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What Speedups Can GPUs Achieve? 

• Single-GPU speedups of 2.5x to 8x vs. one 
CPU socket are common 

• Best speedups can reach 25x or more, 
attained on codes dominated by  floating 
point arithmetic, especially native GPU 
machine instructions, e.g. expf(), rsqrtf(), … 

• Amdahl’s Law can prevent legacy codes 
from achieving peak speedups with shallow 
GPU acceleration efforts 
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CUDA GPU-Accelerated Trajectory Analysis 

and Visualization in VMD 
VMD GPU-Accelerated Feature or 

Kernel 

Typical speedup vs. multi-

core CPU (e.g. 4-core CPU) 

Molecular orbital display 30x 

Radial distribution function 23x 

Molecular surface display 15x 

Electrostatic field calculation 11x 

Ray tracing w/ shadows,                

AO lighting 

7x 

Ion placement 6x 

MDFF density map synthesis  6x 

Implicit ligand sampling 6x 

Root mean squared fluctuation 6x 

Radius of gyration 5x 

Close contact determination 5x 

Dipole moment calculation 4x 
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Comparison of CPU and GPU           

Hardware Architecture 

CPU: Cache heavy, 
focused on individual 
thread performance  

GPU: ALU heavy, 
massively parallel, 
throughput oriented 
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Multiple Debye-Hückel Electrostatics 

• Part of Poisson-Boltzmann solver in the 

popular APBS package 

• Method: compute electrostatic potentials at 

grid points on boundary faces of box 

containing molecule 

• Screening function: 
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MDH Kernel (CUDA) 
extern shared f loat smem [ ] ; 

int igrid = (blockIdx .x  blockDim.x ) + threadIdx .x ;      int lsize = blockDim.x ;    int lid= threadIdx .x ; 

float lgx = gx [ igrid ] ;  float lgy = gy [ igrid ] ;  float lg z = gz [ igrid ] ;  float v = 0.0 f ; 

for ( int jatom = 0 ; jatom < natoms ; jatom+=lsize ) {  

    syncthreads ( ) ; 

    i f ( ( jatom + l i d ) < natoms ) {  

        smem[ lid                   ] = ax [ jatom + lid] ; 

        smem[ lid +       lsize ] = ay [ jatom + lid] ; 

        smem[ lid + 2 * lsize ] = az [ jatom + lid] ; 

        smem[ lid + 3 * lsize ] = charge [ jatom + lid] ; 

        smem[ lid + 4 * lsize ] = size [ jatom + lid] ; 

    } 

    syncthreads ( ) ; 

    i f ( ( jatom+l s i z e ) > natoms ) l s i z e = natoms − jatom ; 

        for ( int i =0; i<l s i z e ; i++) { 

            f loat dx = lgx − smem[ i                  ] ; 

            f loat dy = lgy − smem[ i +      lsize ] ; 

            f loat dz = lgz − smem[ i + 2 * lsize ] ; 

            f loat dist = sqrtf ( dxdx + dydy + dzdz ) ; 

            v += smem[i+3*lsize] * expf(−xkappa ( dist − smem[ i+4*lsize ] ) ) / (1.0 f + xkappa  smem[ i+4*lsize ]) * 
dist) ; 

        } 

   } 

   val [ igrid ] = pre1 * v;  

 

Collectively load atoms from 

global memory into shared 

memory 

Loop over all all atoms in shared 

memory accumulating potential 

contributions into grid points 
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Electrostatic Potential Maps 

• Electrostatic potentials 
evaluated on 3-D lattice: 

 

 

 

• Applications include: 

– Ion placement for 
structure building 

– Time-averaged potentials 
for simulation 

– Visualization and 
analysis 

Isoleucine tRNA synthetase 
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Direct Coulomb Summation (DCS) 

Algorithm Detail 
• Each lattice point accumulates electrostatic potential 

contribution from all atoms: 

   potential[j] +=  atom[i].charge / rij 

atom[i] 

rij: distance 

from lattice[j] 

to atom[i] 

Lattice point j 

being evaluated 



NIH BTRC for Macromolecular Modeling and Bioinformatics 

http://www.ks.uiuc.edu/ 

Beckman Institute, 
 U. Illinois at Urbana-Champaign 

DCS Computational Considerations 

• Attributes of DCS algorithm for computing 
electrostatic maps: 

– Highly data parallel 

– Starting point for more sophisticated algorithms 

– Single-precision FP arithmetic is adequate for intended 
uses 

– Numerical accuracy can be further improved  by 
compensated summation, spatially ordered summation 
groupings, or with the use of double-precision 
accumulation 

– Interesting test case since potential maps are useful for 
various visualization and analysis tasks 

• Forms a template for related spatially evaluated 
function summation algorithms in CUDA 
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Single Slice DCS: Simple (Slow) C Version  
void cenergy(float *energygrid, dim3 grid, float gridspacing, float z, const float *atoms, 

                      int numatoms) { 

  int i,j,n; 

  int atomarrdim = numatoms * 4; 

  for (j=0; j<grid.y; j++) { 

    float y = gridspacing * (float) j; 

    for (i=0; i<grid.x; i++) { 

      float x = gridspacing * (float) i; 

      float energy = 0.0f; 

      for (n=0; n<atomarrdim; n+=4) {     // calculate potential contribution of each atom 

        float dx = x - atoms[n    ]; 

        float dy = y - atoms[n+1]; 

        float dz = z - atoms[n+2]; 

        energy += atoms[n+3] / sqrtf(dx*dx + dy*dy + dz*dz); 

      } 

      energygrid[grid.x*grid.y*k + grid.x*j + i] = energy; 

    } 

  } 

} 
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DCS Algorithm Design Observations 

• Electrostatic maps used for ion placement require evaluation 
of ~20 potential lattice points per atom for a typical biological 
structure 

• Atom list has the smallest memory footprint, best choice for 
the inner loop (both CPU and GPU) 

• Lattice point coordinates are computed on-the-fly 

• Atom coordinates are made relative to the origin of the 
potential map, eliminating redundant arithmetic 

• Arithmetic can be significantly reduced by precalculating and 
reusing distance components, e.g. create a new array 
containing X, Q, and dy^2 + dz^2, updated on-the-fly for each 
row (CPU) 

• Vectorized CPU versions benefit greatly from SSE instructions 



NIH BTRC for Macromolecular Modeling and Bioinformatics 

http://www.ks.uiuc.edu/ 

Beckman Institute, 
 U. Illinois at Urbana-Champaign 

An Approach to Writing CUDA Kernels  
• Find an algorithm that can expose substantial parallelism, 

we’ll ultimately need thousands of independent threads… 

• Identify appropriate GPU memory or texture subsystems 

used to store data used by kernel 

• Are there trade-offs that can be made to exchange 

computation for more parallelism? 

– Though counterintuitive, past successes resulted from 

this strategy 

– “Brute force” methods that expose significant 

parallelism do surprisingly well on current GPUs 

• Analyze the real-world use case for the problem and select 

the kernel for the problem sizes that will be heavily used 
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Direct Coulomb Summation Runtime 

GPU 

underutilized 

GPU fully utilized, 

~40x faster than CPU 

Accelerating molecular modeling applications with graphics processors. 

