
NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

CUDA Application Examples

John E. Stone

Theoretical and Computational Biophysics Group

Beckman Institute for Advanced Science and Technology

University of Illinois at Urbana-Champaign

http://www.ks.uiuc.edu/Research/gpu/

GPGPU 2015: Advanced Methods for Computing with CUDA,

University of Cape Town, April 2015

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

What Speedups Can GPUs Achieve?

• Single-GPU speedups of 2.5x to 8x vs. one
CPU socket are common

• Best speedups can reach 25x or more,
attained on codes dominated by floating
point arithmetic, especially native GPU
machine instructions, e.g. expf(), rsqrtf(), …

• Amdahl’s Law can prevent legacy codes
from achieving peak speedups with shallow
GPU acceleration efforts

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

CUDA GPU-Accelerated Trajectory Analysis

and Visualization in VMD
VMD GPU-Accelerated Feature or

Kernel

Typical speedup vs. multi-

core CPU (e.g. 4-core CPU)

Molecular orbital display 30x

Radial distribution function 23x

Molecular surface display 15x

Electrostatic field calculation 11x

Ray tracing w/ shadows,

AO lighting

7x

Ion placement 6x

MDFF density map synthesis 6x

Implicit ligand sampling 6x

Root mean squared fluctuation 6x

Radius of gyration 5x

Close contact determination 5x

Dipole moment calculation 4x

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Comparison of CPU and GPU

Hardware Architecture

CPU: Cache heavy,
focused on individual
thread performance

GPU: ALU heavy,
massively parallel,
throughput oriented

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Multiple Debye-Hückel Electrostatics

• Part of Poisson-Boltzmann solver in the

popular APBS package

• Method: compute electrostatic potentials at

grid points on boundary faces of box

containing molecule

• Screening function:

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

MDH Kernel (CUDA)
extern shared f loat smem [] ;

int igrid = (blockIdx .x blockDim.x) + threadIdx .x ; int lsize = blockDim.x ; int lid= threadIdx .x ;

float lgx = gx [igrid] ; float lgy = gy [igrid] ; float lg z = gz [igrid] ; float v = 0.0 f ;

for (int jatom = 0 ; jatom < natoms ; jatom+=lsize) {

 syncthreads () ;

 i f ((jatom + l i d) < natoms) {

 smem[lid] = ax [jatom + lid] ;

 smem[lid + lsize] = ay [jatom + lid] ;

 smem[lid + 2 * lsize] = az [jatom + lid] ;

 smem[lid + 3 * lsize] = charge [jatom + lid] ;

 smem[lid + 4 * lsize] = size [jatom + lid] ;

 }

 syncthreads () ;

 i f ((jatom+l s i z e) > natoms) l s i z e = natoms − jatom ;

 for (int i =0; i<l s i z e ; i++) {

 f loat dx = lgx − smem[i] ;

 f loat dy = lgy − smem[i + lsize] ;

 f loat dz = lgz − smem[i + 2 * lsize] ;

 f loat dist = sqrtf (dxdx + dydy + dzdz) ;

 v += smem[i+3*lsize] * expf(−xkappa (dist − smem[i+4*lsize])) / (1.0 f + xkappa smem[i+4*lsize]) *
dist) ;

 }

 }

 val [igrid] = pre1 * v;

Collectively load atoms from

global memory into shared

memory

Loop over all all atoms in shared

memory accumulating potential

contributions into grid points

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Electrostatic Potential Maps

• Electrostatic potentials
evaluated on 3-D lattice:

• Applications include:

– Ion placement for
structure building

– Time-averaged potentials
for simulation

– Visualization and
analysis

Isoleucine tRNA synthetase

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Direct Coulomb Summation (DCS)

Algorithm Detail
• Each lattice point accumulates electrostatic potential

contribution from all atoms:

 potential[j] += atom[i].charge / rij

atom[i]

rij: distance

from lattice[j]

to atom[i]

Lattice point j

being evaluated

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

DCS Computational Considerations

• Attributes of DCS algorithm for computing
electrostatic maps:

– Highly data parallel

– Starting point for more sophisticated algorithms

– Single-precision FP arithmetic is adequate for intended
uses

– Numerical accuracy can be further improved by
compensated summation, spatially ordered summation
groupings, or with the use of double-precision
accumulation

– Interesting test case since potential maps are useful for
various visualization and analysis tasks

• Forms a template for related spatially evaluated
function summation algorithms in CUDA

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Single Slice DCS: Simple (Slow) C Version
void cenergy(float *energygrid, dim3 grid, float gridspacing, float z, const float *atoms,

 int numatoms) {

 int i,j,n;

 int atomarrdim = numatoms * 4;

 for (j=0; j<grid.y; j++) {

 float y = gridspacing * (float) j;

 for (i=0; i<grid.x; i++) {

 float x = gridspacing * (float) i;

 float energy = 0.0f;

 for (n=0; n<atomarrdim; n+=4) { // calculate potential contribution of each atom

 float dx = x - atoms[n];

 float dy = y - atoms[n+1];

 float dz = z - atoms[n+2];

 energy += atoms[n+3] / sqrtf(dx*dx + dy*dy + dz*dz);

 }

 energygrid[grid.x*grid.y*k + grid.x*j + i] = energy;

 }

 }

}

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

DCS Algorithm Design Observations

• Electrostatic maps used for ion placement require evaluation
of ~20 potential lattice points per atom for a typical biological
structure

• Atom list has the smallest memory footprint, best choice for
the inner loop (both CPU and GPU)

• Lattice point coordinates are computed on-the-fly

• Atom coordinates are made relative to the origin of the
potential map, eliminating redundant arithmetic

• Arithmetic can be significantly reduced by precalculating and
reusing distance components, e.g. create a new array
containing X, Q, and dy^2 + dz^2, updated on-the-fly for each
row (CPU)

• Vectorized CPU versions benefit greatly from SSE instructions

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

An Approach to Writing CUDA Kernels
• Find an algorithm that can expose substantial parallelism,

we’ll ultimately need thousands of independent threads…

• Identify appropriate GPU memory or texture subsystems

used to store data used by kernel

• Are there trade-offs that can be made to exchange

computation for more parallelism?

– Though counterintuitive, past successes resulted from

this strategy

– “Brute force” methods that expose significant

parallelism do surprisingly well on current GPUs

• Analyze the real-world use case for the problem and select

the kernel for the problem sizes that will be heavily used

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Direct Coulomb Summation Runtime

GPU

underutilized

GPU fully utilized,

~40x faster than CPU

Accelerating molecular modeling applications with graphics processors.

J. Stone, J. Phillips, P. Freddolino, D. Hardy, L. Trabuco, K. Schulten.

J. Comp. Chem., 28:2618-2640, 2007.

Lower

is better

GPU initialization

time: ~110ms

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

DCS Observations for GPU

Implementation
• Naive implementation has a low ratio of FP arithmetic

operations to memory transactions (at least for a GPU…)

• The innermost loop will consume operands VERY quickly

• Since atoms are read-only, they are ideal candidates for
texture memory or constant memory

• GPU implementations must access constant memory
efficiently, avoid shared memory bank conflicts, coalesce
global memory accesses, and overlap arithmetic with
global memory latency

• Map is padded out to a multiple of the thread block size:

– Eliminates conditional handling at the edges, thus also
eliminating the possibility of branch divergence

– Assists with memory coalescing

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Global Memory

Texture Texture Texture Texture Texture Texture Texture

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

GPU Constant Memory

Direct Coulomb Summation on the GPU

Host

Atomic

Coordinates

Charges

Threads compute

up to 8 potentials,

skipping by half-warps

Thread blocks:

64-256 threads

Grid of thread blocks

Lattice padding

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

DCS CUDA Block/Grid Decomposition
(non-unrolled)

Padding waste

Grid of thread blocks:

0,0 0,1

1,0 1,1

…

…

… … …

Thread blocks:

64-256 threads

Threads compute

1 potential each

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

DCS CUDA Block/Grid

Decomposition (non-unrolled)

• 16x16 CUDA thread blocks are a nice

starting size with a satisfactory number of

threads

• Small enough that there’s not much waste

due to padding at the edges

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

DCS Version 1: Const+Precalc

187 GFLOPS, 18.6 Billion Atom Evals/Sec (G80)

• Pros:

– Pre-compute dz^2 for entire slice

– Inner loop over read-only atoms, const memory ideal

– If all threads read the same const data at the same time,
performance is similar to reading a register

• Cons:

– Const memory only holds ~4000 atom coordinates and
charges

– Potential summation must be done in multiple kernel
invocations per slice, with const atom data updated for
each invocation

– Host must shuffle data in/out for each pass

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

…

 float curenergy = energygrid[outaddr];

 float coorx = gridspacing * xindex;

 float coory = gridspacing * yindex;

 int atomid;

 float energyval=0.0f;

 for (atomid=0; atomid<numatoms; atomid++) {

 float dx = coorx - atominfo[atomid].x;

 float dy = coory - atominfo[atomid].y;

 energyval += atominfo[atomid].w *

 rsqrtf(dx*dx + dy*dy + atominfo[atomid].z);

 }

 energygrid[outaddr] = curenergy + energyval;

DCS Version 1: Kernel Structure

Start global memory reads

early. Kernel hides some of

its own latency.

