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VMD – “Visual Molecular Dynamics”
• Visualization and analysis of molecular dynamics simulations, 

sequence data, volumetric data, quantum chemistry simulations, 
particle systems, …

• User extensible with scripting and plugins
• http://www.ks.uiuc.edu/Research/vmd/
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Range of VMD Usage Scenarios
• Users run VMD on a diverse range of hardware: 

laptops, desktops, clusters, and supercomputers
• Typically used as a desktop application, for 

interactive 3D molecular graphics and analysis
• Can also be run in pure text mode for numerically 

intensive analysis tasks, batch mode movie 
rendering, etc…

• GPU acceleration provides an opportunity to make 
some slow, or batch calculations capable of being 
run interactively, or on-demand…
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Need for Multi-GPU 
Acceleration in VMD

• Ongoing increases in supercomputing resources at 
NSF centers such as NCSA enable increased 
simulation complexity, fidelity, and longer time 
scales…

• Drives need for more visualization and analysis 
capability at the desktop and on clusters running 
batch analysis jobs

• Desktop use is the most compute-resource-limited 
scenario, where GPUs can make a big impact…
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Molecular orbital  

calculation and display

100x to 120x faster

Electrostatic field 

calculation, ion placement

20x to 44x faster

Imaging of gas migration 
pathways in proteins with 
implicit ligand sampling

20x to 30x faster

CUDA Acceleration in VMD



NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Electrostatic Potential Maps
• Electrostatic potentials 

evaluated on 3-D lattice:

• Applications include:
– Ion placement for 

structure building
– Time-averaged potentials 

for simulation
– Visualization and 

analysis Isoleucine tRNA synthetase
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Infinite vs. Cutoff Potentials 
• Infinite range potential:

– All atoms contribute to all lattice points
– Quadratic time complexity

• Cutoff (range-limited) potential:
– Atoms contribute within cutoff distance to lattice points 

resulting in linear time complexity 
– Used for fast decaying interactions (e.g. Lennard-Jones, 

Buckingham)
• Fast full electrostatics:

– Replace electrostatic potential with shifted form
– Combine short-range part with long-range approximation
– Multilevel summation method (MSM), linear time complexity
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Short-range Cutoff Summation
• Each lattice point accumulates electrostatic potential 

contribution from atoms within cutoff distance:
if (rij < cutoff)

potential[j] += (charge[i] / rij) * s(rij)
• Smoothing function s(r) is algorithm dependent

Cutoff radius rij: distance 
from lattice[j] 

to atom[i]

Lattice point j 
being evaluated atom[i]
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Cutoff Summation on the GPU

Global memory Constant memory
Offsets for bin 
neighborhood

Shared memory

atom bin

Potential 
map 

regions Bins of atoms

Each thread block cooperatively 
loads atom bins from surrounding 
neighborhood into shared memory 
for evaluation

Atoms are spatially hashed into fixed-size bins
CPU handles overflowed bins (GPU kernel can be very aggressive)
GPU thread block calculates corresponding region of potential map, 
Bin/region neighbor checks costly; solved with universal table look-up

Look-up table 
encodes “logic” of 
spatial geometry 
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Cutoff Summation Performance

GPU acceleration of cutoff pair potentials for molecular modeling 
applications. C. Rodrigues, D. Hardy, J. Stone, K. Schulten, W. Hwu. 

Proceedings of the 2008 Conference On Computing Frontiers, pp. 273-
282, 2008.

GPU cutoff with 
CPU overlap:

17x-21x faster than 
CPU core

If asynchronous 
stream blocks due 

to queue filling, 
performance will 

degrade from 
peak…
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Cutoff Summation Observations
• Use of CPU to handle overflowed bins is very 

effective, overlaps completely with GPU work
• Caveat: Overfilling stream queue can trigger 

blocking behavior.  Recent drivers queue  >100 
ops before blocking.