J. Stone, J. Phillips, P. Freddolino, D. Hardy, L. Trabuco, K. Schulten.     

J. Comp. Chem., 28:2618-2640, 2007. 

Lower  

is better 

GPU initialization 

time: ~110ms  
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DCS Observations for GPU 

Implementation 
• Naive implementation has a low ratio of FP arithmetic 

operations to memory transactions (at least for a GPU…) 

• The innermost loop will consume operands VERY quickly 

• Since atoms are read-only, they are ideal candidates for 
texture memory or constant memory 

• GPU implementations must access constant memory 
efficiently, avoid shared memory bank conflicts, coalesce 
global memory accesses, and overlap arithmetic with 
global memory latency 

• Map is padded out to a multiple of the thread block size: 

– Eliminates conditional handling at the edges, thus also 
eliminating the possibility of branch divergence 

– Assists with memory coalescing 
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Global Memory 

Texture Texture Texture Texture Texture Texture Texture 

Parallel Data 

Cache 

Parallel Data 

Cache 

Parallel Data 

Cache 

Parallel Data 

Cache 

Parallel Data 

Cache 

Parallel Data 

Cache 

GPU Constant Memory 

Direct Coulomb Summation on the GPU 

Host 

Atomic 

Coordinates 

Charges 

Threads compute 

up to 8 potentials,  

skipping by half-warps 

Thread blocks: 

64-256 threads 

Grid of thread blocks 

Lattice padding 
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DCS CUDA Block/Grid Decomposition  
(non-unrolled) 

Padding waste 

Grid of thread blocks: 

0,0 0,1 

1,0 1,1 

… 

… 

… … … 

Thread blocks:  

64-256 threads 

Threads compute 

1 potential each 
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DCS CUDA Block/Grid 

Decomposition (non-unrolled) 

• 16x16 CUDA thread blocks are a nice 

starting size with a satisfactory number of 

threads 

• Small enough that there’s not much waste 

due to padding at the edges 



NIH BTRC for Macromolecular Modeling and Bioinformatics 

http://www.ks.uiuc.edu/ 

Beckman Institute, 
 U. Illinois at Urbana-Champaign 

DCS Version 1: Const+Precalc 

187 GFLOPS, 18.6 Billion Atom Evals/Sec (G80) 

• Pros: 

– Pre-compute dz^2 for entire slice 

– Inner loop over read-only atoms, const memory ideal 

– If all threads read the same const data at the same time, 
performance is similar to reading a register 

• Cons: 

– Const memory only holds ~4000 atom coordinates and 
charges 

– Potential summation must be done in multiple kernel 
invocations per slice, with const atom data updated for 
each invocation 

– Host must shuffle data in/out for each pass 
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… 

  float curenergy = energygrid[outaddr]; 

  float coorx = gridspacing * xindex; 

  float coory = gridspacing * yindex; 

  int atomid; 

  float energyval=0.0f; 

   for (atomid=0; atomid<numatoms; atomid++) { 

    float dx = coorx - atominfo[atomid].x; 

    float dy = coory - atominfo[atomid].y; 

    energyval += atominfo[atomid].w *   

                            rsqrtf(dx*dx + dy*dy + atominfo[atomid].z); 

  } 

  energygrid[outaddr] = curenergy + energyval; 

DCS Version 1: Kernel Structure 

Start global memory reads 

early. Kernel hides some of 

its own latency. 

Only dependency on global 

memory read is at the end of 

the kernel… 
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DCS CUDA Block/Grid Decomposition 

(unrolled, thread coarsening) 
• Reuse atom data and partial distance components multiple 

times 

• Use “unroll and jam” to unroll the outer loop into the inner 
loop 

• Uses more registers, but increases arithmetic intensity 
significantly 

• Kernels that unroll the inner loop calculate more than one 
lattice point per thread result in larger computational tiles: 

– Thread count per block must be decreased to reduce 
computational tile size as unrolling is increased 

– Otherwise, tile size gets bigger as threads do more than 
one lattice point evaluation, resulting on a significant 
increase in padding and wasted computations at edges 
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• Add each atom’s contribution to several lattice points 

at a time, distances only differ in one component: 

potential[j    ] +=  atom[i].charge / rij 

potential[j+1] +=  atom[i].charge / ri(j+1) 

… 

DCS CUDA Algorithm: Unrolling Loops 

Atom[i] 

Distances to 

Atom[i] 
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DCS CUDA Block/Grid Decomposition  
(unrolled) 

Padding waste 

Grid of thread blocks: 

0,0 0,1 

1,0 1,1 

… 

… … 

… 

Thread blocks:  

64-256 threads 

Threads compute 

up to 8 potentials 

… 

Unrolling increases 

computational tile size 
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DCS Version 2: Inner Loop 

…for (atomid=0; atomid<numatoms; atomid++) { 

      float dy = coory - atominfo[atomid].y; 

      float dysqpdzsq = (dy * dy) + atominfo[atomid].z; 

      float x = atominfo[atomid].x; 

      float dx1 = coorx1 - x; 

      float dx2 = coorx2 - x; 

      float dx3 = coorx3 - x; 

      float dx4 = coorx4 - x; 

      float charge = atominfo[atomid].w; 

      energyvalx1 += charge * rsqrtf(dx1*dx1 + dysqpdzsq); 

      energyvalx2 += charge * rsqrtf(dx2*dx2 + dysqpdzsq); 

      energyvalx3 += charge * rsqrtf(dx3*dx3 + dysqpdzsq); 

      energyvalx4 += charge * rsqrtf(dx4*dx4 + dysqpdzsq); 

    } 

Compared to non-unrolled 

kernel: memory loads are 

decreased by 4x, and FLOPS 

per evaluation are reduced, but 

register use is increased… 
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DCS Version 4:  

Const+Loop Unrolling+Coalescing 

291.5 GFLOPS, 39.5 Billion Atom Evals/Sec (G80) 

• Pros: 

– Simplified structure compared to version 3, no use of shared 
memory, register pressure kept at bay by doing global 
memory operations only at the end of the kernel 

– Using fewer registers allows co-scheduling of more blocks, 
increasing GPU “occupancy” 

– Doesn’t have as strict of a thread block dimension 
requirement as version 3, computational tile size can be 
smaller 

• Cons: 

– The computation tile size is still large, so small potential 
maps don’t perform as well as large ones 
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DCS Version 4: Kernel Structure 

• Processes 8 lattice points at a time in the inner 
loop 

• Subsequent lattice points computed by each 
thread are offset by a half-warp to guarantee 
coalesced memory accesses 

• Loads and increments 8 potential map lattice 
points from global memory at completion of of 
the summation, avoiding register consumption 

• Source code is available by request 
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DCS Version 4: Inner Loop 
…float coory = gridspacing * yindex; 

    float coorx = gridspacing * xindex; 

    float gridspacing_coalesce = gridspacing * BLOCKSIZEX; 

    int atomid; 

    for (atomid=0; atomid<numatoms; atomid++) { 

      float dy = coory - atominfo[atomid].y; 

      float dyz2 = (dy * dy) + atominfo[atomid].z; 

      float dx1 = coorx - atominfo[atomid].x; 

[…] 

      float dx8 = dx7 + gridspacing_coalesce; 

      energyvalx1 += atominfo[atomid].w * rsqrtf(dx1*dx1 + dyz2); 

[…] 

      energyvalx8 += atominfo[atomid].w * rsqrtf(dx8*dx8 + dyz2); 

   } 

   energygrid[outaddr                               ] += energyvalx1; 

[...] 

   energygrid[outaddr+7*BLOCKSIZEX] += energyvalx7; 

 

Points spaced for 

memory coalescing 

Reuse partial distance 

components dy^2 + dz^2 

Global memory ops 

occur only at the end 

of the kernel, 

decreases register use 
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DCS CUDA Block/Grid Decomposition  

             (unrolled, coalesced) 

Padding waste 

Grid of thread blocks: 

0,0 0,1 

1,0 1,1 

… 

… … 

… 

Thread blocks:  

64-256 threads 

… 

Unrolling increases 

computational tile size 

Threads compute 

up to 8 potentials,  

skipping by half-warps 
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Direct Coulomb Summation Performance 

CUDA-Simple: 