Only dependency on global

memory read is at the end of

the kernel…

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

DCS CUDA Block/Grid Decomposition

(unrolled, thread coarsening)
• Reuse atom data and partial distance components multiple

times

• Use “unroll and jam” to unroll the outer loop into the inner
loop

• Uses more registers, but increases arithmetic intensity
significantly

• Kernels that unroll the inner loop calculate more than one
lattice point per thread result in larger computational tiles:

– Thread count per block must be decreased to reduce
computational tile size as unrolling is increased

– Otherwise, tile size gets bigger as threads do more than
one lattice point evaluation, resulting on a significant
increase in padding and wasted computations at edges

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

• Add each atom’s contribution to several lattice points

at a time, distances only differ in one component:

potential[j] += atom[i].charge / rij

potential[j+1] += atom[i].charge / ri(j+1)

…

DCS CUDA Algorithm: Unrolling Loops

Atom[i]

Distances to

Atom[i]

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

DCS CUDA Block/Grid Decomposition
(unrolled)

Padding waste

Grid of thread blocks:

0,0 0,1

1,0 1,1

…

… …

…

Thread blocks:

64-256 threads

Threads compute

up to 8 potentials

…

Unrolling increases

computational tile size

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

DCS Version 2: Inner Loop

…for (atomid=0; atomid<numatoms; atomid++) {

 float dy = coory - atominfo[atomid].y;

 float dysqpdzsq = (dy * dy) + atominfo[atomid].z;

 float x = atominfo[atomid].x;

 float dx1 = coorx1 - x;

 float dx2 = coorx2 - x;

 float dx3 = coorx3 - x;

 float dx4 = coorx4 - x;

 float charge = atominfo[atomid].w;

 energyvalx1 += charge * rsqrtf(dx1*dx1 + dysqpdzsq);

 energyvalx2 += charge * rsqrtf(dx2*dx2 + dysqpdzsq);

 energyvalx3 += charge * rsqrtf(dx3*dx3 + dysqpdzsq);

 energyvalx4 += charge * rsqrtf(dx4*dx4 + dysqpdzsq);

 }

Compared to non-unrolled

kernel: memory loads are

decreased by 4x, and FLOPS

per evaluation are reduced, but

register use is increased…

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

DCS Version 4:

Const+Loop Unrolling+Coalescing

291.5 GFLOPS, 39.5 Billion Atom Evals/Sec (G80)

• Pros:

– Simplified structure compared to version 3, no use of shared
memory, register pressure kept at bay by doing global
memory operations only at the end of the kernel

– Using fewer registers allows co-scheduling of more blocks,
increasing GPU “occupancy”

– Doesn’t have as strict of a thread block dimension
requirement as version 3, computational tile size can be
smaller

• Cons:

– The computation tile size is still large, so small potential
maps don’t perform as well as large ones

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

DCS Version 4: Kernel Structure

• Processes 8 lattice points at a time in the inner
loop

• Subsequent lattice points computed by each
thread are offset by a half-warp to guarantee
coalesced memory accesses

• Loads and increments 8 potential map lattice
points from global memory at completion of of
the summation, avoiding register consumption

• Source code is available by request

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

DCS Version 4: Inner Loop
…float coory = gridspacing * yindex;

 float coorx = gridspacing * xindex;

 float gridspacing_coalesce = gridspacing * BLOCKSIZEX;

 int atomid;

 for (atomid=0; atomid<numatoms; atomid++) {

 float dy = coory - atominfo[atomid].y;

 float dyz2 = (dy * dy) + atominfo[atomid].z;

 float dx1 = coorx - atominfo[atomid].x;

[…]

 float dx8 = dx7 + gridspacing_coalesce;

 energyvalx1 += atominfo[atomid].w * rsqrtf(dx1*dx1 + dyz2);

[…]

 energyvalx8 += atominfo[atomid].w * rsqrtf(dx8*dx8 + dyz2);

 }

 energygrid[outaddr] += energyvalx1;

[...]

 energygrid[outaddr+7*BLOCKSIZEX] += energyvalx7;

Points spaced for

memory coalescing

Reuse partial distance

components dy^2 + dz^2

Global memory ops

occur only at the end

of the kernel,

decreases register use

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

DCS CUDA Block/Grid Decomposition

 (unrolled, coalesced)

Padding waste

Grid of thread blocks:

0,0 0,1

1,0 1,1

…

… …

…

Thread blocks:

64-256 threads

…

Unrolling increases

computational tile size

Threads compute

up to 8 potentials,

skipping by half-warps

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Direct Coulomb Summation Performance

CUDA-Simple:

14.8x faster,

33% of fastest

GPU kernel

CUDA-Unroll8clx:

fastest GPU kernel,

44x faster than CPU,

291 GFLOPS on

GeForce 8800GTX

GPU computing. J. Owens, M. Houston, D. Luebke, S. Green, J. Stone,

J. Phillips. Proceedings of the IEEE, 96:879-899, 2008.

CPU

Number of thread blocks modulo number of SMs results in

significant performance variation for small workloads

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

DCS Version 4 Inner Loop, Scalar OpenCL

…for (atomid=0; atomid<numatoms; atomid++) {

 float dy = coory - atominfo[atomid].y;

 float dyz2 = (dy * dy) + atominfo[atomid].z;

 float dx1 = coorx – atominfo[atomid].x;

 float dx2 = dx1 + gridspacing_coalesce;

 float dx3 = dx2 + gridspacing_coalesce;

 float dx4 = dx3 + gridspacing_coalesce;

 float charge = atominfo[atomid].w;

 energyvalx1 += charge * native_rsqrt(dx1*dx1 + dyz2);

 energyvalx2 += charge * native_rsqrt(dx2*dx2 + dyz2);

 energyvalx3 += charge * native_rsqrt(dx3*dx3 + dyz2);

 energyvalx4 += charge * native_rsqrt(dx4*dx4 + dyz2);

 }

Well-written CUDA code can
often be easily ported to OpenCL

if C++ features and pointer
arithmetic aren’t used in kernels.

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

DCS Version 4 Inner Loop (CUDA)
(only 4-way unrolling for conciseness to compare OpenCL)

…for (atomid=0; atomid<numatoms; atomid++) {

 float dy = coory - atominfo[atomid].y;

 float dyz2 = (dy * dy) + atominfo[atomid].z;

 float dx1 = coorx – atominfo[atomid].x;

 float dx2 = dx1 + gridspacing_coalesce;

 float dx3 = dx2 + gridspacing_coalesce;

 float dx4 = dx3 + gridspacing_coalesce;

 float charge = atominfo[atomid].w;

 energyvalx1 += charge * rsqrtf(dx1*dx1 + dyz2);

 energyvalx2 += charge * rsqrtf(dx2*dx2 + dyz2);

 energyvalx3 += charge * rsqrtf(dx3*dx3 + dyz2);

 energyvalx4 += charge * rsqrtf(dx4*dx4 + dyz2);

 }

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

DCS Version 4 Inner Loop, Vectorized OpenCL

 float4 gridspacing_u4 = { 0.f, 1.f, 2.f, 3.f };

 gridspacing_u4 *= gridspacing_coalesce;

 float4 energyvalx=0.0f;

…

 for (atomid=0; atomid<numatoms; atomid++) {

 float dy = coory - atominfo[atomid].y;

 float dyz2 = (dy * dy) + atominfo[atomid].z;

 float4 dx = gridspacing_u4 + (coorx – atominfo[atomid].x);

 float charge = atominfo[atomid].w;

 energyvalx1 += charge * native_rsqrt(dx1*dx1 + dyz2);

 }

CPUs, AMD GPUs, and Cell often perform
better with vectorized kernels.

Use of vector types may increase register
pressure; sometimes a delicate balance…

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Infinite vs. Cutoff Potentials

• Infinite range potential:

– All atoms contribute to all lattice points

– Summation algorithm has quadratic complexity

• Cutoff (range-limited) potential:

– Atoms contribute within cutoff distance to lattice
points

– Summation algorithm has linear time complexity

– Has many applications in molecular modeling:

• Replace electrostatic potential with shifted form

• Short-range part for fast methods of approximating full
electrostatics

• Used for fast decaying interactions (e.g. Lennard-Jones,
Buckingham)

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Cutoff Summation

• At each lattice point, sum potential contributions for
atoms within cutoff radius:

 if (distance to atom[i] < cutoff)

 potential += (charge[i] / r) * s(r)

• Smoothing function s(r) is algorithm dependent

Cutoff radius
r: distance to

Atom[i]

Lattice point being
evaluated

Atom[i]

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Process atom bins for
current potential map

region

Cutoff Summation on the GPU

Atoms

Atoms spatially hashed into fixed-
size “bins” in global memory

Global memory

Constant memory

Bin-Region
neighborlist

Shared memory

Atom bin

Potential
map

regions

Bins

of 8

atoms

CPU handles overflowed bins

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Using the CPU to Improve

 GPU Performance

• GPU performs best when the work
evenly divides into the number of
threads/processing units

• Optimization strategy:

– Use the CPU to “regularize” the GPU
workload

– Handle exceptional or irregular work units on
the CPU while the GPU processes the bulk
of the work

– On average, the GPU is kept highly
occupied, attaining a much higher fraction of
peak performance

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

GPU acceleration of cutoff pair potentials for molecular modeling applications.
C. Rodrigues, D. Hardy, J. Stone, K. Schulten, W. Hwu. Proceedings of the 2008

Conference On Computing Frontiers, pp. 273-282, 2008.

Cutoff Summation Runtime
GPU cutoff with

CPU overlap:

17x-21x faster than
CPU core

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Molecular Surface Visualization

Poliovirus

• Large biomolecular

complexes are difficult to

interpret with atomic detail

graphical representations

• Even secondary structure

representations become

cluttered

• Surface representations are

easier to use when greater

abstraction is desired, but are

computationally costly

• Most surface display methods

incapable of animating

dynamics of large structures

w/ millions of particles

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

• Displays continuum of structural detail:

– All-atom models

– Coarse-grained models

– Cellular scale models

– Multi-scale models: All-atom + CG, Brownian + Whole Cell

– Smoothly variable between full detail, and reduced resolution

representations of very large complexes

VMD “QuickSurf” Representation

Fast Visualization of Gaussian Density Surfaces for Molecular Dynamics and
Particle System Trajectories.