• Higher precision:
– Compensated summation (all GPUs) or double-

precision (GT200 only) only a ~10% performance 
penalty vs. single-precision arithmetic

– Next-gen “Fermi” GPUs will have an even lower 
performance cost for double-precision arithmetic
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Multilevel Summation Method
• Approximates full electrostatic potential
• Calculates sum of smoothed pairwise potentials 

interpolated from a hierarchy of lattices
• Advantages over particle-mesh Ewald, fast multipole:

– Algorithm has linear time complexity
– Permits non-periodic and periodic boundaries
– Produces continuous forces for dynamics (advantage 

over FMM)
– Avoids 3-D FFTs for better parallel scaling (advantage 

over PME)
– Spatial separation allows use of multiple time steps
– Can be extended to other pairwise interactions

• Skeel, Tezcan, Hardy, J Comp Chem, 2002 — Computing forces for molecular dynamics

• Hardy, Stone, Schulten, J Paral Comp, 2009 — GPU-acceleration of potential map calculation
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Multilevel Summation Main Ideas 
• Split the 1/r potential into a short-range cutoff part plus 

smoothed parts that are successively more slowly varying.  
All but the top level potential are cut off.

• Smoothed potentials are interpolated from successively 
coarser lattices.

• Finest lattice spacing h and smallest cutoff distance a are 
doubled at each successive level. 

=

+

+

atoms

h-lattice

2h-lattice

Split the 1/r potential Interpolate the smoothed potentials

a 2a

1/r
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Multilevel Summation Calculation
map

potential
exact

short-range
interactions

interpolated
long-range
interactions

+=

short-range cutoff

interpolationanterpolation

h-lattice cutoff

2h-lattice cutoff

4h-lattice

restriction

restriction

prolongation

prolongation
long-range

parts

atom
charges

map
potentials

Computational Steps
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Lattice Cutoff Summation
• Each lattice point accumulates electrostatic potential contribution from 

all lattice point charges within cutoff distance
• Relative distances are the same between points on a uniform lattice, 

multiplication by a precomputed stencil of “weights”
• Weights at each level are identical up to a scaling factor (due to choice 

of splitting and doubling of lattice spacing and cutoff)
• Calculate as 3D convolution of sub-cube of lattice point charges with 

enclosing cube of weights

Cutoff radius

Accumulate potential

Sphere of 
lattice point 

charges
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Lattice Cutoff Summation on GPU
• Store stencil of weights in constant memory
• Thread blocks calculate 4x4x4 regions of lattice potentials
• Load nearby regions of lattice charges into shared memory
• Evaluate all lattice levels concurrently, scaling by level factor (keeps 

GPU from running out of work at upper lattice levels)

Global memory Constant memory

Shared memory

Lattice 
potential 
regions

Each thread block cooperatively loads 
lattice charge regions into shared 
memory for evaluation, multiply by 
weight stencil from constant memory

Lattice 
charge 
regions

Stencil of weights

Sub-regions of 
lattice charge
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Evaluation Using Sliding Window
• Every thread in block needs to simultaneously read and use 

the same weight from constant memory
• Read 8x8x8 block (8 regions) of lattice charges into shared 

memory
• Slide 4x4x4 window by 4 shifts along each dimension
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Multilevel Summation on the GPU

Computational steps CPU (s) w/ GPU (s) Speedup

Short-range cutoff 480.07 14.87 32.3

Long-range anterpolation 0.18

restriction 0.16

lattice cutoff 49.47 1.36 36.4

prolongation 0.17

interpolation 3.47

Total 533.52 20.21 26.4

Performance profile for 0.5 Å map of potential for  1.5 M atoms.
Hardware platform is Intel QX6700 CPU and NVIDIA GTX 280.

Accelerate  short-range cutoff and lattice cutoff parts
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Photobiology of Vision and Photosynthesis
Investigations of the chromatophore, a photosynthetic organelle

Full chromatophore model will permit structural, chemical and kinetic 
investigations at a structural systems biology level

Light

Electrostatic field of chromatophore model
from multilevel summation method:

computed with 3 GPUs (G80) in ~90 seconds, 
46x faster than single CPU core

Electrostatics needed to build full 
structural model, place ions, study 

macroscopic properties

Partial model:    
~10M atoms
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Computing Molecular Orbitals
• Visualization of MOs aids 

in understanding the 
chemistry of molecular 
system

• MO spatial distribution is 
correlated with probability 
density for an electron(s)