14.8x faster, 

33% of fastest 

GPU kernel 

CUDA-Unroll8clx: 

fastest GPU kernel, 

44x faster than CPU, 

291 GFLOPS on 

GeForce 8800GTX 

GPU computing.  J. Owens, M. Houston, D. Luebke, S. Green, J. Stone, 

J. Phillips. Proceedings of the IEEE, 96:879-899, 2008. 

CPU 

Number of thread blocks modulo number of SMs results in 

significant performance variation for small workloads  
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DCS Version 4 Inner Loop, Scalar OpenCL 

…for (atomid=0; atomid<numatoms; atomid++) { 

      float dy = coory - atominfo[atomid].y; 

      float dyz2 = (dy * dy) + atominfo[atomid].z; 

      float dx1 = coorx – atominfo[atomid].x; 

      float dx2 = dx1 + gridspacing_coalesce; 

      float dx3 = dx2 + gridspacing_coalesce; 

      float dx4 = dx3 + gridspacing_coalesce; 

      float charge = atominfo[atomid].w; 

      energyvalx1 += charge * native_rsqrt(dx1*dx1 + dyz2); 

      energyvalx2 += charge * native_rsqrt(dx2*dx2 + dyz2); 

      energyvalx3 += charge * native_rsqrt(dx3*dx3 + dyz2); 

      energyvalx4 += charge * native_rsqrt(dx4*dx4 + dyz2); 

    } 

Well-written CUDA code can 
often be easily ported to OpenCL 

if C++  features and pointer 
arithmetic aren’t used in kernels. 
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DCS Version 4 Inner Loop (CUDA) 
(only 4-way unrolling for conciseness to compare OpenCL) 

…for (atomid=0; atomid<numatoms; atomid++) { 

      float dy = coory - atominfo[atomid].y; 

      float dyz2 = (dy * dy) + atominfo[atomid].z; 

      float dx1 = coorx – atominfo[atomid].x; 

      float dx2 = dx1 + gridspacing_coalesce; 

      float dx3 = dx2 + gridspacing_coalesce; 

      float dx4 = dx3 + gridspacing_coalesce; 

      float charge = atominfo[atomid].w; 

      energyvalx1 += charge * rsqrtf(dx1*dx1 + dyz2); 

      energyvalx2 += charge * rsqrtf(dx2*dx2 + dyz2); 

      energyvalx3 += charge * rsqrtf(dx3*dx3 + dyz2); 

      energyvalx4 += charge * rsqrtf(dx4*dx4 + dyz2); 

    } 
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DCS Version 4 Inner Loop, Vectorized OpenCL 

  float4 gridspacing_u4 = { 0.f, 1.f, 2.f, 3.f }; 

  gridspacing_u4 *= gridspacing_coalesce; 

  float4 energyvalx=0.0f; 

… 

  for (atomid=0; atomid<numatoms; atomid++) { 

      float dy = coory - atominfo[atomid].y; 

      float dyz2 = (dy * dy) + atominfo[atomid].z; 

      float4 dx = gridspacing_u4 + (coorx – atominfo[atomid].x); 

      float charge = atominfo[atomid].w; 

      energyvalx1 += charge * native_rsqrt(dx1*dx1 + dyz2); 

  } 

CPUs, AMD GPUs, and Cell often perform 
better with vectorized kernels. 

Use of vector types may increase register 
pressure; sometimes a delicate balance… 
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Infinite vs. Cutoff Potentials  

• Infinite range potential: 

– All atoms contribute to all lattice points 

– Summation algorithm has quadratic complexity 

• Cutoff (range-limited) potential: 

– Atoms contribute within cutoff distance to lattice 
points 

– Summation algorithm has linear time complexity  

– Has many applications in molecular modeling: 

• Replace electrostatic potential with shifted form 

• Short-range part for fast methods of approximating full 
electrostatics 

• Used for fast decaying interactions (e.g. Lennard-Jones, 
Buckingham)  
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Cutoff Summation 

• At each lattice point, sum potential contributions for 
atoms within cutoff radius: 

   if (distance to atom[i] < cutoff) 

     potential += (charge[i] / r) * s(r) 

• Smoothing function s(r) is algorithm dependent 

Cutoff radius 
r: distance to 

Atom[i] 

Lattice point being 
evaluated 

Atom[i] 
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Process atom bins for 
current potential map 

region 

Cutoff Summation on the GPU 

Atoms 

Atoms spatially hashed into fixed-
size “bins” in global memory 

Global memory 

Constant memory 

Bin-Region 
neighborlist 

Shared memory 

Atom bin 

Potential 
map 

regions 

Bins 

of 8 

atoms 

CPU handles overflowed bins 
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Using the CPU to Improve 

 GPU Performance 

• GPU performs best when the work 
evenly divides into the number of 
threads/processing units 

• Optimization strategy:  

– Use the CPU to “regularize” the GPU 
workload 

– Handle exceptional or irregular work units on 
the CPU while the GPU processes the bulk 
of the work 

– On average, the GPU is kept highly 
occupied, attaining a much higher fraction of 
peak performance 
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GPU acceleration of cutoff pair potentials for molecular modeling applications. 
C. Rodrigues, D. Hardy, J. Stone, K. Schulten, W. Hwu. Proceedings of the 2008 

Conference On Computing Frontiers, pp. 273-282, 2008. 

Cutoff Summation Runtime 
GPU cutoff with 

CPU overlap: 

17x-21x faster than 
CPU core 
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Molecular Surface Visualization 

Poliovirus 

• Large biomolecular 

complexes are difficult to 

interpret with atomic detail 

graphical representations 

• Even secondary structure 

representations become 

cluttered 

• Surface representations are 

easier to use when greater 

abstraction is desired, but are 

computationally costly 

• Most surface display methods 

incapable of animating 

dynamics of large structures 

w/ millions of particles 
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• Displays continuum of structural detail: 

– All-atom models 

– Coarse-grained models 

– Cellular scale models 

– Multi-scale models: All-atom + CG,  Brownian + Whole Cell 

– Smoothly variable between full detail, and reduced resolution 

representations of very large complexes 

VMD “QuickSurf” Representation 

Fast Visualization of Gaussian Density Surfaces for Molecular Dynamics and 
Particle System Trajectories.   

M. Krone, J. E. Stone, T. Ertl, K. Schulten. EuroVis Short Papers, pp. 67-71, 2012 
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• Uses multi-core CPUs and GPU acceleration to enable smooth 

real-time animation of MD trajectories  

• Linear-time algorithm, scales to millions of particles, as limited 

by memory capacity 

VMD “QuickSurf” Representation 

Satellite Tobacco Mosaic Virus Lattice Cell Simulations 
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VMD “QuickSurf” Representation 

All-atom HIV capsid simulations 
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Discretized lattice models derived 
from continuous model shown in 
VMD QuickSurf representation 

Continuous particle 
based model –  often 70 
to 300 million particles 

Lattice Microbes: High‐performance stochastic simulation method for the 
reaction‐diffusion master equation 

E. Roberts, J. E. Stone, and Z. Luthey‐Schulten. 
J. Computational Chemistry 34 (3), 245-255, 2013. 

QuickSurf Representation of  

Lattice Cell Models 
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QuickSurf Algorithm Overview 
• Build spatial acceleration 

data structures, optimize 

data for GPU 

• Compute 3-D density map, 

3-D volumetric texture map: 

 

 

• Extract isosurface for a 

user-defined density value 

3-D density map lattice, 
spatial acceleration grid, 

and extracted surface 
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QuickSurf Particle Sorting, Bead 

Generation, Spatial Hashing 
• Particles sorted into spatial acceleration grid: 

– Selected atoms or residue “beads” converted lattice 

coordinate system 

– Each particle/bead assigned cell index, sorted 

w/NVIDIA Thrust template library 

• Complication: 

– Thrust allocates GPU mem. on-demand, no recourse 

if insufficient memory, have to re-gen QuickSurf data 

structures if caught by surprise! 