M. Krone, J. E. Stone, T. Ertl, K. Schulten. EuroVis Short Papers, pp. 67-71, 2012

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

• Uses multi-core CPUs and GPU acceleration to enable smooth

real-time animation of MD trajectories

• Linear-time algorithm, scales to millions of particles, as limited

by memory capacity

VMD “QuickSurf” Representation

Satellite Tobacco Mosaic Virus Lattice Cell Simulations

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

VMD “QuickSurf” Representation

All-atom HIV capsid simulations

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Discretized lattice models derived
from continuous model shown in
VMD QuickSurf representation

Continuous particle
based model – often 70
to 300 million particles

Lattice Microbes: High‐performance stochastic simulation method for the
reaction‐diffusion master equation

E. Roberts, J. E. Stone, and Z. Luthey‐Schulten.
J. Computational Chemistry 34 (3), 245-255, 2013.

QuickSurf Representation of

Lattice Cell Models

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

QuickSurf Algorithm Overview
• Build spatial acceleration

data structures, optimize

data for GPU

• Compute 3-D density map,

3-D volumetric texture map:

• Extract isosurface for a

user-defined density value

3-D density map lattice,
spatial acceleration grid,

and extracted surface

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

QuickSurf Particle Sorting, Bead

Generation, Spatial Hashing
• Particles sorted into spatial acceleration grid:

– Selected atoms or residue “beads” converted lattice

coordinate system

– Each particle/bead assigned cell index, sorted

w/NVIDIA Thrust template library

• Complication:

– Thrust allocates GPU mem. on-demand, no recourse

if insufficient memory, have to re-gen QuickSurf data

structures if caught by surprise!

• Workaround:

– Pre-allocate guesstimate workspace for Thrust

– Free the Thrust workspace right before use

– Newest Thrust allows user-defined allocator code…

Coarse resolution
spatial acceleration grid

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Spatial Hashing Algorithm Steps/Kernels

1) Compute bin index for each atom,
store to memory w/ atom index

QuickSurf uniform
grid spatial

subdivision data
structure

2) Sort list of bin and atom index tuples
(1) by bin index (thrust kernel)

3) Count atoms in each bin (2) using a
parallel prefix sum, aka scan,
compute the destination index for each
atom, store per-bin starting index and
atom count (thrust kernel)

4) Write atoms to the output indices
computed in (3), and we have
completed the data structure

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

QuickSurf and Limited GPU Global Memory
• High resolution molecular surfaces require a fine lattice spacing

• Memory use grows cubically with decreased lattice spacing

• Not typically possible to compute a surface in a single pass, so we

loop over sub-volume “chunks” until done…

• Chunks pre-allocated and sized to GPU global mem capacity to

prevent unexpected memory allocation failure while animating…

• Complication:

– Thrust allocates GPU mem. on-demand, no recourse if insufficient memory,

have to re-gen QuickSurf data structures if caught by surprise!

• Workaround:

– Pre-allocate guesstimate workspace for Thrust

– Free the Thrust workspace right before use

– Newest Thrust allows user-defined allocator code…

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Padding optimizes global
memory performance,
guaranteeing coalesced
global memory accesses Grid of thread blocks

Small 8x8 thread

blocks afford large

per-thread register

count, shared

memory

QuickSurf 3-D density map

decomposes into thinner 3-D
slabs/slices (CUDA grids)

… 0,0 0,1

1,1

… …

…

…

Inactive threads,
region of
discarded
output

Each thread

computes

one or more

density map

lattice points

Threads
producing
results that
are used 1,0

…

Chunk 2

Chunk 1

Chunk 0

Large volume

computed in

multiple passes, or

multiple GPUs

QuickSurf Density Parallel Decomposition

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

QuickSurf Density Map Algorithm

• Spatial acceleration grid cells are

sized to match the cutoff radius for

the exponential, beyond which density

contributions are negligible

• Density map lattice points computed

by summing density contributions

from particles in 3x3x3 grid of

neighboring spatial acceleration cells

• Volumetric texture map is computed

by summing particle colors

normalized by their individual density

contribution

3-D density map
lattice point and
the neighboring

spatial acceleration
cells it references

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

QuickSurf Density Map

 Kernel Optimizations

• Compute reciprocals, prefactors, other math on the host

CPU prior to kernel launch

• Use of intN and floatN vector types in CUDA kernels

for improved global memory bandwidth

• Thread coarsening: one thread computes multiple

output densities and colors

• Input data and register tiling: share blocks of input,

partial distances in regs shared among multiple outputs

• Global memory (L1 cache) broadcasts: all threads in

the block traverse the same atom/particle at the same

time

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

QuickSurf Density Map Kernel Snippet…
for (zab=zabmin; zab<=zabmax; zab++) {

 for (yab=yabmin; yab<=yabmax; yab++) {

 for (xab=xabmin; xab<=xabmax; xab++) {

 int abcellidx = zab * acplanesz + yab * acncells.x + xab;

 uint2 atomstartend = cellStartEnd[abcellidx];

 if (atomstartend.x != GRID_CELL_EMPTY) {

 for (unsigned int atomid=atomstartend.x; atomid<atomstartend.y; atomid++) {

 float4 atom = sorted_xyzr[atomid];

 float dx = coorx - atom.x; float dy = coory - atom.y; float dz = coorz - atom.z;

 float dxy2 = dx*dx + dy*dy;

 float r21 = (dxy2 + dz*dz) * atom.w;

 densityval1 += exp2f(r21);

 /// Loop unrolling and register tiling benefits begin here……

 float dz2 = dz + gridspacing;

 float r22 = (dxy2 + dz2*dz2) * atom.w;

 densityval2 += exp2f(r22);

 /// More loop unrolling ….

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

QuickSurf Marching Cubes

Isosurface Extraction
• Isosurface is extracted from each density map “chunk”, and

either copied back to the host, or rendered directly out of

GPU global memory via CUDA/OpenGL interop

• All MC memory buffers are pre-allocated to prevent

significant overhead when animating a simulation trajectory

QuickSurf 3-D density map

decomposes into thinner 3-D
slabs/slices (CUDA grids)

…

Chunk 2

Chunk 1

Chunk 0

Large volume

computed in

multiple passes

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Brief Marching Cubes Isosurface

Extraction Overview
• Given a 3-D volume of scalar density values and a requested

surface density value, marching cubes computes vertices and

triangles that compose the requested surface triangle mesh

• Each MC “cell” (a cube with 8 density values at its vertices)

produces a variable number of output vertices depending on how

many edges of the cell contain the requested isovalue…

• Use scan() to compute the output indices so that each worker

thread has conflict-free output of vertices/triangles

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Brief Marching Cubes Isosurface

Extraction Overview
• Once the output vertices have been computed and stored, we

compute surface normals and colors for each of the vertices

• Although the separate normals+colors pass reads the density map

again, molecular surfaces tend to generate a small percentage of

MC cells containing triangles, we avoid wasting interpolation work

• We use CUDA tex3D() hardware 3-D texture mapping:

– Costs double the texture memory and a one copy from GPU global memory

to the target texture map with cudaMemcpy3D()

– Still roughly 2x faster than doing color interpolation without the texturing

hardware, at least on GT200 and Fermi hardware

– Kepler has new texture cache memory path that may make it feasible to do

our own color interpolation and avoid the use of extra 3-D texture memory

and associated copy, with acceptable performance

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

QuickSurf Marching Cubes

Isosurface Extraction
• Our optimized MC implementation computes per-vertex

surface normals, colors, and outperforms the NVIDIA SDK

sample by a fair margin on Fermi GPUs

• Complications:

– Even on a 6GB Quadro 7000, GPU global memory is under great

strain when working with large molecular complexes, e.g. viruses

– Marching cubes involves a parallel prefix sum (scan) to compute

target indices for writing resulting vertices

– We use Thrust for scan, has the same memory allocation issue

mentioned earlier for the sort, so we use the same workaround

– The number of output vertices can be huge, but we rarely have

sufficient GPU memory for this – we use a fixed size vertex output

buffer and hope our heuristics don’t fail us

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

QuickSurf Performance

GeForce GTX 580
Molecular

system

Atoms Resolution Tsort Tdensity TMC

vertices FPS

MscL 111,016 1.0Å 0.005 0.023 0.003 0.7 M 28

STMV capsid 147,976 1.0Å 0.007 0.048 0.009 2.4 M 13.2

Poliovirus

capsid

754,200 1.0Å 0.01 0.18 0.05 9.2 M 3.5

STMV w/ water 955,225 1.0Å 0.008 0.189 0.012 2.3 M 4.2

Membrane 2.37 M 2.0Å 0.03 0.17 0.016 5.9 M 3.9

Chromatophore 9.62 M 2.0Å 0.16 0.023 0.06 11.5 M 3.4

Membrane w/

water

22.77 M 4.0Å

4.4 0.68 0.01 1.9 M 0.18

Fast Visualization of Gaussian Density Surfaces for Molecular Dynamics and
Particle System Trajectories.

M. Krone, J. E. Stone, T. Ertl, K. Schulten. EuroVis Short Papers, pp. 67-71, 2012

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Extensions and Analysis Uses for QuickSurf

Triangle Mesh
• Curved PN triangles:

– We have performed tests with post-processing the resulting triangle

mesh and using curved PN triangles to generate smooth surfaces

with a larger grid spacing, for increased performance

– Initial results demonstrate some potential, but there can be

pathological cases where MC generates long skinny triangles,

causing unsightly surface creases

• Analysis uses (beyond visualization):

– Minor modifications to the density map algorithm allow rapid

computation of solvent accessible surface area by summing the

areas in the resulting triangle mesh

– Modifications to the density map algorithm will allow it to be used

for MDFF (molecular dynamics flexible fitting)

– Surface triangle mesh can be used as the input for computing the

electrostatic potential field for mesh-based algorithms

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Challenge: Support Interactive QuickSurf for

Large Structures on Mid-Range GPUs
• Structures such as HIV

initially needed large (6GB)

GPU memory to generate

fully-detailed surface

renderings

• Goals and approach:

– Avoid slow CPU-fallback!

