice
charge
regions

Stencil of weights

Sub-regions of
lattice charge

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Evaluation Using Sliding Window
• Every thread in block needs to simultaneously read and use

the same weight from constant memory
• Read 8x8x8 block (8 regions) of lattice charges into shared

memory
• Slide 4x4x4 window by 4 shifts along each dimension

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Multilevel Summation on the GPU

Computational steps CPU (s) w/ GPU (s) Speedup

Short-range cutoff 480.07 14.87 32.3

Long-range anterpolation 0.18

restriction 0.16

lattice cutoff 49.47 1.36 36.4

prolongation 0.17

interpolation 3.47

Total 533.52 20.21 26.4

Performance profile for 0.5 Å map of potential for 1.5 M atoms.
Hardware platform is Intel QX6700 CPU and NVIDIA GTX 280.

Accelerate short-range cutoff and lattice cutoff parts

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Photobiology of Vision and Photosynthesis
Investigations of the chromatophore, a photosynthetic organelle

Full chromatophore model will permit structural, chemical and kinetic
investigations at a structural systems biology level

Light

Electrostatic field of chromatophore model
from multilevel summation method:

computed with 3 GPUs (G80) in ~90 seconds,
46x faster than single CPU core

Electrostatics needed to build full
structural model, place ions, study

macroscopic properties

Partial model:
~10M atoms

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Computing Molecular Orbitals
• Visualization of MOs aids

in understanding the
chemistry of molecular
system

• MO spatial distribution is
correlated with probability
density for an electron(s)

• Calculation of high
resolution MO grids can
require tens to hundreds of
seconds on CPUs

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Animating Molecular Orbitals
• Animation of (classical

mechanics) molecular
dynamics trajectories
provides insight into
simulation results

• To do the same for QM
or QM/MM simulations
one must compute MOs
at ~10 FPS or more

• >100x speedup (GPU)
over existing tools now
makes this possible! C60

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Molecular Orbital Computation and Display Process

Read QM simulation log file, trajectory

Compute 3-D grid of MO wavefunction amplitudes
Most performance-demanding step, run on GPU…

Extract isosurface mesh from 3-D MO grid

Apply user coloring/texturing
and render the resulting surface

Preprocess MO coefficient data
eliminate duplicates, sort by type, etc…

For current frame and MO index,
retrieve MO wavefunction coefficients

One-time
initialization

For each trj frame, for
each MO shown

Initialize Pool of GPU
Worker Threads

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

CUDA Block/Grid Decomposition

Padding optimizes glob. mem
perf, guaranteeing coalescing

Grid of thread blocks:

0,0 0,1

1,0 1,1

…

… …

…
Small 8x8 thread
blocks afford large
per-thread register
count, shared mem.
Threads compute
one MO lattice
point each.

…

MO 3-D lattice decomposes into
2-D slices (CUDA grids)

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

MO Kernel for One Grid Point (Naive C)

Loop over atoms

Loop over shells

Loop over primitives:
largest component of
runtime, due to expf()

Loop over angular
momenta

(unrolled in real code)

…

for (at=0; at<numatoms; at++) {

int prim_counter = atom_basis[at];

calc_distances_to_atom(&atompos[at], &xdist, &ydist, &zdist, &dist2, &xdiv);

for (contracted_gto=0.0f, shell=0; shell < num_shells_per_atom[at]; shell++) {

int shell_type = shell_symmetry[shell_counter];

for (prim=0; prim < num_prim_per_shell[shell_counter]; prim++) {

float exponent = basis_array[prim_counter];

float contract_coeff = basis_array[prim_counter + 1];

contracted_gto += contract_coeff * expf(-exponent*dist2);

prim_counter += 2;

}

for (tmpshell=0.0f, j=0, zdp=1.0f; j<=shell_type; j++, zdp*=zdist) {

int imax = shell_type - j;

for (i=0, ydp=1.0f, xdp=pow(xdist, imax); i<=imax; i++, ydp*=ydist, xdp*=xdiv)

tmpshell += wave_f[ifunc++] * xdp * ydp * zdp;

}

value += tmpshell * contracted_gto;

shell_counter++;

}

} …..