• Workaround: 

– Pre-allocate guesstimate workspace for Thrust 

– Free the Thrust workspace right before use 

– Newest Thrust allows user-defined allocator code…  

Coarse resolution 
spatial acceleration grid 
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Spatial Hashing Algorithm Steps/Kernels 

1) Compute bin index for each atom, 
store to memory w/ atom index 

QuickSurf uniform 
grid spatial 

subdivision data 
structure 

2) Sort list of  bin and atom index tuples 
(1) by bin index (thrust kernel) 

3) Count atoms in each bin (2) using a 
parallel prefix sum, aka scan, 
compute the destination index for each 
atom, store per-bin starting index and 
atom count (thrust kernel) 

4) Write atoms to the output indices 
computed in (3), and we have 
completed the data structure 
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QuickSurf and Limited GPU Global Memory 
• High resolution molecular surfaces require a fine lattice spacing 

• Memory use grows cubically with decreased lattice spacing 

• Not typically possible to compute a surface in a single pass, so we 

loop over sub-volume “chunks” until done… 

• Chunks pre-allocated and sized to GPU global mem capacity to 

prevent unexpected memory allocation failure while animating… 

• Complication: 

– Thrust allocates GPU mem. on-demand, no recourse if insufficient memory, 

have to re-gen QuickSurf data structures if caught by surprise! 

• Workaround: 

– Pre-allocate guesstimate workspace for Thrust 

– Free the Thrust workspace right before use 

– Newest Thrust allows user-defined allocator code…  
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Padding optimizes global 
memory performance, 
guaranteeing coalesced 
global memory accesses Grid of thread blocks 

Small 8x8 thread 

blocks afford large  

per-thread register 

count, shared 

memory 

              
QuickSurf 3-D density map 

decomposes into thinner 3-D 
slabs/slices (CUDA grids) 

… 0,0 0,1 

1,1 

… … 

… 

… 

Inactive threads, 
region of 
discarded 
output 

Each thread 

computes 

one or more 

density map 

lattice points 

Threads 
producing 
results that 
are used 1,0 

…  

Chunk 2 

Chunk 1 

Chunk 0 

Large volume 

computed in 

multiple passes, or 

multiple GPUs 

QuickSurf  Density Parallel Decomposition 
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QuickSurf Density Map Algorithm 

• Spatial acceleration grid cells are 

sized to match the cutoff radius for  

the exponential, beyond which density 

contributions are negligible 

• Density map lattice points computed 

by summing density contributions 

from particles in 3x3x3 grid of 

neighboring spatial acceleration cells 

• Volumetric texture map is computed 

by summing particle colors 

normalized by their individual density 

contribution 

3-D density map 
lattice point and 
the neighboring 

spatial acceleration 
cells it references 
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QuickSurf Density Map 

 Kernel Optimizations 

• Compute reciprocals, prefactors, other math on the host 

CPU prior to kernel launch 

• Use of intN and floatN vector types in CUDA kernels 

for improved global memory bandwidth 

• Thread coarsening: one thread computes multiple 

output densities and colors 

• Input data and register tiling: share blocks of input, 

partial distances in regs shared among multiple outputs 

• Global memory (L1 cache) broadcasts: all threads in 

the block traverse the same atom/particle at the same 

time  
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QuickSurf Density Map Kernel Snippet… 
for (zab=zabmin; zab<=zabmax; zab++) { 

    for (yab=yabmin; yab<=yabmax; yab++) { 

      for (xab=xabmin; xab<=xabmax; xab++) { 

        int abcellidx = zab * acplanesz + yab * acncells.x + xab; 

        uint2 atomstartend = cellStartEnd[abcellidx]; 

        if (atomstartend.x != GRID_CELL_EMPTY) { 

          for (unsigned int atomid=atomstartend.x; atomid<atomstartend.y; atomid++) { 

            float4 atom = sorted_xyzr[atomid]; 

            float dx = coorx - atom.x;            float dy = coory - atom.y;         float dz = coorz - atom.z; 

            float dxy2 = dx*dx + dy*dy; 

            float r21 = (dxy2 + dz*dz) * atom.w; 

            densityval1 += exp2f(r21); 

             /// Loop unrolling and register tiling benefits begin here…… 

            float dz2 = dz + gridspacing; 

            float r22 = (dxy2 + dz2*dz2) * atom.w; 

            densityval2 += exp2f(r22); 

            /// More loop unrolling …. 
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QuickSurf Marching Cubes 

Isosurface Extraction 
• Isosurface is extracted from each density map “chunk”, and 

either copied back to the host, or rendered directly out of 

GPU global memory via CUDA/OpenGL interop 

• All MC memory buffers are pre-allocated to prevent 

significant overhead when animating a simulation trajectory 

              
QuickSurf 3-D density map 

decomposes into thinner 3-D 
slabs/slices (CUDA grids) 

…  

Chunk 2 

Chunk 1 

Chunk 0 

Large volume 

computed in 

multiple passes 
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Brief Marching Cubes Isosurface 

Extraction Overview 
• Given a 3-D volume of scalar density values and a requested 

surface density value, marching cubes computes vertices and 

triangles that compose the requested surface triangle mesh  

• Each MC “cell” (a cube with 8 density values at its vertices) 

produces a variable number of output vertices depending on how 

many edges of the cell contain the requested isovalue… 

• Use scan() to compute the output indices so that each worker 

thread has conflict-free output of vertices/triangles 
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Brief Marching Cubes Isosurface 

Extraction Overview 
• Once the output vertices have been computed and stored, we 

compute surface normals and colors for each of the vertices 

• Although the separate normals+colors pass reads the density map 

again, molecular surfaces tend to generate a small percentage of 

MC cells containing triangles, we avoid wasting interpolation work 

• We use CUDA tex3D() hardware 3-D texture mapping: 

– Costs double the texture memory and a one copy from GPU global memory 

to the target texture map with cudaMemcpy3D() 

– Still roughly 2x faster than doing color interpolation without the texturing 

hardware, at least on GT200 and Fermi hardware 

– Kepler has new texture cache memory path that may make it feasible to do 

our own color interpolation and avoid the use of extra 3-D texture memory 

and associated copy, with acceptable performance 

 



NIH BTRC for Macromolecular Modeling and Bioinformatics 

http://www.ks.uiuc.edu/ 

Beckman Institute, 
 U. Illinois at Urbana-Champaign 

QuickSurf Marching Cubes 

Isosurface Extraction 
• Our optimized MC implementation computes per-vertex 

surface normals, colors, and outperforms the NVIDIA SDK 

sample by a fair margin on Fermi GPUs 

• Complications: 

– Even on a 6GB Quadro 7000, GPU global memory is under great 

strain when working with large molecular complexes, e.g. viruses 

– Marching cubes involves a parallel prefix sum (scan) to compute 

target indices for writing resulting vertices 

– We use Thrust for scan, has the same memory allocation issue 

mentioned earlier for the sort, so we use the same workaround 

– The number of output vertices can be huge, but we rarely have 

sufficient GPU memory for this – we use a fixed size vertex output 

buffer and hope our heuristics don’t fail us 
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QuickSurf Performance 

GeForce GTX 580 
Molecular 

system 

Atoms Resolution Tsort Tdensity TMC 

 

# vertices FPS 

MscL 111,016 1.0Å 0.005 0.023 0.003 0.7 M 28 

STMV capsid 147,976 1.0Å 0.007 0.048 0.009 2.4 M 13.2 

Poliovirus 

capsid 

754,200 1.0Å 0.01 0.18 0.05 9.2 M 3.5 

STMV w/ water 955,225 1.0Å 0.008 0.189 0.012 2.3 M 4.2 

Membrane 2.37 M 2.0Å 0.03 0.17 0.016 5.9 M 3.9 

Chromatophore 9.62 M 2.0Å 0.16 0.023 0.06 11.5 M 3.4 

Membrane w/ 

water 

22.77 M 4.0Å 

 

4.4 0.68 0.01 1.9 M 0.18 

Fast Visualization of Gaussian Density Surfaces for Molecular Dynamics and 
Particle System Trajectories.   