– Incrementally change

algorithm phases to use more

compact data types, while

maintaining performance

– Specialize code for different

performance/memory

capacity cases

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Improving QuickSurf Memory Efficiency

• Both host and GPU memory capacity limitations are a

significant concern when rendering surfaces for virus

structures such as HIV or for large cellular models which

can contain hundreds of millions of particles

• The original QuickSurf implementation used single-

precision floating point for output vertex arrays and

textures

• Judicious use of reduced-precision numerical

representations, cut the overall memory footprint of the

entire QuickSurf algorithm to half of the original

– Data type changes made throughout the entire chain from density

map computation through all stages of Marching Cubes

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Supporting Multiple Data Types for

QuickSurf Density Maps

and Marching Cubes Vertex Arrays

• The major algorithm components of QuickSurf are now

used for many other purposes:

– Gaussian density map algorithm now used for MDFF Cryo EM

density map fitting methods in addition to QuickSurf

– Marching Cubes routines also used for Quantum Chemistry

visualizations of molecular orbitals

• Rather than simply changing QuickSurf to use a particular

internal numerical representation, it is desirable to instead

use CUDA C++ templates to make type-generic versions

of the key objects, kernels, and output vertex arrays

• Accuracy-sensitive algorithms use high-precision data

types, performance and memory capacity sensitive cases

use quantized or reduced precision approaches

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Minimizing the Impact of Generality on

QuickSurf Code Complexity

• A critical factor in the simplicity of supporting multiple

QuickSurf data types arises from the so-called “gather”

oriented algorithm we employ

– Internally, all in-register arithmetic is single-precision

– Data conversions to/from compressed or reduced precision data

types are performed on-the-fly as needed

• Small inlined type conversion routines are defined for each

of the cases we want to support

• Key QuickSurf kernels are genericized using C++ template

syntax, and the compiler “connects the dots” to

automatically generate type-specific kernels as needed

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Example Templated

Density Map Kernel
template<class DENSITY, class VOLTEX>

__global__ static void

gaussdensity_fast_tex_norm(int natoms,

 const float4 * RESTRICT sorted_xyzr,

 const float4 * RESTRICT sorted_color,

 int3 numvoxels,

 int3 acncells,

 float acgridspacing,

 float invacgridspacing,

 const uint2 * RESTRICT cellStartEnd,

 float gridspacing, unsigned int z,

 DENSITY * RESTRICT densitygrid,

 VOLTEX * RESTRICT voltexmap,

 float invisovalue) {

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Example Templated

Density Map Kernel
template<class DENSITY, class VOLTEX>

__global__ static void

gaussdensity_fast_tex_norm(…) {

 … Triple-nested and unrolled inner loops here …

 DENSITY densityout;

 VOLTEX texout;

 convert_density(densityout, densityval1);

 densitygrid[outaddr] = densityout;

 convert_color(texout, densitycol1);

 voltexmap[outaddr] = texout;

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Net Result of QuickSurf Memory

Efficiency Optimizations

• Halved overall GPU memory use

• Achieved 1.5x to 2x performance gain:

– The “gather” density map algorithm keeps type

conversion operations out of the innermost loop

– Density map global memory writes reduced to half

– Multiple stages of Marching Cubes operate on smaller

input and output data types

– Same code path supports multiple precisions

• Users now get full GPU-accelerated QuickSurf in

many cases that previously triggered CPU-

fallback, all platforms (laptop/desk/super) benefit!

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

High Resolution HIV Surface

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Structural Route to the all-atom HIV-1 Capsid

Zhao et al. , Nature 497: 643-646 (2013)

High res. EM of hexameric tubule, tomography of capsid,
all-atom model of capsid by MDFF w/ NAMD & VMD,

NSF/NCSA Blue Waters computer at Illinois

Pornillos et al. , Cell 2009, Nature 2011

Crystal structures of separated hexamer and pentamer

Ganser et al. Science, 1999

1st TEM (1999) 1st tomography (2003)

Briggs et al. EMBO J, 2003

Briggs et al. Structure, 2006

cryo-ET (2006)

Byeon et al., Cell 2009 Li et al., Nature, 2000

hexameric tubule

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

X-ray crystallography Electron microscopy

APS at Argonne FEI microscope

Molecular Dynamics Flexible Fitting (MDFF)

Flexible fitting of atomic structures into electron microscopy maps using molecular dynamics.

L. Trabuco, E. Villa, K. Mitra, J. Frank, and K. Schulten. Structure, 16:673-683, 2008.

MDFF

ORNL Titan

Acetyl - CoA Synthase

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Evaluating Quality-of-Fit for Structures

Solved by Hybrid Fitting Methods

Compute Pearson
correlation to evaluate
the fit of a reference
cryo-EM density map
with a simulated
density map produced
from an all-atom
structure.

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

GPUs Can Reduce Trajectory Analysis Runtimes

from Hours to Minutes

GPUs enable laptops and
desktop workstations to

handle tasks that would have
previously required a cluster,

or a very long wait…

GPU-accelerated petascale
supercomputers enable

analyses were previously
impossible, allowing detailed
study of very large structures

such as viruses

GPU-accelerated MDFF Cross Correlation Timeline

Regions with poor fit Regions with good fit

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Padding optimizes global
memory performance,
guaranteeing coalesced global
memory accesses Grid of thread blocks

Small 8x8x2 CUDA thread blocks afford large

per-thread register count, shared memory

3-D density map decomposes into 3-D grid
of 8x8x8 tiles containing CC partial sums

and local CC values

… 0,0 0,1

1,1

… …

…

…

Inactive threads,
region of
discarded
output

Each thread computes

4 z-axis density map

lattice points and

associated CC partial

sums

Threads
producing
results that
are used 1,0

Spatial CC map and

overall CC value

computed in a single pass

Single-Pass MDFF GPU Cross-Correlation

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

VMD GPU Cross Correlation Performance
RHDV Mm-cpn

open

GroEL Aquaporin

Resolution (Å) 6.5 8 4 3

Atoms 702K 61K 54K 1.6K

VMD-CUDA

Quadro K6000

0.458s

34.6x

0.06s

25.7x

0.034s

36.8x

0.007s

55.7x

VMD-CPU-SSE

32-threads, 2x Xeon E5-2687W

0.779s

20.3x

0.085s

18.1x

0.159s

7.9x

0.033s

11.8x

Chimera

1-thread Xeon E5-2687W

15.86s

1.0x

1.54s

1.0x

1.25s

1.0x

0.39s

1.0x

GPU-accelerated analysis and visualization of large structures solved by molecular dynamics
flexible fitting. J. E. Stone, R. McGreevy, B. Isralewitz, and K. Schulten. Faraday Discussion 169,
2014. (In press).

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

VMD RHDV Cross Correlation

Timeline on Cray XK7

RHDV

Atoms 702K

Component

Selections

720

Single-node XK7

(projected)

336 hours (14 days)

128-node XK7 3.2 hours

105x speedup

RHDV CC Timeline

Calculation would take 5 years
using conventional non-GPU
software on a workstation!!

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Molecular Orbitals

• Visualization of MOs aids in

understanding the chemistry

of molecular system

• MO spatial distribution is

correlated with probability

density for an electron(s)

• Algorithms for computing

other molecular properties are

similar, and can share code

High Performance Computation and Interactive Display of Molecular
Orbitals on GPUs and Multi-core CPUs.

J. Stone, J. Saam, D. Hardy, K. Vandivort, W. Hwu, K. Schulten,
2nd Workshop on General-Purpose Computation on Graphics
Pricessing Units (GPGPU-2), ACM International Conference

Proceeding Series, volume 383, pp. 9-18, 2009.

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Computing Molecular Orbitals

• Calculation of high
resolution MO grids can
require tens to hundreds of
seconds in existing tools

• Existing tools cache MO
grids as much as possible
to avoid recomputation:

– Doesn’t eliminate the wait
for initial calculation,
hampers interactivity

– Cached grids consume
100x-1000x more memory
than MO coefficients

C60

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Animating Molecular Orbitals
• Animation of (classical

mechanics) molecular

dynamics trajectories

provides insight into

simulation results

• To do the same for QM or

QM/MM simulations one

must compute MOs at ~10

FPS or more

• >100x speedup (GPU) over

existing tools now makes

this possible! C60

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Molecular Orbital Computation and Display Process

Read QM simulation log file, trajectory

Compute 3-D grid of MO wavefunction amplitudes

Most performance-demanding step, run on GPU…

Extract isosurface mesh from 3-D MO grid

Apply user coloring/texturing

and render the resulting surface

Preprocess MO coefficient data

eliminate duplicates, sort by type, etc…

For current frame and MO index,

retrieve MO wavefunction coefficients

One-time
initialization

For each trj frame, for
each MO shown

Initialize Pool of GPU

Worker Threads

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Padding optimizes global
memory performance,
guaranteeing coalesced
global memory accesses Grid of thread blocks

Small 8x8 thread

blocks afford large

per-thread register

count, shared

memory

MO 3-D lattice
decomposes into 2-D
slices (CUDA grids)

… 0,0 0,1

1,1

… …

…

…

Threads
producing
results that are
discarded

Each thread

computes

one MO

lattice point.

Threads
producing
results that
are used 1,0

…

GPU 2

GPU 1

GPU 0

Lattice can be

computed using

multiple GPUs

MO GPU Parallel Decomposition

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

MO GPU Kernel Snippet:
Contracted GTO Loop, Use of Constant Memory

[… outer loop over atoms …]

 float dist2 = xdist2 + ydist2 + zdist2;

 // Loop over the shells belonging to this atom (or basis function)

 for (shell=0; shell < maxshell; shell++) {

 float contracted_gto = 0.0f;

 // Loop over Gaussian primitives of this contracted basis function to build the atomic orbital

 int maxprim = const_num_prim_per_shell[shell_counter];

 int shelltype = const_shell_types[shell_counter];

 for (prim=0; prim < maxprim; prim++) {

 float exponent = const_basis_array[prim_counter];

 float contract_coeff = const_basis_array[prim_counter + 1];

 contracted_gto += contract_coeff * __expf(-exponent*dist2);

 prim_counter += 2;

 }

[… continue on to angular momenta loop …]

Constant memory:
nearly register-
speed when array
elements accessed
in unison by all
threads….