• Calculation of high 
resolution MO grids can 
require tens to hundreds of 
seconds on CPUs
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Animating Molecular Orbitals
• Animation of (classical 

mechanics) molecular 
dynamics trajectories 
provides insight into 
simulation results

• To do the same for QM 
or QM/MM simulations 
one must compute MOs 
at ~10 FPS or more

• >100x speedup (GPU) 
over existing tools now 
makes this possible! C60
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Molecular Orbital Computation and Display Process

Read QM simulation log file, trajectory

Compute 3-D grid of MO wavefunction amplitudes
Most performance-demanding step, run on GPU…

Extract isosurface mesh from 3-D MO grid 

Apply user coloring/texturing 
and render the resulting surface 

Preprocess MO coefficient data
eliminate duplicates, sort by type, etc…

For current frame and MO index, 
retrieve MO wavefunction coefficients  

One-time 
initialization

For each trj frame, for   
each MO shown

Initialize Pool of GPU 
Worker Threads
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CUDA Block/Grid Decomposition

Padding optimizes glob. mem 
perf, guaranteeing coalescing

Grid of thread blocks:

0,0 0,1

1,0 1,1

…

… …

…
Small 8x8 thread 
blocks afford large 
per-thread register 
count, shared mem.
Threads compute 
one MO lattice 
point each.

…

MO 3-D lattice decomposes into   
2-D slices (CUDA grids)
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MO Kernel for One Grid Point  (Naive C)

Loop over atoms

Loop over shells

Loop over primitives: 
largest component of 
runtime, due to expf()

Loop over angular 
momenta

(unrolled in real code)

…

for (at=0; at<numatoms; at++) {

int prim_counter = atom_basis[at];

calc_distances_to_atom(&atompos[at], &xdist, &ydist, &zdist, &dist2, &xdiv);

for (contracted_gto=0.0f, shell=0; shell < num_shells_per_atom[at]; shell++) {

int shell_type = shell_symmetry[shell_counter];

for (prim=0; prim < num_prim_per_shell[shell_counter];  prim++) {

float exponent      = basis_array[prim_counter ];

float contract_coeff = basis_array[prim_counter + 1];

contracted_gto += contract_coeff * expf(-exponent*dist2);

prim_counter += 2;

}

for (tmpshell=0.0f, j=0, zdp=1.0f; j<=shell_type; j++, zdp*=zdist) {

int imax = shell_type - j; 

for (i=0, ydp=1.0f, xdp=pow(xdist, imax); i<=imax; i++, ydp*=ydist, xdp*=xdiv)

tmpshell += wave_f[ifunc++] * xdp * ydp * zdp;

}

value += tmpshell * contracted_gto;

shell_counter++;

} 

} …..
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MO GPU Kernel Snippet:
Contracted GTO Loop, Use of Constant Memory

[… outer loop over atoms …]

float dist2 = xdist2 + ydist2 + zdist2;

// Loop over the shells belonging to this atom (or basis function)

for (shell=0; shell < maxshell; shell++) {

float contracted_gto = 0.0f;

// Loop over the Gaussian primitives of this contracted basis function to build the atomic orbital

int maxprim = const_num_prim_per_shell[shell_counter];

int shelltype = const_shell_types[shell_counter];

for (prim=0; prim < maxprim;  prim++) {

float exponent   = const_basis_array[prim_counter  ];

float contract_coeff = const_basis_array[prim_counter + 1];

contracted_gto += contract_coeff * __expf(-exponent*dist2);

prim_counter += 2;

}

[… continue on to angular momenta loop …]

Constant memory: 
nearly register-
speed when array 
elements accessed 
in unison by all 
peer threads….
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MO GPU Kernel Snippet:
Unrolled Angular Momenta Loop

/* multiply with the appropriate wavefunction coefficient */

float tmpshell=0;

switch (shelltype) {

case S_SHELL:

value += const_wave_f[ifunc++] * contracted_gto;

break;

[… P_SHELL case …]

case D_SHELL:

tmpshell += const_wave_f[ifunc++] * xdist2;

tmpshell += const_wave_f[ifunc++] * xdist * ydist;

tmpshell += const_wave_f[ifunc++] * ydist2;

tmpshell += const_wave_f[ifunc++] * xdist * zdist;

tmpshell += const_wave_f[ifunc++] * ydist * zdist;

tmpshell += const_wave_f[ifunc++] * zdist2;

value += tmpshell * contracted_gto;

break;

[... Other cases: F_SHELL, G_SHELL, etc …]

} // end switch

Loop unrolling:

•Saves registers 
(important for GPUs!)