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

MO GPU Kernel Snippet:
Contracted GTO Loop, Use of Constant Memory

[… outer loop over atoms …]

float dist2 = xdist2 + ydist2 + zdist2;

// Loop over the shells belonging to this atom (or basis function)

for (shell=0; shell < maxshell; shell++) {

float contracted_gto = 0.0f;

// Loop over the Gaussian primitives of this contracted basis function to build the atomic orbital

int maxprim = const_num_prim_per_shell[shell_counter];

int shelltype = const_shell_types[shell_counter];

for (prim=0; prim < maxprim; prim++) {

float exponent = const_basis_array[prim_counter];

float contract_coeff = const_basis_array[prim_counter + 1];

contracted_gto += contract_coeff * __expf(-exponent*dist2);

prim_counter += 2;

}

[… continue on to angular momenta loop …]

Constant memory:
nearly register-
speed when array
elements accessed
in unison by all
peer threads….

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

MO GPU Kernel Snippet:
Unrolled Angular Momenta Loop

/* multiply with the appropriate wavefunction coefficient */

float tmpshell=0;

switch (shelltype) {

case S_SHELL:

value += const_wave_f[ifunc++] * contracted_gto;

break;

[… P_SHELL case …]

case D_SHELL:

tmpshell += const_wave_f[ifunc++] * xdist2;

tmpshell += const_wave_f[ifunc++] * xdist * ydist;

tmpshell += const_wave_f[ifunc++] * ydist2;

tmpshell += const_wave_f[ifunc++] * xdist * zdist;

tmpshell += const_wave_f[ifunc++] * ydist * zdist;

tmpshell += const_wave_f[ifunc++] * zdist2;

value += tmpshell * contracted_gto;

break;

[... Other cases: F_SHELL, G_SHELL, etc …]

} // end switch

Loop unrolling:

•Saves registers
(important for GPUs!)

•Reduces loop control
overhead

•Increases arithmetic
intensity

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Preprocessing of Atoms, Basis Set, and
Wavefunction Coefficients

• Must make effective use of high bandwidth, low-
latency GPU on-chip memory, or CPU cache:
– Overall storage requirement reduced by eliminating

duplicate basis set coefficients
– Sorting atoms by element type allows re-use of basis set

coefficients for subsequent atoms of identical type

• Padding, alignment of arrays guarantees coalesced
GPU global memory accesses, CPU SSE loads

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

GPU Traversal of Atom Type, Basis Set,
Shell Type, and Wavefunction Coefficients

• Loop iterations always access same or consecutive
array elements for all threads in a thread block:
– Yields good constant memory cache performance
– Increases shared memory tile reuse

Monotonically increasing memory references

Different at each
timestep, and for

each MO

Constant for all MOs,
all timesteps

Strictly sequential memory references

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Use of GPU On-chip Memory
• If total data less than 64 kB, use only const mem:

– Broadcasts data to all threads, no global memory accesses!
• For large data, shared memory used as a program-

managed cache, coefficients loaded on-demand:
– Tiles sized large enough to service entire inner loop runs,

broadcast to all 64 threads in a block
– Complications: nested loops, multiple arrays, varying length
– Key to performance is to locate tile loading checks outside of

the two performance-critical inner loops
– Only 27% slower than hardware caching provided by

constant memory (GT200)
– Next-gen “Fermi” GPUs will provide larger on-chip shared

memory, L1/L2 caches, reduced control overhead

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Coefficient array in GPU global memory

Array tile loaded in GPU shared memory. Tile size is a power-of-two,
multiple of coalescing size, and allows simple indexing in inner loops
(array indices are merely offset for reference within loaded tile).