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

MO GPU Kernel Snippet:
Unrolled Angular Momenta Loop

 /* multiply with the appropriate wavefunction coefficient */

 float tmpshell=0;

 switch (shelltype) {

 case S_SHELL:

 value += const_wave_f[ifunc++] * contracted_gto;

 break;

[… P_SHELL case …]

 case D_SHELL:

 tmpshell += const_wave_f[ifunc++] * xdist2;

 tmpshell += const_wave_f[ifunc++] * xdist * ydist;

 tmpshell += const_wave_f[ifunc++] * ydist2;

 tmpshell += const_wave_f[ifunc++] * xdist * zdist;

 tmpshell += const_wave_f[ifunc++] * ydist * zdist;

 tmpshell += const_wave_f[ifunc++] * zdist2;

 value += tmpshell * contracted_gto;

 break;

[... Other cases: F_SHELL, G_SHELL, etc …]

} // end switch

Loop unrolling:

•Saves registers
(important for GPUs!)

•Reduces loop control
overhead

•Increases arithmetic
intensity

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Preprocessing of Atoms, Basis Set, and

Wavefunction Coefficients

• Must make effective use of high bandwidth, low-
latency GPU on-chip shared memory, or L1 cache:

– Overall storage requirement reduced by eliminating
duplicate basis set coefficients

– Sorting atoms by element type allows re-use of basis set

coefficients for subsequent atoms of identical type

• Padding, alignment of arrays guarantees coalesced

GPU global memory accesses

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

GPU Traversal of Atom Type, Basis Set,

 Shell Type, and Wavefunction Coefficients

• Loop iterations always access same or consecutive
array elements for all threads in a thread block:

– Yields good constant memory and L1 cache performance

– Increases shared memory tile reuse

Monotonically increasing memory references

Strictly sequential memory references

Different at each
timestep, and for

each MO

Constant for all MOs,
all timesteps

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Use of GPU On-chip Memory
• If total data less than 64 kB, use only const mem:

– Broadcasts data to all threads, no global memory accesses!

• For large data, shared memory used as a program-managed
cache, coefficients loaded on-demand:

– Tiles sized large enough to service entire inner loop runs, broadcast to all
64 threads in a block

– Complications: nested loops, multiple arrays, varying length

– Key to performance is to locate tile loading checks outside of the two
performance-critical inner loops

– Only 27% slower than hardware caching provided by constant memory
(on GT200)

• Fermi/Kepler GPUs have larger on-chip shared memory, L1/L2
caches, greatly reducing control overhead

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

MO coefficient array in GPU global memory.

Tiles are referenced in consecutive order.

Array tile loaded in GPU shared memory. Tile size is a power-of-two, a

multiple of coalescing size, and allows simple indexing in inner loops.

Global memory array indices are merely offset to reference an MO

coefficient within a tile loaded in fast on-chip shared memory.

64-byte memory
coalescing block

boundaries

Surrounding data,
unreferenced by

next batch of loop
iterations

Full tile
padding

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

VMD MO GPU Kernel Snippet:
Loading Tiles Into Shared Memory On-Demand

[… outer loop over atoms …]

 if ((prim_counter + (maxprim<<1)) >= SHAREDSIZE) {

 prim_counter += sblock_prim_counter;

 sblock_prim_counter = prim_counter & MEMCOAMASK;

 s_basis_array[sidx] = basis_array[sblock_prim_counter + sidx];

 s_basis_array[sidx + 64] = basis_array[sblock_prim_counter + sidx + 64];

 s_basis_array[sidx + 128] = basis_array[sblock_prim_counter + sidx + 128];

 s_basis_array[sidx + 192] = basis_array[sblock_prim_counter + sidx + 192];

 prim_counter -= sblock_prim_counter;

 __syncthreads();

 }

 for (prim=0; prim < maxprim; prim++) {

 float exponent = s_basis_array[prim_counter];

 float contract_coeff = s_basis_array[prim_counter + 1];

 contracted_gto += contract_coeff * __expf(-exponent*dist2);

 prim_counter += 2;

 }

[… continue on to angular momenta loop …]

Shared memory tiles:

•Tiles are checked
and loaded, if
necessary,
immediately prior to
entering key
arithmetic loops

•Adds additional
control overhead to
loops, even with
optimized
implementation

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

New GPUs Bring Opportunities for Higher

Performance and Easier Programming

• NVIDIA’s Fermi, Kepler, Maxwell GPUs bring:

– Greatly increased peak single- and double-precision

arithmetic rates

– Moderately increased global memory bandwidth

– Increased capacity on-chip memory partitioned into

shared memory and an L1 cache for global memory

– Concurrent kernel execution

– Bidirectional asynchronous host-device I/O

– ECC memory, faster atomic ops, many others…

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

VMD MO GPU Kernel Snippet:
Kernel based on L1 cache (Fermi)

or Read-only Data Cache (Maxwell)
[… outer loop over atoms …]

 // loop over the shells/basis funcs belonging to this atom

 for (shell=0; shell < maxshell; shell++) {

 float contracted_gto = 0.0f;

 int maxprim = shellinfo[(shell_counter<<4)];

 int shell_type = shellinfo[(shell_counter<<4) + 1];

 for (prim=0; prim < maxprim; prim++) {

 float exponent = basis_array[prim_counter];

 float contract_coeff = basis_array[prim_counter + 1];

 contracted_gto += contract_coeff * __expf(-

exponent*dist2);

 prim_counter += 2;

 }

 [… continue on to angular momenta loop …]

L1 cache:

•Simplifies code!

•Reduces control
overhead

•Gracefully handles
arbitrary-sized
problems

•Matches performance
of constant memory on
Fermi and Maxwell

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

MO Kernel for One Grid Point (Naive C)

Loop over atoms

Loop over shells

Loop over primitives:
largest component of
runtime, due to expf()

Loop over angular
momenta

(unrolled in real code)

…

for (at=0; at<numatoms; at++) {

 int prim_counter = atom_basis[at];

 calc_distances_to_atom(&atompos[at], &xdist, &ydist, &zdist, &dist2, &xdiv);

 for (contracted_gto=0.0f, shell=0; shell < num_shells_per_atom[at]; shell++) {

 int shell_type = shell_symmetry[shell_counter];

 for (prim=0; prim < num_prim_per_shell[shell_counter]; prim++) {

 float exponent = basis_array[prim_counter];

 float contract_coeff = basis_array[prim_counter + 1];

 contracted_gto += contract_coeff * expf(-exponent*dist2);

 prim_counter += 2;

 }

 for (tmpshell=0.0f, j=0, zdp=1.0f; j<=shell_type; j++, zdp*=zdist) {

 int imax = shell_type - j;

 for (i=0, ydp=1.0f, xdp=pow(xdist, imax); i<=imax; i++, ydp*=ydist, xdp*=xdiv)

 tmpshell += wave_f[ifunc++] * xdp * ydp * zdp;

 }

 value += tmpshell * contracted_gto;

 shell_counter++;

 }

} …..

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

VMD MO Performance Results for C60
Sun Ultra 24: Intel Q6600, NVIDIA GTX 280

Kernel Cores/GPUs Runtime (s) Speedup

CPU ICC-SSE 1 46.58 1.00

CPU ICC-SSE 4 11.74 3.97

CPU ICC-SSE-approx** 4 3.76 12.4

CUDA-tiled-shared 1 0.46 100.

CUDA-const-cache 1 0.37 126.

C60 basis set 6-31Gd. We used an unusually-high resolution MO grid for
accurate timings. A more typical calculation has 1/8th the grid points.

**Reduced-accuracy approximation of expf(),
cannot be used for zero-valued MO isosurfaces

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

VMD Single-GPU Molecular Orbital

Performance Results for C60 on Fermi

Kernel Cores/GPUs Runtime (s) Speedup

Xeon 5550 ICC-SSE 1 30.64 1.0

Xeon 5550 ICC-SSE 8 4.13 7.4

CUDA shared mem 1 0.37 83

CUDA L1-cache (16KB) 1 0.27 113

CUDA const-cache 1 0.26 117

CUDA const-cache, zero-copy 1 0.25 122

Intel X5550 CPU, GeForce GTX 480 GPU

Fermi GPUs have caches: match perf. of hand-coded
shared memory kernels. Zero-copy memory transfers
improve overlap of computation and host-GPU I/Os.

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Preliminary Single-GPU Molecular Orbital

Performance Results for C60 on Kepler

Kernel Cores/GPUs Runtime (s) Speedup

Xeon 5550 ICC-SSE 1 30.64 1.0

Xeon 5550 ICC-SSE 8 4.13 7.4

CUDA shared mem 1 0.264 116

CUDA RO-data-cache 1 0.228 134

CUDA const-cache 1 0.104 292

CUDA const-cache, zero-copy 1 0.0938 326

Intel X5550 CPU, GeForce GTX 680 GPU

Kepler GK104 (GeForce 680) strongly prefers the
constant cache kernels vs. the others.

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

VMD Orbital Dynamics Proof of Concept

One GPU can compute and animate this movie on-the-fly!

CUDA const-cache kernel, Sun Ultra 24,
GeForce GTX 285

GPU MO grid calc. 0.016 s

CPU surface gen,

volume gradient, and

GPU rendering

0.033 s

Total runtime 0.049 s

Frame rate 20 FPS

With GPU speedups over 100x, previously insignificant CPU
surface gen, gradient calc, and rendering are now 66% of runtime.

Needed GPU-accelerated surface gen next…

Wrote CUDA Marching Cubes to address surface gen perf gap.

threonine

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Multi-GPU Load Balance

• Many early CUDA codes
assumed all GPUs were identical

• Host machines may contain a
diversity of GPUs of varying
capability (discrete, IGP, etc)

• Different GPU on-chip and global
memory capacities may need
different problem “tile” sizes

• Static decomposition works
poorly for non-uniform workload,
or diverse GPUs

GPU 1

14 SMs

GPU N

30 SMs
…

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Padding optimizes global
memory performance,
guaranteeing coalesced
global memory accesses Grid of thread blocks

Small 8x8 thread

blocks afford large

per-thread register

count, shared

memory

MO 3-D lattice
decomposes into 2-D
slices (CUDA grids)

… 0,0 0,1

1,1

… …

…

…

Threads
producing
results that are
discarded

Each thread

computes

one MO

lattice point.