M. Krone, J. E. Stone, T. Ertl, K. Schulten. EuroVis Short Papers, pp. 67-71, 2012 
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Extensions and Analysis Uses for QuickSurf 

Triangle Mesh 
• Curved PN triangles: 

– We have performed tests with post-processing the resulting triangle 

mesh and using curved PN triangles to generate smooth surfaces 

with a larger grid spacing, for increased performance 

– Initial results demonstrate some potential, but there can be 

pathological cases where MC generates long skinny triangles, 

causing unsightly surface creases 

• Analysis uses (beyond visualization): 

– Minor modifications to the density map algorithm allow rapid 

computation of solvent accessible surface area by summing the 

areas in the resulting triangle mesh 

– Modifications to the density map algorithm will allow it to be used 

for MDFF (molecular dynamics flexible fitting) 

– Surface triangle mesh can be used as the input for computing the 

electrostatic potential field for mesh-based algorithms 
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Challenge: Support Interactive QuickSurf for 

Large Structures on Mid-Range GPUs 
• Structures such as HIV 

initially needed large (6GB) 

GPU memory to generate 

fully-detailed surface 

renderings 

• Goals and approach:  

– Avoid slow CPU-fallback! 

– Incrementally change 

algorithm phases to use more 

compact data types, while 

maintaining performance 

– Specialize code for different 

performance/memory 

capacity cases 
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Improving QuickSurf Memory Efficiency 

• Both host and GPU memory capacity limitations are a 

significant concern when rendering surfaces for virus 

structures such as HIV or for large cellular models which 

can contain hundreds of millions of particles 

• The original QuickSurf implementation used single-

precision floating point for output vertex arrays and 

textures 

• Judicious use of reduced-precision numerical 

representations, cut the overall memory footprint of the 

entire QuickSurf algorithm to half of the original 

– Data type changes made throughout the entire chain from density 

map computation through all stages of Marching Cubes 
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Supporting Multiple Data Types for  

QuickSurf Density Maps 

and Marching Cubes Vertex Arrays 

• The major algorithm components of QuickSurf are now 

used for many other purposes: 

– Gaussian density map algorithm now used for MDFF Cryo EM 

density map fitting methods in addition to QuickSurf 

– Marching Cubes routines also used for Quantum Chemistry 

visualizations of molecular orbitals  

• Rather than simply changing QuickSurf to use a particular 

internal numerical representation, it is desirable to instead 

use CUDA C++ templates to make type-generic versions 

of the key objects, kernels, and output vertex arrays 

• Accuracy-sensitive algorithms use high-precision data 

types, performance and memory capacity sensitive cases 

use quantized or reduced precision approaches  
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Minimizing the Impact of Generality on  

QuickSurf Code Complexity 

• A critical factor in the simplicity of supporting multiple 

QuickSurf data types arises from the so-called “gather” 

oriented algorithm we employ 

– Internally, all in-register arithmetic is single-precision 

– Data conversions to/from compressed or reduced precision data 

types are performed on-the-fly as needed 

• Small inlined type conversion routines are defined for each 

of the cases we want to support 

• Key QuickSurf kernels are genericized using C++ template 

syntax, and the compiler “connects the dots” to 

automatically generate type-specific kernels as needed  



NIH BTRC for Macromolecular Modeling and Bioinformatics 

http://www.ks.uiuc.edu/ 

Beckman Institute, 
 U. Illinois at Urbana-Champaign 

Example Templated  

Density Map Kernel 
template<class DENSITY, class VOLTEX> 

__global__ static void 

gaussdensity_fast_tex_norm(int natoms, 

                                              const float4 * RESTRICT sorted_xyzr, 

                                              const float4 * RESTRICT sorted_color, 

                                              int3 numvoxels, 

                                              int3 acncells, 

                                             float acgridspacing, 

                                             float invacgridspacing, 

                                             const uint2 * RESTRICT cellStartEnd, 

                                             float gridspacing, unsigned int z, 

                                             DENSITY * RESTRICT densitygrid, 

                                             VOLTEX * RESTRICT voltexmap, 

                                            float invisovalue) { 



NIH BTRC for Macromolecular Modeling and Bioinformatics 

http://www.ks.uiuc.edu/ 

Beckman Institute, 
 U. Illinois at Urbana-Champaign 

Example Templated  

Density Map Kernel 
template<class DENSITY, class VOLTEX> 

__global__ static void 

gaussdensity_fast_tex_norm( …  ) { 

  

  … Triple-nested and unrolled inner loops here … 

 

  DENSITY densityout; 

  VOLTEX texout; 

  convert_density(densityout, densityval1); 

  densitygrid[outaddr          ] = densityout; 

  convert_color(texout, densitycol1); 

  voltexmap[outaddr          ] = texout; 
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Net Result of QuickSurf Memory 

Efficiency Optimizations 

• Halved overall GPU memory use 

• Achieved 1.5x to 2x performance gain: 

– The “gather” density map algorithm keeps type 

conversion operations out of the innermost loop 

– Density map global memory writes reduced to half 

– Multiple stages of Marching Cubes operate on smaller 

input and output data types 

– Same code path supports multiple precisions 

• Users now get full GPU-accelerated QuickSurf in 

many cases that previously triggered CPU-

fallback, all platforms (laptop/desk/super) benefit! 
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High Resolution HIV Surface 
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Structural Route to the all-atom HIV-1 Capsid 

Zhao et al. , Nature 497: 643-646 (2013) 

High res. EM of hexameric tubule, tomography of capsid, 
all-atom model of capsid by MDFF w/ NAMD & VMD, 

NSF/NCSA Blue Waters computer at Illinois 

Pornillos et al. , Cell 2009, Nature 2011 

Crystal structures of separated hexamer and pentamer 

Ganser et al. Science, 1999 

1st TEM (1999) 1st tomography (2003) 

Briggs et al. EMBO J, 2003 

Briggs et al. Structure, 2006 

cryo-ET (2006) 

Byeon et al., Cell 2009 Li et al., Nature, 2000 

hexameric tubule 
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X-ray crystallography Electron microscopy 

APS at Argonne FEI microscope 

Molecular Dynamics Flexible Fitting (MDFF)  

Flexible fitting of atomic structures into electron microscopy maps using molecular dynamics. 

  

L. Trabuco, E. Villa, K. Mitra, J. Frank, and K. Schulten.  Structure, 16:673-683, 2008. 

MDFF 

ORNL Titan 

Acetyl - CoA Synthase 
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Evaluating Quality-of-Fit for Structures 

Solved by Hybrid Fitting Methods 

Compute Pearson 
correlation to evaluate 
the fit of a reference 
cryo-EM density map 
with a simulated 
density map produced 
from an all-atom 
structure. 
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GPUs Can Reduce Trajectory Analysis Runtimes  

from Hours to Minutes 

GPUs enable laptops and 
desktop workstations to 

handle tasks that would have 
previously required a cluster, 

or a very long wait… 

 

GPU-accelerated petascale 
supercomputers enable 

analyses were previously 
impossible, allowing detailed 
study of very large structures 

such as viruses 

GPU-accelerated MDFF Cross Correlation Timeline 

Regions with poor fit               Regions with good fit 
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Padding optimizes global 
memory performance, 
guaranteeing coalesced global 
memory accesses Grid of thread blocks 

Small 8x8x2 CUDA thread blocks afford large  

per-thread register count, shared memory 

              