•Reduces loop control 
overhead

•Increases arithmetic 
intensity
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Preprocessing of Atoms, Basis Set, and 
Wavefunction Coefficients

• Must make effective use of high bandwidth, low-
latency GPU on-chip memory, or CPU cache:
– Overall storage requirement reduced by eliminating 

duplicate basis set coefficients
– Sorting atoms by element type allows re-use of basis set 

coefficients for subsequent atoms of identical type

• Padding, alignment of arrays guarantees coalesced 
GPU global memory accesses, CPU SSE loads
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GPU Traversal of Atom Type, Basis Set,
Shell Type, and Wavefunction Coefficients

• Loop iterations always access same or consecutive 
array elements for all threads in a thread block:
– Yields good constant memory cache performance
– Increases shared memory tile reuse

Monotonically increasing memory references

Different at each 
timestep, and for   

each MO

Constant for all MOs, 
all timesteps

Strictly sequential memory references
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Use of GPU On-chip Memory
• If total data less than 64 kB, use only const mem:

– Broadcasts data to all threads, no global memory accesses!
• For large data, shared memory used as a program-

managed cache, coefficients loaded on-demand:
– Tiles sized large enough to service entire inner loop runs, 

broadcast to all 64 threads in a block
– Complications: nested loops, multiple arrays, varying length
– Key to performance is to locate tile loading checks outside of 

the two performance-critical inner loops
– Only 27% slower than hardware caching provided by 

constant memory (GT200)
– Next-gen “Fermi” GPUs will provide larger on-chip shared 

memory, L1/L2 caches, reduced control overhead
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Coefficient array in GPU global memory

Array tile loaded in GPU shared memory.  Tile size is a power-of-two, 
multiple of coalescing size, and allows simple indexing in inner loops 
(array indices are merely offset for reference within loaded tile).

64-Byte memory 
coalescing block boundaries

Full tile padding

Surrounding data,
unreferenced

by next batch of 
loop iterations
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MO GPU Kernel Snippet:
Loading Tiles Into Shared Memory On-Demand 

[… outer loop over atoms …]

if ((prim_counter + (maxprim<<1)) >= SHAREDSIZE) {

prim_counter += sblock_prim_counter;

sblock_prim_counter = prim_counter & MEMCOAMASK;

s_basis_array[sidx     ] = basis_array[sblock_prim_counter + sidx    ];

s_basis_array[sidx + 64] = basis_array[sblock_prim_counter + sidx +  64];

s_basis_array[sidx + 128] = basis_array[sblock_prim_counter + sidx + 128];

s_basis_array[sidx + 192] = basis_array[sblock_prim_counter + sidx + 192];

prim_counter -= sblock_prim_counter;

__syncthreads();

} 

for (prim=0; prim < maxprim;  prim++) {

float exponent   = s_basis_array[prim_counter    ];

float contract_coeff = s_basis_array[prim_counter + 1];

contracted_gto += contract_coeff * __expf(-exponent*dist2);

prim_counter += 2;

}

[… continue on to angular momenta loop …]



NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

VMD MO Performance Results for C60
Sun Ultra 24: Intel Q6600, NVIDIA GTX 280

Kernel Cores/GPUs Runtime (s) Speedup
CPU ICC-SSE 1 46.58 1.00

CPU ICC-SSE 4 11.74 3.97

CPU ICC-SSE-approx** 4 3.76 12.4

CUDA-tiled-shared 1 0.46 100.

CUDA-const-cache 1 0.37 126.

CUDA-const-cache-JIT* 1 0.27 173.
(JIT 40% faster)

C60 basis set 6-31Gd.  We used an unusually-high resolution MO grid for 
accurate timings.  A more typical calculation has 1/8th the grid points.