Threads
producing
results that
are used 1,0

…

GPU 2

GPU 1

GPU 0

Lattice can be

computed using

multiple GPUs

MO GPU Parallel Decomposition

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Multi-GPU Dynamic Work Distribution

// Each GPU worker thread loops over

// subset of work items…

while (!threadpool_next_tile(&parms,

tilesize, &tile){

 // Process one work item…

 // Launch one CUDA kernel for each

 // loop iteration taken…

 // Shared iterator automatically

 // balances load on GPUs

}

GPU 1 GPU N
…

Dynamic work
distribution

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Example Multi-GPU Latencies
4 C2050 GPUs, Intel Xeon 5550

 6.3us CUDA empty kernel (immediate return)

 9.0us Sleeping barrier primitive (non-spinning

 barrier that uses POSIX condition variables to prevent

 idle CPU consumption while workers wait at the barrier)

 14.8us pool wake, host fctn exec, sleep cycle (no CUDA)

 30.6us pool wake, 1x(tile fetch, simple CUDA kernel launch), sleep

1817.0us pool wake, 100x(tile fetch, simple CUDA kernel launch), sleep

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Multi-GPU Runtime

Error/Exception Handling
• Competition for resources

from other applications can
cause runtime failures, e.g.
GPU out of memory half way
through an algorithm

• Handle exceptions, e.g.
convergence failure, NaN
result, insufficient compute
capability/features

• Handle and/or reschedule
failed tiles of work

GPU 1

SM 1.1

128MB

GPU N

SM 2.0

3072MB

…

Original
Workload

Retry Stack

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

VMD Multi-GPU Molecular Orbital

Performance Results for C60

Intel Q6600 CPU, 4x Tesla C1060 GPUs,

Uses persistent thread pool to avoid GPU init overhead,
dynamic scheduler distributes work to GPUs

Kernel Cores/GPUs Runtime (s) Speedup Parallel

Efficiency

CPU-ICC-SSE 1 46.580 1.00 100%

CPU-ICC-SSE 4 11.740 3.97 99%

CUDA-const-cache 1 0.417 112 100%

CUDA-const-cache 2 0.220 212 94%

CUDA-const-cache 3 0.151 308 92%

CUDA-const-cache 4 0.113 412 92%

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Performance Evaluation:
Molekel, MacMolPlt, and VMD

 Sun Ultra 24: Intel Q6600, NVIDIA GTX 280

C60-A C60-B Thr-A Thr-B Kr-A Kr-B

Atoms 60 60 17 17 1 1

Basis funcs (unique) 300 (5) 900 (15) 49 (16) 170 (59) 19 (19) 84 (84)

Kernel Cores

GPUs
Speedup vs. Molekel on 1 CPU core

Molekel 1* 1.0 1.0 1.0 1.0 1.0 1.0

MacMolPlt 4 2.4 2.6 2.1 2.4 4.3 4.5

VMD GCC-cephes 4 3.2 4.0 3.0 3.5 4.3 6.5

VMD ICC-SSE-cephes 4 16.8 17.2 13.9 12.6 17.3 21.5

VMD ICC-SSE-approx** 4 59.3 53.4 50.4 49.2 54.8 69.8

VMD CUDA-const-cache 1 552.3 533.5 355.9 421.3 193.1 571.6

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

VMD Multi-GPU Molecular Orbital

Performance Results for C60

Kernel Cores/GPUs Runtime (s) Speedup

Intel X5550-SSE 1 30.64 1.0

Intel X5550-SSE 8 4.13 7.4

GeForce GTX 480 1 0.255 120

GeForce GTX 480 2 0.136 225

GeForce GTX 480 3 0.098 312

GeForce GTX 480 4 0.081 378

Intel X5550 CPU, 4x GeForce GTX 480 GPUs,

Uses persistent thread pool to avoid GPU init overhead,
dynamic scheduler distributes work to GPUs

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Molecular Orbital Dynamic Scheduling

Performance with Heterogeneous GPUs

Kernel Cores/GPUs Runtime (s) Speedup

Intel X5550-SSE 1 30.64 1.0

Quadro 5800 1 0.384 79

Tesla C2050 1 0.325 94

GeForce GTX 480 1 0.255 120

GeForce GTX 480 +

Tesla C2050 +

Quadro 5800

3 0.114 268

(91% of ideal perf)

Dynamic load balancing enables mixture of GPU
generations, SM counts, and clock rates to perform well.

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

MO Kernel Structure, Opportunity for JIT…
Data-driven, but representative loop trip counts in (…)

Loop over atoms (1 to ~200) {

Loop over electron shells for this atom type (1 to ~6) {

Loop over primitive functions for this shell type (1 to ~6) {

}

Loop over angular momenta for this shell type (1 to ~15) {}

}

}

Small loop trip counts result in significant loop overhead.
Runtime kernel generation and JIT compilation can

yield a large (1.4x to 1.8x!) speedup via loop unrolling,
constant folding, elimination of array accesses, …

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Molecular Orbital Computation and Display Process
Dynamic Kernel Generation, Just-In-Time (JIT) C0mpilation

Read QM simulation log file, trajectory

Compute 3-D grid of MO wavefunction amplitudes

using basis set-specific CUDA kernel

Extract isosurface mesh from 3-D MO grid

Render the resulting surface

Preprocess MO coefficient data

eliminate duplicates, sort by type, etc…

For current frame and MO index,

retrieve MO wavefunction coefficients

One-time
initialization

Generate/compile basis set-specific CUDA kernel

For each trj frame, for
each MO shown

Initialize Pool of GPU

Worker Threads

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

VMD MO JIT Performance Results for C60
2.6GHz Intel X5550 vs. NVIDIA C2050

Kernel Cores/GPUs Runtime (s) Speedup

CPU ICC-SSE 1 30.64 1.0

CPU ICC-SSE 8 4.13 7.4

CUDA-JIT, Zero-copy 1 0.174 176

C60 basis set 6-31Gd. We used a high resolution MO grid for accurate
timings. A more typical calculation has 1/8th the grid points.

JIT kernels eliminate overhead for low trip
count for loops, replace dynamic table lookups

with constants, and increase floating point
arithmetic intensity

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

VMD Molecular Orbital NVRTC JIT

Performance Results for C60

Kernel Cores/GPUs Runtime (s) Speedup vs

socket (vs core)

Intel X5550-SSE 1 30.64 0.13 (1.0)

Intel X5550-SSE 8 4.13 1.00 (7.4)

Quadro M6000 const 1 0.069 60.0 (444.)

Quadro M6000 shared 1 0.102 30.4 (225.)

Quadro M6000 NVRTC JIT 1 0.0404 102 (758.)

Intel X5550 CPU, Quadro M6000 GPU

NVRTC JIT w/ data-specific kernel yields a 1.7x speed
increase over the fastest offline-compiled fully-general loop

based kernel (constant memory kernel).

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

 contracted_gto = 1.832937 * expf(-7.868272*dist2);

 contracted_gto += 1.405380 * expf(-1.881289*dist2);

 contracted_gto += 0.701383 * expf(-0.544249*dist2);

 for (shell=0; shell < maxshell; shell++) {

 float contracted_gto = 0.0f;

 // Loop over the Gaussian primitives of CGTO

 int maxprim = const_num_prim_per_shell[shell_counter];

 int shell_type = const_shell_symmetry[shell_counter];

 for (prim=0; prim < maxprim; prim++) {

 float exponent = const_basis_array[prim_counter];

 float contract_coeff = const_basis_array[prim_counter + 1];

 contracted_gto += contract_coeff * expf(-exponent*dist2);

 prim_counter += 2;

 }

General loop-based
data-dependent MO

CUDA kernel

Runtime-generated
data-specific MO

CUDA kernel compiled
via CUDA 7.0
NVRTC JIT…

1.8x Faster

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

 contracted_gto = 1.832937 * expf(-7.868272*dist2);

 contracted_gto += 1.405380 * expf(-1.881289*dist2);

 contracted_gto += 0.701383 * expf(-0.544249*dist2);

 // P_SHELL

 tmpshell = const_wave_f[ifunc++] * xdist;

 tmpshell += const_wave_f[ifunc++] * ydist;

 tmpshell += const_wave_f[ifunc++] * zdist;

 value += tmpshell * contracted_gto;

 contracted_gto = 0.187618 * expf(-0.168714*dist2);

 // S_SHELL

 value += const_wave_f[ifunc++] * contracted_gto;

 contracted_gto = 0.217969 * expf(-0.168714*dist2);

 // P_SHELL

 tmpshell = const_wave_f[ifunc++] * xdist;

 tmpshell += const_wave_f[ifunc++] * ydist;

 tmpshell += const_wave_f[ifunc++] * zdist;

 value += tmpshell * contracted_gto;

 contracted_gto = 3.858403 * expf(-0.800000*dist2);

 // D_SHELL

 tmpshell = const_wave_f[ifunc++] * xdist2;

 tmpshell += const_wave_f[ifunc++] * ydist2;

 tmpshell += const_wave_f[ifunc++] * zdist2;

 tmpshell += const_wave_f[ifunc++] * xdist * ydist;

 tmpshell += const_wave_f[ifunc++] * xdist * zdist;

 tmpshell += const_wave_f[ifunc++] * ydist * zdist;

 value += tmpshell * contracted_gto;

 for (shell=0; shell < maxshell; shell++) {

 float contracted_gto = 0.0f;

 // Loop over the Gaussian primitives of CGTO

 int maxprim = const_num_prim_per_shell[shell_counter];

 int shell_type = const_shell_symmetry[shell_counter];

 for (prim=0; prim < maxprim; prim++) {

 float exponent = const_basis_array[prim_counter];

 float contract_coeff = const_basis_array[prim_counter + 1];

 contracted_gto += contract_coeff * expf(-exponent*dist2);

 prim_counter += 2;

 }

 float tmpshell=0;

 switch (shell_type) {

 case S_SHELL:

 value += const_wave_f[ifunc++] * contracted_gto;

 break;

[…..]

 case D_SHELL:

 tmpshell += const_wave_f[ifunc++] * xdist2;

 tmpshell += const_wave_f[ifunc++] * ydist2;

 tmpshell += const_wave_f[ifunc++] * zdist2;

 tmpshell += const_wave_f[ifunc++] * xdist * ydist;

 tmpshell += const_wave_f[ifunc++] * xdist * zdist;

 tmpshell += const_wave_f[ifunc++] * ydist * zdist;

 value += tmpshell * contracted_gto;

 break;

General loop-based
data-dependent MO

CUDA kernel

Runtime-generated
data-specific MO

CUDA kernel compiled
via CUDA 7.0
NVRTC JIT…

1.8x Faster

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Experiments Porting VMD CUDA

Kernels to OpenCL

• Why mess with OpenCL?