3-D density map decomposes into 3-D grid 
of 8x8x8 tiles containing CC partial sums 

and local CC values 

… 0,0 0,1 

1,1 

… … 

… 

… 

Inactive threads, 
region of 
discarded 
output 

Each thread computes 

4 z-axis density map 

lattice points and 

associated CC partial 

sums 

Threads 
producing 
results that 
are used 1,0 

Spatial CC map and 

overall CC value 

computed in a single pass 

Single-Pass MDFF GPU Cross-Correlation 
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VMD GPU Cross Correlation Performance 
RHDV Mm-cpn 

open 

GroEL Aquaporin 

Resolution (Å) 6.5 8 4 3 

Atoms 702K 61K 54K 1.6K 

VMD-CUDA 

Quadro K6000 

0.458s 

34.6x 

0.06s 

25.7x 

0.034s 

36.8x 

0.007s 

55.7x 

VMD-CPU-SSE 

32-threads, 2x Xeon E5-2687W 

0.779s 

20.3x 

0.085s 

18.1x 

0.159s 

7.9x 

0.033s 

11.8x 

Chimera  

1-thread Xeon E5-2687W 

15.86s 

1.0x 

1.54s 

1.0x 

1.25s 

1.0x 

0.39s 

1.0x 

GPU-accelerated analysis and visualization of large structures solved by molecular dynamics 
flexible fitting. J. E. Stone, R. McGreevy, B. Isralewitz, and K. Schulten. Faraday Discussion 169, 
2014. (In press). 
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VMD RHDV Cross Correlation 

Timeline on Cray XK7 

RHDV 

Atoms 702K 

Component 

Selections 

720 

Single-node XK7 

(projected) 

336 hours (14 days) 

128-node XK7 3.2 hours 

105x speedup 

RHDV CC Timeline 

Calculation would take 5 years 
using conventional non-GPU 
software on a workstation!! 
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Molecular Orbitals 

• Visualization of MOs aids in 

understanding the chemistry 

of molecular system 

• MO spatial distribution is 

correlated with probability 

density for an electron(s) 

• Algorithms for computing 

other molecular properties are 

similar, and can share code 

High Performance Computation and Interactive Display of Molecular 
Orbitals on GPUs and Multi-core CPUs.                                              

J. Stone, J. Saam, D. Hardy, K. Vandivort, W. Hwu, K. Schulten,   
2nd Workshop on General-Purpose Computation on Graphics 
Pricessing Units (GPGPU-2), ACM International Conference 

Proceeding Series, volume 383, pp. 9-18, 2009. 
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Computing Molecular Orbitals 

• Calculation of high 
resolution MO grids can 
require tens to hundreds of 
seconds in existing tools 

• Existing tools cache MO 
grids as much as possible 
to avoid recomputation: 

– Doesn’t eliminate the wait 
for initial calculation, 
hampers interactivity 

– Cached grids consume 
100x-1000x more memory 
than MO coefficients 

C60 
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Animating Molecular Orbitals 
• Animation of (classical 

mechanics) molecular 

dynamics trajectories 

provides insight into 

simulation results 

• To do the same for QM or 

QM/MM simulations one 

must compute MOs at ~10 

FPS or more 

• >100x speedup (GPU) over 

existing tools now makes 

this possible! C60 
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Molecular Orbital Computation and Display Process 

Read QM simulation log file, trajectory 

Compute 3-D grid of MO wavefunction amplitudes 

Most performance-demanding step, run on GPU… 

Extract isosurface mesh from 3-D MO grid  

Apply user coloring/texturing  

and render the resulting surface  

Preprocess MO coefficient data 

eliminate duplicates, sort by type, etc… 

For current frame and MO index,  

retrieve MO wavefunction coefficients   

One-time 
initialization 

For each trj frame, for   
each MO shown 

Initialize Pool of GPU  

Worker Threads 
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Padding optimizes global 
memory performance, 
guaranteeing coalesced 
global memory accesses Grid of thread blocks 

Small 8x8 thread 

blocks afford large  

per-thread register 

count, shared 

memory 

              

MO 3-D lattice 
decomposes into 2-D 
slices (CUDA grids) 

… 0,0 0,1 

1,1 

… … 

… 

… 

Threads 
producing 
results that are 
discarded 

Each thread 

computes 

one MO 

lattice point. 

Threads 
producing 
results that 
are used 1,0 

…  

GPU 2 

GPU 1 

GPU 0 

Lattice can be 

computed using 

multiple GPUs 

MO GPU Parallel Decomposition 
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MO GPU Kernel Snippet: 
Contracted GTO Loop, Use of Constant Memory 

[… outer loop over atoms …] 

    float dist2 = xdist2 + ydist2 + zdist2; 

    // Loop over the shells belonging to this atom (or basis function) 

    for (shell=0; shell < maxshell; shell++) { 

      float contracted_gto = 0.0f; 

      // Loop over Gaussian primitives of this contracted basis function to build the atomic orbital 

      int maxprim = const_num_prim_per_shell[shell_counter]; 

      int shelltype = const_shell_types[shell_counter]; 

      for (prim=0; prim < maxprim;  prim++) { 

        float exponent         = const_basis_array[prim_counter       ]; 

        float contract_coeff = const_basis_array[prim_counter + 1]; 

        contracted_gto += contract_coeff * __expf(-exponent*dist2); 

        prim_counter += 2; 

      } 

[… continue on to angular momenta loop …] 

Constant memory: 
nearly register-
speed when array 
elements accessed 
in unison by all 
threads…. 
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MO GPU Kernel Snippet: 
Unrolled Angular Momenta Loop 

      /* multiply with the appropriate wavefunction coefficient */ 

      float tmpshell=0; 

      switch (shelltype) { 

        case S_SHELL: 

          value += const_wave_f[ifunc++] * contracted_gto; 

          break; 

[… P_SHELL case …] 

        case D_SHELL: 

          tmpshell += const_wave_f[ifunc++] * xdist2; 

          tmpshell += const_wave_f[ifunc++] * xdist * ydist; 

          tmpshell += const_wave_f[ifunc++] * ydist2; 

          tmpshell += const_wave_f[ifunc++] * xdist * zdist; 

          tmpshell += const_wave_f[ifunc++] * ydist * zdist; 

          tmpshell += const_wave_f[ifunc++] * zdist2; 

          value += tmpshell * contracted_gto; 

          break; 

[... Other cases: F_SHELL, G_SHELL, etc …] 

} // end switch 

Loop unrolling: 

•Saves registers 
(important for GPUs!) 

•Reduces loop control 
overhead 

•Increases arithmetic 
intensity 
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Preprocessing of Atoms, Basis Set, and  

Wavefunction Coefficients 

• Must make effective use of high bandwidth, low-
latency GPU on-chip shared memory, or L1 cache: 

– Overall storage requirement reduced by eliminating 
duplicate basis set coefficients 

– Sorting atoms by element type allows re-use of basis set 

coefficients for subsequent atoms of identical type 

• Padding, alignment of arrays guarantees coalesced 

GPU global memory accesses 
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GPU Traversal of Atom Type, Basis Set, 

 Shell Type, and Wavefunction Coefficients 

• Loop iterations always access same or consecutive 
array elements for all threads in a thread block: 

– Yields good constant memory and L1 cache performance 

– Increases shared memory tile reuse 

Monotonically increasing memory references 

Strictly sequential memory references 

Different at each 
timestep, and for   

each MO 

Constant for all MOs, 
all timesteps 
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Use of GPU On-chip Memory 
• If total data less than 64 kB, use only const mem: 

– Broadcasts data to all threads, no global memory accesses! 

• For large data, shared memory used as a program-managed 
cache, coefficients loaded on-demand: 

– Tiles sized large enough to service entire inner loop runs, broadcast to all 
64 threads in a block 

– Complications: nested loops, multiple arrays, varying length 

– Key to performance is to locate tile loading checks outside of the two 
performance-critical inner loops 

– Only 27% slower than hardware caching provided by constant memory 
(on GT200) 

• Fermi/Kepler GPUs have larger on-chip shared memory, L1/L2 
caches, greatly reducing control overhead 
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MO coefficient array in GPU global memory. 