* Runtime-generated JIT kernel compiled using batch mode CUDA tools
**Reduced-accuracy approximation of expf(),                                    
cannot be used for zero-valued MO isosurfaces
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Performance Evaluation:
Molekel, MacMolPlt, and VMD

Sun Ultra 24: Intel Q6600, NVIDIA GTX 280
C60-A C60-B Thr-A Thr-B Kr-A Kr-B

Atoms 60 60 17 17 1 1

Basis funcs (unique) 300 (5) 900 (15) 49 (16) 170 (59) 19 (19) 84 (84)

Kernel Cores 
GPUs

Speedup vs. Molekel on 1 CPU core

Molekel 1* 1.0 1.0 1.0 1.0 1.0 1.0
MacMolPlt 4 2.4 2.6 2.1 2.4 4.3 4.5
VMD GCC-cephes 4 3.2 4.0 3.0 3.5 4.3 6.5
VMD ICC-SSE-cephes 4 16.8 17.2 13.9 12.6 17.3 21.5
VMD ICC-SSE-approx** 4 59.3 53.4 50.4 49.2 54.8 69.8
VMD CUDA-const-cache 1 552.3 533.5 355.9 421.3 193.1 571.6
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VMD Orbital Dynamics Proof of Concept
One GPU can compute and animate this movie on-the-fly!

CUDA const-cache kernel,     
Sun Ultra 24, GeForce GTX 285 

GPU MO grid calc. 0.016 s

CPU surface gen, 
volume gradient, 
and GPU rendering

0.033 s

Total runtime 0.049 s
Frame rate 20 FPS

With GPU speedups over 100x, previously insignificant CPU 
surface gen, gradient calc, and rendering are now 66% of runtime.
Need GPU-accelerated surface gen next…

threonine
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Multi-GPU Load Balance

• Many early CUDA codes 
assumed all GPUs were 
identical 

• All new NVIDIA cards support 
CUDA, so a typical machine 
may have a diversity of GPUs 
of varying capability

• Static decomposition works 
poorly for non-uniform 
workload, or diverse GPUs,  
e.g. w/ 2 SM, 16 SM, 30 SM

GPU 1
2 SMs

GPU 3
30 SMs

…
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Multi-GPU Dynamic Work Distribution
// Each GPU worker thread loops over
// subset 2-D planes in a 3-D cube…
while (!threadpool_next_tile(&parms, 

tilesize, &tile){
// Process one plane of work…
// Launch one CUDA kernel for each
//   loop iteration taken…
// Shared iterator automatically 
//   balances load on GPUs

}

GPU 1 GPU 3…

Dynamic work 
distribution
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Multi-GPU Runtime 
Error/Exception Handling

• Competition for resources from 
other applications or the 
windowing system can cause 
runtime failures (e.g. GPU out 
of memory half way through an 
algorithm)

• Handling of algorithm 
exceptions (e.g. convergence 
failure, NaN result, etc)

• Need to handle and/or 
reschedule failed tiles of work

GPU 1
SM 1.0
128MB

GPU 3
SM 1.3

4096MB

…
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Some Example Multi-GPU Latencies 
Relevant to Interactive Sci-Viz Apps

8.4us       CUDA empty kernel (immediate return)
10.0us       Sleeping barrier primitive (non-spinning

barrier that uses POSIX condition variables to prevent
idle CPU consumption while workers wait at the barrier)

20.3us        pool wake / exec / sleep cycle (no CUDA)
21.4us        pool wake / 1 x (tile fetch) / sleep cycle (no CUDA)
30.0us        pool wake / 1 x (tile fetch / CUDA nop kernel) / sleep cycle,

test CUDA kernel computes an output address from its
thread index, but does no output

1441.0us      pool wake / 100 x (tile fetch / CUDA nop kernel) / sleep cycle
test CUDA kernel computes an output address from its
thread index, but does no output
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VMD Multi-GPU Molecular Orbital 
Performance Results for C60

Intel Q6600 CPU, 4x Tesla C1060 GPUs,
Uses persistent thread pool to avoid GPU init overhead, 

dynamic scheduler distributes work to GPUs

Kernel Cores/GPUs Runtime (s) Speedup Parallel 
Efficiency

CPU-ICC-SSE 1 46.580 1.00 100%

CPU-ICC-SSE 4 11.740 3.97 99%
CUDA-const-cache 1 0.417 112 100%

CUDA-const-cache 2 0.220 212 94%

CUDA-const-cache 3 0.151 308 92%

CUDA-const-cache 4 0.113 412 92%



NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

VMD Multi-GPU Molecular Orbital 
Performance Results for C60
Using Mapped Host Memory