64-Byte memory
coalescing block boundaries

Full tile padding

Surrounding data,
unreferenced

by next batch of
loop iterations

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

MO GPU Kernel Snippet:
Loading Tiles Into Shared Memory On-Demand

[… outer loop over atoms …]

if ((prim_counter + (maxprim<<1)) >= SHAREDSIZE) {

prim_counter += sblock_prim_counter;

sblock_prim_counter = prim_counter & MEMCOAMASK;

s_basis_array[sidx] = basis_array[sblock_prim_counter + sidx];

s_basis_array[sidx + 64] = basis_array[sblock_prim_counter + sidx + 64];

s_basis_array[sidx + 128] = basis_array[sblock_prim_counter + sidx + 128];

s_basis_array[sidx + 192] = basis_array[sblock_prim_counter + sidx + 192];

prim_counter -= sblock_prim_counter;

__syncthreads();

}

for (prim=0; prim < maxprim; prim++) {

float exponent = s_basis_array[prim_counter];

float contract_coeff = s_basis_array[prim_counter + 1];

contracted_gto += contract_coeff * __expf(-exponent*dist2);

prim_counter += 2;

}

[… continue on to angular momenta loop …]

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

VMD MO Performance Results for C60
Sun Ultra 24: Intel Q6600, NVIDIA GTX 280

Kernel Cores/GPUs Runtime (s) Speedup
CPU ICC-SSE 1 46.58 1.00

CPU ICC-SSE 4 11.74 3.97

CPU ICC-SSE-approx** 4 3.76 12.4

CUDA-tiled-shared 1 0.46 100.

CUDA-const-cache 1 0.37 126.

CUDA-const-cache-JIT* 1 0.27 173.
(JIT 40% faster)

C60 basis set 6-31Gd. We used an unusually-high resolution MO grid for
accurate timings. A more typical calculation has 1/8th the grid points.

* Runtime-generated JIT kernel compiled using batch mode CUDA tools
**Reduced-accuracy approximation of expf(),
cannot be used for zero-valued MO isosurfaces

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Performance Evaluation:
Molekel, MacMolPlt, and VMD

Sun Ultra 24: Intel Q6600, NVIDIA GTX 280
C60-A C60-B Thr-A Thr-B Kr-A Kr-B

Atoms 60 60 17 17 1 1

Basis funcs (unique) 300 (5) 900 (15) 49 (16) 170 (59) 19 (19) 84 (84)

Kernel Cores
GPUs

Speedup vs. Molekel on 1 CPU core

Molekel 1* 1.0 1.0 1.0 1.0 1.0 1.0
MacMolPlt 4 2.4 2.6 2.1 2.4 4.3 4.5
VMD GCC-cephes 4 3.2 4.0 3.0 3.5 4.3 6.5
VMD ICC-SSE-cephes 4 16.8 17.2 13.9 12.6 17.3 21.5
VMD ICC-SSE-approx** 4 59.3 53.4 50.4 49.2 54.8 69.8
VMD CUDA-const-cache 1 552.3 533.5 355.9 421.3 193.1 571.6

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

VMD Orbital Dynamics Proof of Concept
One GPU can compute and animate this movie on-the-fly!

CUDA const-cache kernel,
Sun Ultra 24, GeForce GTX 285

GPU MO grid calc. 0.016 s

CPU surface gen,
volume gradient,
and GPU rendering

0.033 s

Total runtime 0.049 s
Frame rate 20 FPS

With GPU speedups over 100x, previously insignificant CPU
surface gen, gradient calc, and rendering are now 66% of runtime.
Need GPU-accelerated surface gen next…

threonine

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Multi-GPU Load Balance

• Many early CUDA codes
assumed all GPUs were
identical

• All new NVIDIA cards support
CUDA, so a typical machine
may have a diversity of GPUs
of varying capability

• Static decomposition works
poorly for non-uniform
workload, or diverse GPUs,
e.g. w/ 2 SM, 16 SM, 30 SM

GPU 1
2 SMs

GPU 3
30 SMs

…

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Multi-GPU Dynamic Work Distribution
// Each GPU worker thread loops over
// subset 2-D planes in a 3-D cube…
while (!threadpool_next_tile(&parms,

tilesize, &tile){
// Process one plane of work…
// Launch one CUDA kernel for each
// loop iteration taken…
// Shared iterator automatically
// balances load on GPUs

}

GPU 1 GPU 3…

Dynamic work
distribution

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Multi-GPU Runtime
Error/Exception Handling