Tiles are referenced in consecutive order. 

Array tile loaded in GPU shared memory.  Tile size is a power-of-two, a 

multiple of coalescing size, and allows simple indexing in inner loops. 

Global memory array indices are merely offset to reference an MO 

coefficient within a tile loaded in fast on-chip shared memory. 

64-byte memory 
coalescing block 

boundaries 

Surrounding data, 
unreferenced by 

next batch of loop 
iterations 

Full tile 
padding 
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VMD MO GPU Kernel Snippet: 
Loading Tiles Into Shared Memory On-Demand  

[… outer loop over atoms …] 

      if ((prim_counter + (maxprim<<1)) >= SHAREDSIZE) { 

        prim_counter += sblock_prim_counter; 

        sblock_prim_counter = prim_counter & MEMCOAMASK; 

        s_basis_array[sidx          ] = basis_array[sblock_prim_counter + sidx          ]; 

        s_basis_array[sidx +   64] = basis_array[sblock_prim_counter + sidx +   64]; 

        s_basis_array[sidx + 128] = basis_array[sblock_prim_counter + sidx + 128]; 

        s_basis_array[sidx + 192] = basis_array[sblock_prim_counter + sidx + 192]; 

        prim_counter -= sblock_prim_counter; 

        __syncthreads(); 

      }  

      for (prim=0; prim < maxprim;  prim++) { 

        float exponent         = s_basis_array[prim_counter       ]; 

        float contract_coeff = s_basis_array[prim_counter + 1]; 

        contracted_gto += contract_coeff * __expf(-exponent*dist2); 

        prim_counter += 2; 

      } 

[… continue on to angular momenta loop …] 

Shared memory tiles: 

•Tiles are checked 
and loaded, if 
necessary, 
immediately prior to 
entering key 
arithmetic loops 

•Adds additional 
control overhead to 
loops, even with 
optimized 
implementation 
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New GPUs Bring Opportunities for Higher 

Performance and Easier Programming 

• NVIDIA’s Fermi, Kepler, Maxwell GPUs bring: 

– Greatly increased peak single- and double-precision 

arithmetic rates 

– Moderately increased global memory bandwidth 

– Increased capacity on-chip memory partitioned into 

shared memory and an L1 cache for global memory 

– Concurrent kernel execution 

– Bidirectional asynchronous host-device I/O 

– ECC memory, faster atomic ops, many others… 
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VMD MO GPU Kernel Snippet: 
Kernel based on L1 cache  (Fermi)                                 

or Read-only Data Cache (Maxwell)  
[… outer loop over atoms …] 

  // loop over the shells/basis funcs belonging to this atom 

  for (shell=0; shell < maxshell; shell++) { 

    float contracted_gto = 0.0f;  

    int maxprim   = shellinfo[(shell_counter<<4)      ]; 

    int shell_type = shellinfo[(shell_counter<<4) + 1]; 

    for (prim=0; prim < maxprim; prim++) { 

      float exponent         = basis_array[prim_counter      ]; 

      float contract_coeff = basis_array[prim_counter + 1]; 

      contracted_gto += contract_coeff * __expf(-

exponent*dist2);  

      prim_counter += 2; 

   }  

   [… continue on to angular momenta loop …] 

L1 cache: 

•Simplifies code! 

•Reduces control 
overhead 

•Gracefully handles 
arbitrary-sized 
problems 

•Matches performance 
of constant memory on 
Fermi and Maxwell  
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MO Kernel for One Grid Point  (Naive C) 

Loop over atoms 

Loop over shells 

Loop over primitives: 
largest component of 
runtime, due to expf() 

Loop over angular 
momenta 

(unrolled in real code) 

…  

for (at=0; at<numatoms; at++) { 

    int prim_counter = atom_basis[at]; 

    calc_distances_to_atom(&atompos[at], &xdist, &ydist, &zdist, &dist2, &xdiv); 

    for (contracted_gto=0.0f, shell=0; shell < num_shells_per_atom[at]; shell++) { 

        int shell_type = shell_symmetry[shell_counter]; 

        for (prim=0; prim < num_prim_per_shell[shell_counter];  prim++) { 

            float exponent         = basis_array[prim_counter       ]; 

            float contract_coeff = basis_array[prim_counter + 1]; 

            contracted_gto += contract_coeff * expf(-exponent*dist2); 

            prim_counter += 2; 

        } 

        for (tmpshell=0.0f, j=0, zdp=1.0f; j<=shell_type; j++, zdp*=zdist) { 

           int imax = shell_type - j;  

           for (i=0, ydp=1.0f, xdp=pow(xdist, imax); i<=imax; i++, ydp*=ydist, xdp*=xdiv) 

              tmpshell += wave_f[ifunc++] * xdp * ydp * zdp; 

        } 

        value += tmpshell * contracted_gto; 

        shell_counter++; 

   }  

} ….. 
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VMD MO Performance Results for C60 
Sun Ultra 24: Intel Q6600, NVIDIA GTX 280 

Kernel Cores/GPUs Runtime (s) Speedup 

CPU ICC-SSE 1 46.58 1.00 

CPU ICC-SSE 4 11.74 3.97 

CPU ICC-SSE-approx** 4 3.76 12.4 

CUDA-tiled-shared 1 0.46 100. 

CUDA-const-cache 1 0.37 126. 

C60 basis set 6-31Gd.  We used an unusually-high resolution MO grid for 
accurate timings.  A more typical calculation has 1/8th the grid points. 

**Reduced-accuracy approximation of expf(),                                         
cannot be used for zero-valued MO isosurfaces 
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VMD Single-GPU Molecular Orbital  

Performance Results for C60 on Fermi 

Kernel Cores/GPUs Runtime (s) Speedup 

Xeon 5550 ICC-SSE 1 30.64 1.0 

Xeon 5550 ICC-SSE 8 4.13 7.4 

CUDA shared mem 1 0.37 83 

CUDA L1-cache (16KB) 1 0.27 113 

CUDA const-cache 1 0.26 117 

CUDA const-cache, zero-copy 1 0.25 122 

Intel X5550 CPU, GeForce GTX 480 GPU 

Fermi GPUs have caches: match perf. of hand-coded 
shared memory kernels. Zero-copy memory transfers 
improve overlap of computation and host-GPU I/Os. 
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Preliminary Single-GPU Molecular Orbital  

Performance Results for C60 on Kepler 

Kernel Cores/GPUs Runtime (s) Speedup 

Xeon 5550 ICC-SSE 1 30.64 1.0 

Xeon 5550 ICC-SSE 8 4.13 7.4 

CUDA shared mem 1 0.264 116 

CUDA RO-data-cache 1 0.228 134 

CUDA const-cache 1 0.104 292 

CUDA const-cache, zero-copy 1 0.0938 326 

Intel X5550 CPU, GeForce GTX 680 GPU 

Kepler GK104 (GeForce 680) strongly prefers the 
constant cache kernels vs. the others.   
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VMD Orbital Dynamics Proof of Concept 

One GPU can compute and animate this movie on-the-fly! 

CUDA const-cache kernel,     Sun Ultra 24, 
GeForce GTX 285  

GPU MO grid calc. 0.016 s 

CPU surface gen, 

volume gradient, and 

GPU rendering 

0.033 s 

Total runtime 0.049 s 

Frame rate 20 FPS 

With GPU speedups over 100x, previously insignificant CPU 
surface gen, gradient calc, and rendering are now 66% of runtime. 