Intel Q6600 CPU, 3x Tesla C1060 GPUs,
GPU kernel writes output directly to host memory, no 

extra cudaMemcpy() calls to fetch results!
See cudaHostAlloc() + cudaGetDevicePointer()

Kernel Cores/GPUs Runtime (s) Speedup
CPU-ICC-SSE 1 46.580 1.00

CPU-ICC-SSE 4 11.740 3.97
CUDA-const-cache 3 0.151 308.

CUDA-const-cache w/ 
mapped host memory

3 0.137 340.
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MO Kernel Structure, Opportunity for JIT…
Data-driven, but representative loop trip counts in (…)

Loop over atoms (1 to ~200) {                  

Loop over electron shells for this atom type (1 to ~6) {

Loop over primitive functions for this shell type (1 to ~6) {

}

Loop over angular momenta for this shell type (1 to ~15) {}

}

}

Unpredictable (at compile-time, since data-driven ) but 
small loop trip counts result in significant loop overhead.  
Dynamic kernel generation and JIT compilation can 
unroll entirely, resulting in 40% speed boost
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Molecular Orbital Computation and Display Process
Dynamic Kernel Generation, Just-In-Time (JIT) C0mpilation

Read QM simulation log file, trajectory

Compute 3-D grid of MO wavefunction amplitudes
using basis set-specific CUDA kernel

Extract isosurface mesh from 3-D MO grid 

Render the resulting surface 

Preprocess MO coefficient data
eliminate duplicates, sort by type, etc…

For current frame and MO index, 
retrieve MO wavefunction coefficients  

One-time 
initialization

Generate/compile basis set-specific CUDA kernel

For each trj frame, for   
each MO shown

Initialize Pool of GPU 
Worker Threads
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….. 

contracted_gto = 1.832937 * expf(-7.868272*dist2);

contracted_gto += 1.405380 * expf(-1.881289*dist2);

contracted_gto += 0.701383 * expf(-0.544249*dist2);

// P_SHELL

tmpshell = const_wave_f[ifunc++] * xdist;

tmpshell += const_wave_f[ifunc++] * ydist;

tmpshell += const_wave_f[ifunc++] * zdist;

value += tmpshell * contracted_gto;

contracted_gto = 0.187618 * expf(-0.168714*dist2);

// S_SHELL

value += const_wave_f[ifunc++] * contracted_gto;

contracted_gto = 0.217969 * expf(-0.168714*dist2);

// P_SHELL

tmpshell = const_wave_f[ifunc++] * xdist;

tmpshell += const_wave_f[ifunc++] * ydist;

tmpshell += const_wave_f[ifunc++] * zdist;

value += tmpshell * contracted_gto;

contracted_gto = 3.858403 * expf(-0.800000*dist2);

// D_SHELL

tmpshell = const_wave_f[ifunc++] * xdist2;

tmpshell += const_wave_f[ifunc++] * ydist2;

tmpshell += const_wave_f[ifunc++] * zdist2;

tmpshell += const_wave_f[ifunc++] * xdist * ydist;

tmpshell += const_wave_f[ifunc++] * xdist * zdist;

tmpshell += const_wave_f[ifunc++] * ydist * zdist;

value += tmpshell * contracted_gto;

….. 

// loop over the shells belonging to this atom (or basis function)

for (shell=0; shell < maxshell; shell++) {

float contracted_gto = 0.0f;

// Loop over the Gaussian primitives of this contracted

// basis function to build the atomic orbital

int maxprim = const_num_prim_per_shell[shell_counter];

int shell_type = const_shell_symmetry[shell_counter];

for (prim=0; prim < maxprim;  prim++) {

float exponent       = const_basis_array[prim_counter   ];

float contract_coeff = const_basis_array[prim_counter + 1];

contracted_gto += contract_coeff * exp2f(-exponent*dist2);

prim_counter += 2;