• Competition for resources from
other applications or the
windowing system can cause
runtime failures (e.g. GPU out
of memory half way through an
algorithm)

• Handling of algorithm
exceptions (e.g. convergence
failure, NaN result, etc)

• Need to handle and/or
reschedule failed tiles of work

GPU 1
SM 1.0
128MB

GPU 3
SM 1.3

4096MB

…

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Some Example Multi-GPU Latencies
Relevant to Interactive Sci-Viz Apps

8.4us CUDA empty kernel (immediate return)
10.0us Sleeping barrier primitive (non-spinning

barrier that uses POSIX condition variables to prevent
idle CPU consumption while workers wait at the barrier)

20.3us pool wake / exec / sleep cycle (no CUDA)
21.4us pool wake / 1 x (tile fetch) / sleep cycle (no CUDA)
30.0us pool wake / 1 x (tile fetch / CUDA nop kernel) / sleep cycle,

test CUDA kernel computes an output address from its
thread index, but does no output

1441.0us pool wake / 100 x (tile fetch / CUDA nop kernel) / sleep cycle
test CUDA kernel computes an output address from its
thread index, but does no output

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

VMD Multi-GPU Molecular Orbital
Performance Results for C60

Intel Q6600 CPU, 4x Tesla C1060 GPUs,
Uses persistent thread pool to avoid GPU init overhead,

dynamic scheduler distributes work to GPUs

Kernel Cores/GPUs Runtime (s) Speedup Parallel
Efficiency

CPU-ICC-SSE 1 46.580 1.00 100%

CPU-ICC-SSE 4 11.740 3.97 99%
CUDA-const-cache 1 0.417 112 100%

CUDA-const-cache 2 0.220 212 94%

CUDA-const-cache 3 0.151 308 92%

CUDA-const-cache 4 0.113 412 92%

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

VMD Multi-GPU Molecular Orbital
Performance Results for C60
Using Mapped Host Memory

Intel Q6600 CPU, 3x Tesla C1060 GPUs,
GPU kernel writes output directly to host memory, no

extra cudaMemcpy() calls to fetch results!
See cudaHostAlloc() + cudaGetDevicePointer()

Kernel Cores/GPUs Runtime (s) Speedup
CPU-ICC-SSE 1 46.580 1.00

CPU-ICC-SSE 4 11.740 3.97
CUDA-const-cache 3 0.151 308.

CUDA-const-cache w/
mapped host memory

3 0.137 340.

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

MO Kernel Structure, Opportunity for JIT…
Data-driven, but representative loop trip counts in (…)

Loop over atoms (1 to ~200) {

Loop over electron shells for this atom type (1 to ~6) {

Loop over primitive functions for this shell type (1 to ~6) {

}

Loop over angular momenta for this shell type (1 to ~15) {}

}

}

Unpredictable (at compile-time, since data-driven) but
small loop trip counts result in significant loop overhead.
Dynamic kernel generation and JIT compilation can
unroll entirely, resulting in 40% speed boost

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Molecular Orbital Computation and Display Process
Dynamic Kernel Generation, Just-In-Time (JIT) C0mpilation

Read QM simulation log file, trajectory

Compute 3-D grid of MO wavefunction amplitudes
using basis set-specific CUDA kernel

Extract isosurface mesh from 3-D MO grid

Render the resulting surface

Preprocess MO coefficient data
eliminate duplicates, sort by type, etc…

For current frame and MO index,
retrieve MO wavefunction coefficients

One-time
initialization

Generate/compile basis set-specific CUDA kernel

For each trj frame, for
each MO shown

Initialize Pool of GPU
Worker Threads

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

…..

contracted_gto = 1.832937 * expf(-7.868272*dist2);

contracted_gto += 1.405380 * expf(-1.881289*dist2);

contracted_gto += 0.701383 * expf(-0.544249*dist2);

// P_SHELL

tmpshell = const_wave_f[ifunc++] * xdist;

tmpshell += const_wave_f[ifunc++] * ydist;

tmpshell += const_wave_f[ifunc++] * zdist;

value += tmpshell * contracted_gto;

contracted_gto = 0.187618 * expf(-0.168714*dist2);