– OpenCL is very similar to CUDA, though a few years
behind in terms of HPC features, aims to be the
“OpenGL” of heterogeneous computing

– As with CUDA, OpenCL provides a low-level language
for writing high performance kernels, until compilers
do a much better job of generating this kind of code

– Potential to eliminate hand-coded SSE for CPU
versions of compute intensive code, looks more like C
and is easier for non-experts to read than hand-coded
SSE or other vendor-specific instruction sets, intrinsics

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Molecular Orbital Inner Loop, Hand-Coded SSE

Hard to Read, Isn’t It? (And this is the “pretty” version!)
for (shell=0; shell < maxshell; shell++) {

 __m128 Cgto = _mm_setzero_ps();

 for (prim=0; prim<num_prim_per_shell[shell_counter]; prim++) {

 float exponent = -basis_array[prim_counter];

 float contract_coeff = basis_array[prim_counter + 1];

 __m128 expval = _mm_mul_ps(_mm_load_ps1(&exponent), dist2);

 __m128 ctmp = _mm_mul_ps(_mm_load_ps1(&contract_coeff), exp_ps(expval));

 Cgto = _mm_add_ps(contracted_gto, ctmp);

 prim_counter += 2;

 }

 __m128 tshell = _mm_setzero_ps();

 switch (shell_types[shell_counter]) {

 case S_SHELL:

 value = _mm_add_ps(value, _mm_mul_ps(_mm_load_ps1(&wave_f[ifunc++]), Cgto)); break;

 case P_SHELL:

 tshell = _mm_add_ps(tshell, _mm_mul_ps(_mm_load_ps1(&wave_f[ifunc++]), xdist));

 tshell = _mm_add_ps(tshell, _mm_mul_ps(_mm_load_ps1(&wave_f[ifunc++]), ydist));

 tshell = _mm_add_ps(tshell, _mm_mul_ps(_mm_load_ps1(&wave_f[ifunc++]), zdist));

 value = _mm_add_ps(value, _mm_mul_ps(tshell, Cgto));

 break;

Until now, writing SSE kernels for CPUs
required assembly language, compiler

intrinsics, various libraries, or a really smart
autovectorizing compiler and lots of luck...

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Molecular Orbital Inner Loop, OpenCL Vec4

Ahhh, much easier to read!!!
for (shell=0; shell < maxshell; shell++) {

 float4 contracted_gto = 0.0f;

 for (prim=0; prim < const_num_prim_per_shell[shell_counter]; prim++) {

 float exponent = const_basis_array[prim_counter];

 float contract_coeff = const_basis_array[prim_counter + 1];

 contracted_gto += contract_coeff * native_exp2(-exponent*dist2);

 prim_counter += 2;

 }

 float4 tmpshell=0.0f;

 switch (const_shell_symmetry[shell_counter]) {

 case S_SHELL:

 value += const_wave_f[ifunc++] * contracted_gto; break;

 case P_SHELL:

 tmpshell += const_wave_f[ifunc++] * xdist;

 tmpshell += const_wave_f[ifunc++] * ydist;

 tmpshell += const_wave_f[ifunc++] * zdist;

 value += tmpshell * contracted_gto;

 break;

OpenCL’s C-like kernel language
is easy to read, even 4-way
vectorized kernels can look
similar to scalar CPU code.

All 4-way vectors shown in green.

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Apples to Oranges Performance Results:

OpenCL Molecular Orbital Kernels
Kernel Cores Runtime (s) Speedup

Intel QX6700 CPU ICC-SSE (SSE intrinsics) 1 46.580 1.00

Intel Core2 Duo CPU OpenCL scalar 2 43.342 1.07

Intel Core2 Duo CPU OpenCL vec4 2 8.499 5.36

Cell OpenCL vec4*** no __constant 16 6.075 7.67

Radeon 4870 OpenCL scalar 10 2.108 22.1

Radeon 4870 OpenCL vec4 10 1.016 45.8

GeForce GTX 285 OpenCL vec4 30 0.364 127.9

GeForce GTX 285 CUDA 2.1 scalar 30 0.361 129.0

GeForce GTX 285 OpenCL scalar 30 0.335 139.0

GeForce GTX 285 CUDA 2.0 scalar 30 0.327 142.4

Minor varations in compiler quality can have a strong effect on “tight” kernels. The two
results shown for CUDA demonstrate performance variability with compiler revisions, and
that with vendor effort, OpenCL has the potential to match the performance of other APIs.

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Radial Distribution Function

• RDFs describes how
atom density varies
with distance

• Can be compared with
experiments

• Shape indicates phase
of matter: sharp peaks
appear for solids,
smoother for liquids

• Quadratic time
complexity O(N2)

Solid

Liquid

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Histogramming

• Partition population

of data values into

discrete bins

• Compute by

traversing input

population and

incrementing bin

counters

0

0.5

1

1.5

2

0.00 1.00 2.00 3.00 4.00

Atom pair distance histogram
(normalized)

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Computing RDFs

• Compute distances for all pairs of atoms between

two groups of atoms A and B

• A and B may be the same, or different

• Use nearest image convention for periodic systems

• Each pair distance is inserted into a histogram

• Histogram is normalized one of several ways

depending on use, but usually according to the

volume of the spherical shells associated with each

histogram bin

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Computing RDFs on CPUs

• Atom coordinates can be traversed in a

strictly consecutive access pattern, yielding

good cache utilization

• Since RDF histograms are usually small to

moderate in size, they normally fit entirely

in L2 cache

• CPUs can compute the entire histogram in a

single pass, regardless of the problem size

or number of histogram bins

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Histogramming on the CPU

(slow-and-simple C)

memset(histogram, 0, sizeof(histogram));

for (i=0; i<numdata; i++) {

 float val = data[i];

 if (val >= minval && val <= maxval) {

 int bin = (val - minval) / bindelta;

 histogram[bin]++;

 }

}

Fetch-and-increment:

random access updates
to histogram bins…

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Parallel Histogramming on

Multi-core CPUs
• Parallel updates to a single histogram bin creates a

potential output conflict

• CPUs have atomic increment instructions, but they
often take hundreds of clock cycles; unsuitable…

• SSE can’t be used effectively: lacks ability to
“scatter” to memory (e.g. no scatter-add, no
indexed store instructions)

• For small numbers of CPU cores, it is best to
replicate and privatize the histogram for each
CPU thread, compute them independently, and
combine the separate histograms in a final
reduction step

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Computing RDFs on the GPU

• Need tens of thousands of independent threads

• Each GPU thread computes one or more atom pair
distances

• Performance is limited by the speed of histogramming

• Histograms are best stored in fast on-chip shared
memory

• Small size of shared memory severely constrains the
range of viable histogram update techniques

• Fast CUDA implementation on Fermi: 30-92x faster
than CPU

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Computing Atom Pair Distances on

the GPU

• Memory access pattern is simple

• Primary consideration is amplification of

effective memory bandwidth, through use

of GPU on-chip shared memory, caches,

and broadcast of data to multiple or all

threads in a thread block

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Radial Distribution Functions on GPUs

• Load blocks of atoms into shared memory and
constant memory, compute periodic boundary
conditions and atom-pair distances, all in parallel…

• Each thread computes all pair distances between its
atom and all atoms in constant memory, incrementing
the appropriate bin counter in the RDF histogram..