}

/* multiply with the appropriate wavefunction coefficient */

float tmpshell=0;

switch (shell_type) {

case S_SHELL:

value += const_wave_f[ifunc++] * contracted_gto;

break;

[…..]

case D_SHELL:

tmpshell += const_wave_f[ifunc++] * xdist2;

tmpshell += const_wave_f[ifunc++] * ydist2;

tmpshell += const_wave_f[ifunc++] * zdist2;

tmpshell += const_wave_f[ifunc++] * xdist * ydist;

tmpshell += const_wave_f[ifunc++] * xdist * zdist;

tmpshell += const_wave_f[ifunc++] * ydist * zdist;

value += tmpshell * contracted_gto;

break;

General loop-based 
CUDA kernel

Dynamically-generated 
CUDA kernel (JIT)
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NAMD: Molecular Dynamics on GPUs

http://www.ks.uiuc.edu/Research/gpu/
http://www.ks.uiuc.edu/Research/namd/
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Biomolecular Time Scales
Motion Time Scale

(sec)
Bond stretching 10-14 to 10-13

Elastic vibrations 10-12 to 10-11

Rotations of surface
sidechains

10-11 to 10-10

Hinge bending 10-11 to 10-7

Rotation of buried side
chains

10-4 to 1 sec

Allosteric transistions 10-5 to 1 sec

Local denaturations 10-5 to 10 sec

Max Timestep: 1 fs
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Typical Simulation Statistics

• 100,000 atoms (including water, lipid)
• 10-20 MB of data for entire system 
• 100 Å per side periodic cell
• 12 Å cutoff of short-range nonbonded terms
• 10,000,000 timesteps (10 ns)
• 3 s/step on one processor (1 year total!)
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• Spatially decompose 
data and communication.
• Separate but related 
work decomposition.
• “Compute objects” 
facilitate iterative, 
measurement-based load 
balancing system.

NAMD Hybrid Parallel 
Decomposition

Kale et al., J. Comp. Phys. 151:283-312, 1999.
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847 objects 100,000

NAMD Parallel Molecular Dynamics: 
Overlapping CPU/GPU Execution

Example 
Configuration

Objects are assigned to processors and queued as data arrives.

108

Phillips et al., SC2008.

Offload to GPU

Phillips et al., SC2002.
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Overlapping GPU/CPU 
Computation with Communication

Remote Force Local ForceGPU

CPU

Other Nodes/Processes

LocalRemote

x
f f

f

f

Local x

x

Update

One Timestep: want total runtime < 1ms

x
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Nonbonded Forces on CUDA GPU
• Most expensive calculation (~95% runtime in CPU versions)
• Work decomposed into patch pairs, as in regular NAMD

16kB Shared Memory
Patch A Coordinates & Parameters

32kB Registers
Patch B Coords, Params, & Forces

Texture Unit
Force Table
Interpolation

Constants
Exclusions

8kB cache
8kB cache

Thread block w/ 64 threads

Main Memory, hundreds of cycles of latency

Force computation on single multiprocessor

Stone et al., J. Comp. Chem. 28:2618-2640, 2007.
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Each Block Gets a Pair of Patches
• Block-level constants in shared memory to save registers
• patch_pair array is 16-byte aligned
• To coalesce reads each thread loads one int from global 

memory and writes it into a union in shared memory

#define myPatchPair pp.pp
__shared__ union { patch_pair pp; unsigned int i[8]; } pp;
__shared__ bool same_patch;
__shared__ bool self_force;

if ( threadIdx.x < (sizeof(patch_pair)>>2) ) {
unsigned int tmp = ((unsigned int*)patch_pairs)[

(sizeof(patch_pair)>>2)*blockIdx.x+threadIdx.x];
pp.i[threadIdx.x] = tmp;

}
__syncthreads();
// now all threads can access myPatchPair safely
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Coalesced Loading of Atom Data

• Want to copy two 16-byte structs per thread 
from global to shared memory

• Global memory access should be aligned on 
16-byte boundaries to be coalesced

• 16-byte structs in shared memory cause 
bank conflicts, 36-byte structs do not
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struct __align__(16) atom {  // must be multiple of 16!
float3 position;
float charge;