// S_SHELL

value += const_wave_f[ifunc++] * contracted_gto;

contracted_gto = 0.217969 * expf(-0.168714*dist2);

// P_SHELL

tmpshell = const_wave_f[ifunc++] * xdist;

tmpshell += const_wave_f[ifunc++] * ydist;

tmpshell += const_wave_f[ifunc++] * zdist;

value += tmpshell * contracted_gto;

contracted_gto = 3.858403 * expf(-0.800000*dist2);

// D_SHELL

tmpshell = const_wave_f[ifunc++] * xdist2;

tmpshell += const_wave_f[ifunc++] * ydist2;

tmpshell += const_wave_f[ifunc++] * zdist2;

tmpshell += const_wave_f[ifunc++] * xdist * ydist;

tmpshell += const_wave_f[ifunc++] * xdist * zdist;

tmpshell += const_wave_f[ifunc++] * ydist * zdist;

value += tmpshell * contracted_gto;

…..

// loop over the shells belonging to this atom (or basis function)

for (shell=0; shell < maxshell; shell++) {

float contracted_gto = 0.0f;

// Loop over the Gaussian primitives of this contracted

// basis function to build the atomic orbital

int maxprim = const_num_prim_per_shell[shell_counter];

int shell_type = const_shell_symmetry[shell_counter];

for (prim=0; prim < maxprim; prim++) {

float exponent = const_basis_array[prim_counter];

float contract_coeff = const_basis_array[prim_counter + 1];

contracted_gto += contract_coeff * exp2f(-exponent*dist2);

prim_counter += 2;

}

/* multiply with the appropriate wavefunction coefficient */

float tmpshell=0;

switch (shell_type) {

case S_SHELL:

value += const_wave_f[ifunc++] * contracted_gto;

break;

[…..]

case D_SHELL:

tmpshell += const_wave_f[ifunc++] * xdist2;

tmpshell += const_wave_f[ifunc++] * ydist2;

tmpshell += const_wave_f[ifunc++] * zdist2;

tmpshell += const_wave_f[ifunc++] * xdist * ydist;

tmpshell += const_wave_f[ifunc++] * xdist * zdist;

tmpshell += const_wave_f[ifunc++] * ydist * zdist;

value += tmpshell * contracted_gto;

break;

General loop-based
CUDA kernel

Dynamically-generated
CUDA kernel (JIT)

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

NAMD: Molecular Dynamics on GPUs

http://www.ks.uiuc.edu/Research/gpu/
http://www.ks.uiuc.edu/Research/namd/

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Biomolecular Time Scales
Motion Time Scale

(sec)
Bond stretching 10-14 to 10-13

Elastic vibrations 10-12 to 10-11

Rotations of surface
sidechains

10-11 to 10-10

Hinge bending 10-11 to 10-7

Rotation of buried side
chains

10-4 to 1 sec

Allosteric transistions 10-5 to 1 sec

Local denaturations 10-5 to 10 sec

Max Timestep: 1 fs

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Typical Simulation Statistics

• 100,000 atoms (including water, lipid)
• 10-20 MB of data for entire system
• 100 Å per side periodic cell
• 12 Å cutoff of short-range nonbonded terms
• 10,000,000 timesteps (10 ns)
• 3 s/step on one processor (1 year total!)

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

• Spatially decompose
data and communication.
• Separate but related
work decomposition.
• “Compute objects”
facilitate iterative,
measurement-based load
balancing system.

NAMD Hybrid Parallel
Decomposition

Kale et al., J. Comp. Phys. 151:283-312, 1999.

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

847 objects 100,000

NAMD Parallel Molecular Dynamics:
Overlapping CPU/GPU Execution

Example
Configuration

Objects are assigned to processors and queued as data arrives.

108

Phillips et al., SC2008.

Offload to GPU

Phillips et al., SC2002.