4

2.5Å
Each RDF histogram bin

contains count of particles
within a certain distance

range

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

GPU Histogramming

• Tens of thousands of threads concurrently
computing atom distance pairs…

• Far too many threads for a simple per-thread
histogram privatization approach like CPU…

• Viable approach: per-warp histograms

• Fixed size shared memory limits histogram size
that can be computed in a single pass

• Large histograms require multiple passes, but we
can skip block pairs that are known not to
contribute to a histogram window

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Per-warp Histogram Approach

• Each warp maintains its own private histogram in

on-chip shared memory

• Each thread in the warp computes an atom pair

distance and updates a histogram bin in parallel

• Conflicting histogram bin updates are resolved

using one of two schemes:

– Shared memory write combining with thread-tagging

technique (older hardware, e.g. G80, G9x)

– atomicAdd() to shared memory (new hardware)

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

RDF Inner Loops (abbreviated, xdist-only)
// loop over all atoms in constant memory

for (iblock=0; iblock<loopmax2; iblock+=3*NCUDABLOCKS*NBLOCK) {

 __syncthreads();

 for (i=0; i<3; i++) xyzi[threadIdx.x + i*NBLOCK]=pxi[iblock + i*NBLOCK]; // load coords…

 __syncthreads();

 for (joffset=0; joffset<loopmax; joffset+=3) {

 rxij=fabsf(xyzi[idxt3] - xyzj[joffset]); // compute distance, PBC min image convention

 rxij2=celld.x - rxij;

 rxij=fminf(rxij, rxij2);

 rij=rxij*rxij;

 […other distance components…]

 rij=sqrtf(rij + rxij*rxij);

 ibin=__float2int_rd((rij-rmin)*delr_inv);

 if (ibin<nbins && ibin>=0 && rij>rmin2) {

 atomicAdd(llhists1+ibin, 1U);

 }

 } //joffset

} //iblock

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Writing/Updating Histogram in

Global Memory

• When thread block completes, add

independent per-warp histograms together,

and write to per-thread-block histogram in

global memory

• Final reduction of all per-thread-block

histograms stored in global memory

3 4 1 18 4 8 15

3 1 1 1 4 12 6

3 4 9 3 4 8 7

9 9 11 22 12 28 28

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Preventing Integer Overflows

• Since all-pairs RDF calculation computes many
billions of pair distances, we have to prevent
integer overflow for the 32-bit histogram bin
counters (supported by the atomicAdd() routine)

• We compute full RDF calculation in multiple
kernel launches, so each kernel launch computes
partial histogram

• Host routines read GPUs and increment large
(e.g. long, or double) histogram counters in host
memory after each kernel completes

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Multi-GPU Load Balance

• Many early CUDA codes
assumed all GPUs were identical

• Host machines may contain a
diversity of GPUs of varying
capability (discrete, IGP, etc)

• Different GPU on-chip and global
memory capacities may need
different problem “tile” sizes

• Static decomposition works
poorly for non-uniform workload,
or diverse GPUs

GPU 1

14 SMs

GPU N

30 SMs
…

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Multi-GPU Dynamic Work Distribution

// Each GPU worker thread loops over

// subset of work items…

while (!threadpool_next_tile(&parms,

tilesize, &tile){

 // Process one work item…

 // Launch one CUDA kernel for each

 // loop iteration taken…

 // Shared iterator automatically

 // balances load on GPUs

}

GPU 1 GPU N
…

Dynamic work
distribution

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Multi-GPU RDF Calculation

• Distribute combinations of
tiles of atoms and histogram
regions to different GPUs

• Decomposed over two
dimensions to obtain enough
work units to balance GPU
loads

• Each GPU computes its own
histogram, and all results are
combined for final histogram

GPU 1

14 SMs

GPU N

30 SMs
…

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Multi-GPU Runtime

Error/Exception Handling
• Competition for resources

from other applications can
cause runtime failures, e.g.
GPU out of memory half way
through an algorithm

• Handle exceptions, e.g.
convergence failure, NaN
result, insufficient compute
capability/features

• Handle and/or reschedule
failed tiles of work

GPU 1

SM 1.1

128MB

GPU N

SM 2.0

3072MB

…

Original
Workload

Retry Stack

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Multi-GPU RDF Performance

• 4 NVIDIA GTX480
GPUs 30 to 92x faster
than 4-core Intel X5550
CPU

• Fermi GPUs ~3x faster
than GT200 GPUs:
larger on-chip shared
memory

Fast Analysis of Molecular Dynamics Trajectories with Graphics
Processing Units – Radial Distribution Functions. B. Levine, J. Stone,

and A. Kohlmeyer. J. Comp. Physics, 230(9):3556-3569, 2011.

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Acknowledgements
• Theoretical and Computational Biophysics Group, University of

Illinois at Urbana-Champaign

• NVIDIA CUDA Center of Excellence, University of Illinois at Urbana-

Champaign

• NVIDIA CUDA team

• NVIDIA OptiX team

• NCSA Blue Waters Team

• Funding:

– NSF OCI 07-25070

– NSF PRAC “The Computational Microscope”

– NIH support: 9P41GM104601, 5R01GM098243-02

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

GPU Computing Publications
http://www.ks.uiuc.edu/Research/gpu/

• Runtime and Architecture Support for Efficient Data Exchange in Multi-Accelerator
Applications Javier Cabezas, Isaac Gelado, John E. Stone, Nacho Navarro, David B. Kirk, and
Wen-mei Hwu. IEEE Transactions on Parallel and Distributed Systems, 26(5):1405-1418, 2015.

• Unlocking the Full Potential of the Cray XK7 Accelerator Mark Klein and John E. Stone.
Cray Users Group, Lugano Switzerland, May 2014.

• Simulation of reaction diffusion processes over biologically relevant size and time scales using
multi-GPU workstations Michael J. Hallock, John E. Stone, Elijah Roberts, Corey Fry, and Zaida
Luthey-Schulten. Journal of Parallel Computing, 40:86-99 2014.

• GPU-Accelerated Analysis and Visualization of Large Structures Solved by Molecular
Dynamics Flexible Fitting John E. Stone, Ryan McGreevy, Barry Isralewitz, and Klaus Schulten.
Faraday Discussions, 169:265-283, 2014.

• GPU-Accelerated Molecular Visualization on Petascale Supercomputing Platforms.
J. Stone, K. L. Vandivort, and K. Schulten. UltraVis'13: Proceedings of the 8th International
Workshop on Ultrascale Visualization, pp. 6:1-6:8, 2013.

• Early Experiences Scaling VMD Molecular Visualization and Analysis Jobs on Blue Waters.
J. E. Stone, B. Isralewitz, and K. Schulten. Extreme Scaling Workshop (XSW), pp. 43-50, 2013.

• Lattice Microbes: High‐performance stochastic simulation method for the reaction‐diffusion
master equation. E. Roberts, J. E. Stone, and Z. Luthey‐Schulten.
J. Computational Chemistry 34 (3), 245-255, 2013.

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

GPU Computing Publications
http://www.ks.uiuc.edu/Research/gpu/

• Fast Visualization of Gaussian Density Surfaces for Molecular Dynamics and Particle System

Trajectories. M. Krone, J. E. Stone, T. Ertl, and K. Schulten. EuroVis Short Papers, pp. 67-71,

2012.

• Fast Analysis of Molecular Dynamics Trajectories with Graphics Processing Units – Radial

Distribution Functions. B. Levine, J. Stone, and A. Kohlmeyer. J. Comp. Physics, 230(9):3556-

3569, 2011.

• Immersive Out-of-Core Visualization of Large-Size and Long-Timescale Molecular Dynamics

Trajectories. J. Stone, K. Vandivort, and K. Schulten. G. Bebis et al. (Eds.): 7th International

Symposium on Visual Computing (ISVC 2011), LNCS 6939, pp. 1-12, 2011.

• Quantifying the Impact of GPUs on Performance and Energy Efficiency in HPC Clusters. J.

Enos, C. Steffen, J. Fullop, M. Showerman, G. Shi, K. Esler, V. Kindratenko, J. Stone, J Phillips.

International Conference on Green Computing, pp. 317-324, 2010.

• GPU-accelerated molecular modeling coming of age. J. Stone, D. Hardy, I. Ufimtsev, K.

Schulten. J. Molecular Graphics and Modeling, 29:116-125, 2010.

• OpenCL: A Parallel Programming Standard for Heterogeneous Computing. J. Stone, D.

Gohara, G. Shi. Computing in Science and Engineering, 12(3):66-73, 2010.

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

GPU Computing Publications
http://www.ks.uiuc.edu/Research/gpu/

• An Asymmetric Distributed Shared Memory Model for Heterogeneous Computing

Systems. I. Gelado, J. Stone, J. Cabezas, S. Patel, N. Navarro, W. Hwu. ASPLOS ’10:

Proceedings of the 15th International Conference on Architectural Support for Programming

Languages and Operating Systems, pp. 347-358, 2010.

• GPU Clusters for High Performance Computing. V. Kindratenko, J. Enos, G. Shi, M.

Showerman, G. Arnold, J. Stone, J. Phillips, W. Hwu. Workshop on Parallel Programming on

Accelerator Clusters (PPAC), In Proceedings IEEE Cluster 2009, pp. 1-8, Aug. 2009.

• Long time-scale simulations of in vivo diffusion using GPU hardware. E. Roberts, J. Stone,

L. Sepulveda, W. Hwu, Z. Luthey-Schulten. In IPDPS’09: Proceedings of the 2009 IEEE

International Symposium on Parallel & Distributed Computing, pp. 1-8, 2009.

• High Performance Computation and Interactive Display of Molecular Orbitals on GPUs

and Multi-core CPUs. J. Stone, J. Saam, D. Hardy, K. Vandivort, W. Hwu, K. Schulten, 2nd

Workshop on General-Purpose Computation on Graphics Pricessing Units (GPGPU-2), ACM

International Conference Proceeding Series, volume 383, pp. 9-18, 2009.

• Probing Biomolecular Machines with Graphics Processors. J. Phillips, J. Stone.

Communications of the ACM, 52(10):34-41, 2009.

• Multilevel summation of electrostatic potentials using graphics processing units. D. Hardy,

J. Stone, K. Schulten. J. Parallel Computing, 35:164-177, 2009.

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

GPU Computing Publications
http://www.ks.uiuc.edu/Research/gpu/

• Adapting a message-driven parallel application to GPU-accelerated clusters.

J. Phillips, J. Stone, K. Schulten. Proceedings of the 2008 ACM/IEEE Conference on

Supercomputing, IEEE Press, 2008.

• GPU acceleration of cutoff pair potentials for molecular modeling applications.

C. Rodrigues, D. Hardy, J. Stone, K. Schulten, and W. Hwu. Proceedings of the 2008 Conference

On Computing Frontiers, pp. 273-282, 2008.

• GPU computing. J. Owens, M. Houston, D. Luebke, S. Green, J. Stone, J. Phillips. Proceedings

of the IEEE, 96:879-899, 2008.

• Accelerating molecular modeling applications with graphics processors. J. Stone, J. Phillips,

P. Freddolino, D. Hardy, L. Trabuco, K. Schulten. J. Comp. Chem., 28:2618-2640, 2007.

• Continuous fluorescence microphotolysis and correlation spectroscopy. A. Arkhipov, J.

Hüve, M. Kahms, R. Peters, K. Schulten. Biophysical Journal, 93:4006-4017, 2007.