};

struct __align__(16) atom_param {  // must be multiple of 16!
float sqrt_epsilon;
float half_sigma;
unsigned int index;
unsigned short excl_index;
unsigned short excl_maxdiff;

};

struct shared_atom {  // do not align, size 36 to avoid bank conflicts
float3 position;
float charge;
float sqrt_epsilon;
float half_sigma;
unsigned int index;
unsigned int excl_index;
unsigned int excl_maxdiff;

};

Right-Sized Atom Data Structures
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Texture Unit Force Interpolation

• rsqrt() is implemented in hardware
• F(r-1)/r = ε(σ12A(r-1) + σ6B(r-1)) + qqC(r-1)
• F = r F(r-1)/r
• Piecewise linear interpolation of A,B,C

– F(r) is linear since r (a r-1 + b) = a + r b
• Texture unit hardware is a perfect match
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Const Memory Exclusion Tables

• Need to exclude bonded pairs of atoms
– Also apply correction for PME electrostatics

• Exclusions determined by using atom 
indices to bit flags in exclusion arrays

• Repetitive molecular structures limit unique 
exclusion arrays

• All exclusion data fits in constant cache
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Overview of Inner Loop

• Calculate forces on atoms in registers due to 
atoms in shared memory
– Ignore Newton’s 3rd law (reciprocal forces)
– Do not sum forces for atoms in shared memory

• All threads access the same shared memory 
atom, allowing shared memory broadcast

• Only calculate forces for atoms within 
cutoff distance (roughly 10% of pairs)
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texture<float4> force_table;
__constant__ unsigned int exclusions[];
__shared__ atom jatom[];
atom iatom;      // per-thread atom, stored in registers
float4 iforce;   // per-thread force, stored in registers
for ( int j = 0; j < jatom_count; ++j ) {

float dx = jatom[j].x - iatom.x; float dy = jatom[j].y - iatom.y; float dz = jatom[j].z - iatom.z;
float r2 = dx*dx + dy*dy + dz*dz;
if ( r2 < cutoff2 ) {

float4 ft = texfetch(force_table, 1.f/sqrt(r2));
bool excluded = false;
int indexdiff = iatom.index - jatom[j].index;
if ( abs(indexdiff) <= (int) jatom[j].excl_maxdiff ) {
indexdiff += jatom[j].excl_index;
excluded = ((exclusions[indexdiff>>5] & (1<<(indexdiff&31))) != 0);

}
float f = iatom.half_sigma + jatom[j].half_sigma;  // sigma
f *= f*f;  // sigma^3
f *= f;  // sigma^6
f *= ( f * ft.x + ft.y );  // sigma^12 * fi.x - sigma^6 * fi.y
f *= iatom.sqrt_epsilon * jatom[j].sqrt_epsilon;
float qq = iatom.charge * jatom[j].charge;
if ( excluded ) { f = qq * ft.w; }  // PME correction
else { f += qq * ft.z; }  // Coulomb
iforce.x += dx * f;  iforce.y += dy * f; iforce.z += dz * f;
iforce.w += 1.f;  // interaction count or energy

}
} Stone et al., J. Comp. Chem. 28:2618-2640, 2007.

Force Interpolation

Exclusions

Parameters

Accumulation

NonbondedNonbonded ForcesForces
CUDA CodeCUDA Code
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What About Warp Divergence?

• Almost all exclusion checks fail, and the 
extra work for an excluded pair is minimal

• Cutoff test isn’t completely random
– Hydrogens follow their heavy atoms
– Atoms in far corners of patches have few 

neighbors within cutoff distance
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Recent NAMD GPU Developments
• Features:

– Full electrostatics with PME
– Multiple timestepping
– 1-4 Exclusions
– Constant-pressure simulation

• Improved force accuracy:
– Patch-centered atom coordinates
– Increased precision of force interpolation

• GPU sharing with coordination via message passing
• Next-gen “Fermi” GPUs:

– Double precision force computations will be almost “free”
– Larger shared memory, increased effective memory bandwidth
– Potential for improved overlap of “local” and “remote” work units
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NAMD Beta 2 Coming Soon
• Nightly builds of CUDA binaries for 64-bit Linux are 

available on the NAMD web site now…
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