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Overlapping GPU/CPU
Computation with Communication

Remote Force Local ForceGPU

CPU

Other Nodes/Processes

LocalRemote

x
f f

f

f

Local x

x

Update

One Timestep: want total runtime < 1ms

x

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Nonbonded Forces on CUDA GPU
• Most expensive calculation (~95% runtime in CPU versions)
• Work decomposed into patch pairs, as in regular NAMD

16kB Shared Memory
Patch A Coordinates & Parameters

32kB Registers
Patch B Coords, Params, & Forces

Texture Unit
Force Table
Interpolation

Constants
Exclusions

8kB cache
8kB cache

Thread block w/ 64 threads

Main Memory, hundreds of cycles of latency

Force computation on single multiprocessor

Stone et al., J. Comp. Chem. 28:2618-2640, 2007.

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Each Block Gets a Pair of Patches
• Block-level constants in shared memory to save registers
• patch_pair array is 16-byte aligned
• To coalesce reads each thread loads one int from global

memory and writes it into a union in shared memory

#define myPatchPair pp.pp
__shared__ union { patch_pair pp; unsigned int i[8]; } pp;
__shared__ bool same_patch;
__shared__ bool self_force;

if (threadIdx.x < (sizeof(patch_pair)>>2)) {
unsigned int tmp = ((unsigned int*)patch_pairs)[

(sizeof(patch_pair)>>2)*blockIdx.x+threadIdx.x];
pp.i[threadIdx.x] = tmp;

}
__syncthreads();
// now all threads can access myPatchPair safely

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Coalesced Loading of Atom Data

• Want to copy two 16-byte structs per thread
from global to shared memory

• Global memory access should be aligned on
16-byte boundaries to be coalesced

• 16-byte structs in shared memory cause
bank conflicts, 36-byte structs do not

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

struct __align__(16) atom { // must be multiple of 16!
float3 position;
float charge;

};

struct __align__(16) atom_param { // must be multiple of 16!
float sqrt_epsilon;
float half_sigma;
unsigned int index;
unsigned short excl_index;
unsigned short excl_maxdiff;

};

struct shared_atom { // do not align, size 36 to avoid bank conflicts
float3 position;
float charge;
float sqrt_epsilon;
float half_sigma;
unsigned int index;
unsigned int excl_index;
unsigned int excl_maxdiff;

};

Right-Sized Atom Data Structures

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Texture Unit Force Interpolation

• rsqrt() is implemented in hardware
• F(r-1)/r = ε(σ12A(r-1) + σ6B(r-1)) + qqC(r-1)
• F = r F(r-1)/r
• Piecewise linear interpolation of A,B,C

– F(r) is linear since r (a r-1 + b) = a + r b
• Texture unit hardware is a perfect match

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Const Memory Exclusion Tables

• Need to exclude bonded pairs of atoms
– Also apply correction for PME electrostatics

• Exclusions determined by using atom
indices to bit flags in exclusion arrays

• Repetitive molecular structures limit unique
exclusion arrays

• All exclusion data fits in constant cache

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Overview of Inner Loop

• Calculate forces on atoms in registers due to
atoms in shared memory
– Ignore Newton’s 3rd law (reciprocal forces)
– Do not sum forces for atoms in shared memory

• All threads access the same shared memory
atom, allowing shared memory broadcast

• Only calculate forces for atoms within
cutoff distance (roughly 10% of pairs)

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

texture<float4> force_table;
__constant__ unsigned int exclusions[];
__shared__ atom jatom[];
atom iatom; // per-thread atom, stored in registers
float4 iforce; // per-thread force, stored in registers
for (int j = 0; j < jatom_count; ++j) {

float dx = jatom[j].x - iatom.x; float dy = jatom[j].y - iatom.y; float dz = jatom[j].z - iatom.z;
float r2 = dx*dx + dy*dy + dz*dz;
if (r2 < cutoff2) {

float4 ft = texfetch(force_table, 1.f/sqrt(r2));
bool excluded = false;
int indexdiff = iatom.index - jatom[j].index;
if (abs(indexdiff) <= (int) jatom[j].excl_maxdiff) {
indexdiff += jatom[j].excl_index;
excluded = ((exclusions[indexdiff>>5] & (1<<(indexdiff&31))) != 0);

}
float f = iatom.half_sigma + jatom[j].half_sigma; // sigma
f *= f*f; // sigma^3
f *= f; // sigma^6
f *= (f * ft.x + ft.y); // sigma^12 * fi.x - sigma^6 * fi.y
f *= iatom.sqrt_epsilon * jatom[j].sqrt_epsilon;
float qq = iatom.charge * jatom[j].charge;
if (excluded) { f = qq * ft.w; } // PME correction
else { f += qq * ft.z; } // Coulomb
iforce.x += dx * f; iforce.y += dy * f; iforce.z += dz * f;
iforce.w += 1.f; // interaction count or energy

}
} Stone et al., J. Comp. Chem. 28:2618-2640, 2007.

Force Interpolation

Exclusions

Parameters

Accumulation

NonbondedNonbonded ForcesForces
CUDA CodeCUDA Code

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

What About Warp Divergence?

• Almost all exclusion checks fail, and the
extra work for an excluded pair is minimal

• Cutoff test isn’t completely random
– Hydrogens follow their heavy atoms
– Atoms in far corners of patches have few

neighbors within cutoff distance

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Recent NAMD GPU Developments
• Features:

– Full electrostatics with PME
– Multiple timestepping
– 1-4 Exclusions
– Constant-pressure simulation

• Improved force accuracy:
– Patch-centered atom coordinates
– Increased precision of force interpolation

• GPU sharing with coordination via message passing
• Next-gen “Fermi” GPUs:

– Double precision force computations will be almost “free”
– Larger shared memory, increased effective memory bandwidth
– Potential for improved overlap of “local” and “remote” work units

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

NAMD Beta 2 Coming Soon
• Nightly builds of CUDA binaries for 64-bit Linux are

available on the NAMD web site now…

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Acknowledgements
• Additional Information and References:

– http://www.ks.uiuc.edu/Research/gpu/
• Questions, source code requests:

– John Stone: johns@ks.uiuc.edu
• Acknowledgements:

• J. Phillips, D. Hardy, J. Saam,
UIUC Theoretical and Computational Biophysics Group,
NIH Resource for Macromolecular Modeling and Bioinformatics

• Prof. Wen-mei Hwu, Christopher Rodrigues, UIUC IMPACT Group
• CUDA team at NVIDIA
• UIUC NVIDIA CUDA Center of Excellence
• NIH support: P41-RR05969

http://www.ks.uiuc.edu/Research/gpu/

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Publications
http://www.ks.uiuc.edu/Research/gpu/

• Probing Biomolecular Machines with Graphics Processors. J. Phillips, J. Stone.
Communications of the ACM, 52(10):34-41, 2009.

• GPU Clusters for High Performance Computing. V. Kindratenko, J. Enos, G. Shi,
M. Showerman, G. Arnold, J. Stone, J. Phillips, W. Hwu. Workshop on Parallel
Programming on Accelerator Clusters (PPAC), IEEE Cluster 2009. In press.

• Long time-scale simulations of in vivo diffusion using GPU hardware.
E. Roberts, J. Stone, L. Sepulveda, W. Hwu, Z. Luthey-Schulten. In IPDPS’09:
Proceedings of the 2009 IEEE International Symposium on Parallel & Distributed
Computing, pp. 1-8, 2009.

• High Performance Computation and Interactive Display of Molecular Orbitals on
GPUs and Multi-core CPUs. J. Stone, J. Saam, D. Hardy, K. Vandivort, W. Hwu,
K. Schulten, 2nd Workshop on General-Purpose Computation on Graphics
Pricessing Units (GPGPU-2), ACM International Conference Proceeding Series,
volume 383, pp. 9-18, 2009.

• Multilevel summation of electrostatic potentials using graphics processing units.
D. Hardy, J. Stone, K. Schulten. J. Parallel Computing, 35:164-177, 2009.

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Publications (cont)
http://www.ks.uiuc.edu/Research/gpu/

• Adapting a message-driven parallel application to GPU-accelerated clusters.
J. Phillips, J. Stone, K. Schulten. Proceedings of the 2008 ACM/IEEE Conference
on Supercomputing, IEEE Press, 2008.

• GPU acceleration of cutoff pair potentials for molecular modeling applications.
C. Rodrigues, D. Hardy, J. Stone, K. Schulten, and W. Hwu. Proceedings of the
2008 Conference On Computing Frontiers, pp. 273-282, 2008.

• GPU computing. J. Owens, M. Houston, D. Luebke, S. Green, J. Stone, J. Phillips.
Proceedings of the IEEE, 96:879-899, 2008.

• Accelerating molecular modeling applications with graphics processors. J. Stone,
J. Phillips, P. Freddolino, D. Hardy, L. Trabuco, K. Schulten. J. Comp. Chem.,
28:2618-2640, 2007.

• Continuous fluorescence microphotolysis and correlation spectroscopy. A.
Arkhipov, J. Hüve, M. Kahms, R. Peters, K. Schulten. Biophysical Journal,
93:4006-4017, 2007.

	GPU Accelerated Visualization and Analysis in VMD�and�Recent NAMD Developments
	VMD – “Visual Molecular Dynamics”
	Range of VMD Usage Scenarios
	Need for Multi-GPU �Acceleration in VMD
	CUDA Acceleration in VMD
	Electrostatic Potential Maps
	Infinite vs. Cutoff Potentials
	Short-range Cutoff Summation
	Cutoff Summation on the GPU
	Cutoff Summation Performance
	Cutoff Summation Observations
	Multilevel Summation Method
	Multilevel Summation Main Ideas
	Multilevel Summation Calculation
	Lattice Cutoff Summation
	Lattice Cutoff Summation on GPU
	Evaluation Using Sliding Window
	Multilevel Summation on the GPU
	Computing Molecular Orbitals
	Animating Molecular Orbitals
	Molecular Orbital Computation and Display Process
	CUDA Block/Grid Decomposition
	MO Kernel for One Grid Point (Naive C)
	MO GPU Kernel Snippet:�Contracted GTO Loop, Use of Constant Memory
	MO GPU Kernel Snippet:�Unrolled Angular Momenta Loop
	Preprocessing of Atoms, Basis Set, and �Wavefunction Coefficients
	GPU Traversal of Atom Type, Basis Set,� Shell Type, and Wavefunction Coefficients
	Use of GPU On-chip Memory
	MO GPU Kernel Snippet:�Loading Tiles Into Shared Memory On-Demand
	VMD MO Performance Results for C60�Sun Ultra 24: Intel Q6600, NVIDIA GTX 280
	Performance Evaluation:�Molekel, MacMolPlt, and VMD� Sun Ultra 24: Intel Q6600, NVIDIA GTX 280
	VMD Orbital Dynamics Proof of Concept
	Multi-GPU Load Balance
	Multi-GPU Dynamic Work Distribution
	Multi-GPU Runtime �Error/Exception Handling
	Some Example Multi-GPU Latencies Relevant to Interactive Sci-Viz Apps
	VMD Multi-GPU Molecular Orbital �Performance Results for C60
	VMD Multi-GPU Molecular Orbital �Performance Results for C60 �Using Mapped Host Memory
	MO Kernel Structure, Opportunity for JIT…�Data-driven, but representative loop trip counts in (…)
	Molecular Orbital Computation and Display Process�Dynamic Kernel Generation, Just-In-Time (JIT) C0mpilation
	NAMD: Molecular Dynamics on GPUs
	Biomolecular Time Scales
	Typical Simulation Statistics
	
	Overlapping GPU/CPU Computation with Communication
	Nonbonded Forces on CUDA GPU
	Each Block Gets a Pair of Patches
	Coalesced Loading of Atom Data
	Texture Unit Force Interpolation
	Const Memory Exclusion Tables
	Overview of Inner Loop
	What About Warp Divergence?
	Recent NAMD GPU Developments
	NAMD Beta 2 Coming Soon
	Acknowledgements
	Publications�http://www.ks.uiuc.edu/Research/gpu/
	Publications (cont)�http://www.ks.uiuc.edu/Research/gpu/