Needed GPU-accelerated surface gen next… 

Wrote CUDA Marching Cubes to address surface gen perf gap. 

threonine 
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Multi-GPU Load Balance 

• Many early CUDA codes 
assumed all GPUs were identical  

• Host machines may contain a 
diversity of GPUs of varying 
capability (discrete, IGP, etc) 

• Different GPU on-chip and global 
memory capacities may need 
different problem “tile” sizes 

• Static decomposition works 
poorly for non-uniform workload, 
or diverse GPUs 

GPU 1 

14 SMs 

GPU N 

30 SMs 
… 
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Padding optimizes global 
memory performance, 
guaranteeing coalesced 
global memory accesses Grid of thread blocks 

Small 8x8 thread 

blocks afford large  

per-thread register 

count, shared 

memory 

              

MO 3-D lattice 
decomposes into 2-D 
slices (CUDA grids) 

… 0,0 0,1 

1,1 

… … 

… 

… 

Threads 
producing 
results that are 
discarded 

Each thread 

computes 

one MO 

lattice point. 

Threads 
producing 
results that 
are used 1,0 

…  

GPU 2 

GPU 1 

GPU 0 

Lattice can be 

computed using 

multiple GPUs 

MO GPU Parallel Decomposition 
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Multi-GPU Dynamic Work Distribution 

// Each GPU worker thread loops over 

// subset of work items… 

while (!threadpool_next_tile(&parms, 

tilesize, &tile){ 

  // Process one work item… 

  // Launch one CUDA kernel for each 

  //   loop iteration taken… 

  // Shared iterator automatically  

  //   balances load on GPUs 

} 

GPU 1 GPU N 
… 

Dynamic work 
distribution 
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Example Multi-GPU Latencies 
4 C2050 GPUs, Intel Xeon 5550 

      6.3us     CUDA empty kernel (immediate return) 

      9.0us     Sleeping barrier primitive (non-spinning 

                    barrier that uses POSIX condition variables to prevent 

                    idle CPU consumption while workers wait at the barrier) 

    14.8us      pool wake, host fctn exec, sleep cycle (no CUDA) 

    30.6us      pool wake,     1x(tile fetch, simple CUDA kernel launch), sleep 

1817.0us      pool wake, 100x(tile fetch, simple CUDA kernel launch), sleep 
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Multi-GPU Runtime  

Error/Exception Handling 
• Competition for resources 

from other applications can 
cause runtime failures, e.g. 
GPU out of memory half way 
through an algorithm 

• Handle exceptions, e.g. 
convergence failure, NaN 
result, insufficient compute 
capability/features 

• Handle and/or reschedule 
failed tiles of work 

GPU 1 

SM 1.1 

128MB 

GPU N 

SM 2.0 

3072MB 

… 

Original 
Workload 

Retry Stack 
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VMD Multi-GPU Molecular Orbital  

Performance Results for C60 

Intel Q6600 CPU, 4x Tesla C1060 GPUs, 

Uses persistent thread pool to avoid GPU init overhead, 
dynamic scheduler distributes work to GPUs 

Kernel Cores/GPUs Runtime (s) Speedup Parallel 

Efficiency 

CPU-ICC-SSE 1 46.580 1.00 100% 

CPU-ICC-SSE 4 11.740 3.97 99% 

CUDA-const-cache 1 0.417 112 100% 

CUDA-const-cache 2 0.220 212 94% 

CUDA-const-cache 3 0.151 308 92% 

CUDA-const-cache 4 0.113 412 92% 
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Performance Evaluation: 
Molekel, MacMolPlt, and VMD 

 Sun Ultra 24: Intel Q6600, NVIDIA GTX 280 

C60-A C60-B Thr-A Thr-B Kr-A Kr-B 

Atoms 60 60 17 17 1 1 

Basis funcs (unique) 300 (5) 900 (15) 49 (16) 170 (59) 19 (19) 84 (84) 

Kernel Cores 

GPUs 
Speedup vs. Molekel on 1 CPU core 

Molekel 1* 1.0 1.0 1.0 1.0 1.0 1.0 

MacMolPlt 4 2.4 2.6 2.1 2.4 4.3 4.5 

VMD GCC-cephes 4 3.2 4.0 3.0 3.5 4.3 6.5 

VMD ICC-SSE-cephes 4 16.8 17.2 13.9 12.6 17.3 21.5 

VMD ICC-SSE-approx** 4 59.3 53.4 50.4 49.2 54.8 69.8 

VMD CUDA-const-cache 1 552.3 533.5 355.9 421.3 193.1 571.6 
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VMD Multi-GPU Molecular Orbital  

Performance Results for C60 

Kernel Cores/GPUs Runtime (s) Speedup 

Intel X5550-SSE 1 30.64 1.0 

Intel X5550-SSE 8 4.13 7.4 

GeForce GTX 480 1 0.255 120 

GeForce GTX 480 2 0.136 225 

GeForce GTX 480 3 0.098 312 

GeForce GTX 480 4 0.081 378 

Intel X5550 CPU, 4x GeForce GTX 480 GPUs, 

Uses persistent thread pool to avoid GPU init overhead, 
dynamic scheduler distributes work to GPUs 
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Molecular Orbital Dynamic Scheduling 

Performance with Heterogeneous GPUs 

Kernel Cores/GPUs Runtime (s) Speedup 

Intel X5550-SSE 1 30.64 1.0 

Quadro 5800 1 0.384 79 

Tesla C2050 1 0.325 94 

GeForce GTX 480 1 0.255 120 

GeForce GTX 480 + 

Tesla C2050 + 

Quadro 5800 

3 0.114 268 

(91% of ideal perf) 

Dynamic load balancing enables mixture of GPU 
generations, SM counts, and clock rates to perform well. 
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MO Kernel Structure, Opportunity for JIT… 
Data-driven, but representative loop trip counts in (…) 

Loop over atoms (1 to ~200) {                   

Loop over electron shells for this atom type (1 to ~6) { 

Loop over primitive functions for this shell type (1 to ~6) { 

 

 

} 

Loop over angular momenta for this shell type (1 to ~15) {} 

} 

} 

Small loop trip counts result in significant loop overhead.  
Runtime kernel generation and JIT compilation can 

yield a large (1.4x to 1.8x!) speedup via loop unrolling, 
constant folding, elimination of array accesses, … 
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Molecular Orbital Computation and Display Process 
Dynamic Kernel Generation, Just-In-Time (JIT) C0mpilation 

Read QM simulation log file, trajectory 

Compute 3-D grid of MO wavefunction amplitudes 

using basis set-specific CUDA kernel 

Extract isosurface mesh from 3-D MO grid  

Render the resulting surface  

Preprocess MO coefficient data 

eliminate duplicates, sort by type, etc… 

For current frame and MO index,  

retrieve MO wavefunction coefficients   

One-time 
initialization 

Generate/compile basis set-specific CUDA kernel 

For each trj frame, for   
each MO shown 

Initialize Pool of GPU  

Worker Threads 
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VMD MO JIT Performance Results for C60 
2.6GHz Intel X5550 vs. NVIDIA C2050 

Kernel Cores/GPUs Runtime (s) Speedup 

CPU ICC-SSE 1 30.64 1.0 

CPU ICC-SSE 8 4.13 7.4 

CUDA-JIT, Zero-copy 1 0.174 176 

C60 basis set 6-31Gd.  We used a high resolution MO grid for accurate 
timings.  A more typical calculation has 1/8th the grid points. 

JIT kernels eliminate overhead for low trip 
count for loops, replace dynamic table lookups 

with constants, and increase floating point 
arithmetic intensity 
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VMD Molecular Orbital NVRTC JIT  

Performance Results for C60 

Kernel Cores/GPUs Runtime (s) Speedup vs 

socket (vs core) 

Intel X5550-SSE 1 30.64     0.13   (   1.0) 

Intel X5550-SSE 8 4.13     1.00   (   7.4) 

Quadro M6000 const 1 0.069   60.0      (444.) 

Quadro M6000 shared 1 0.102   30.4      (225.) 

Quadro M6000 NVRTC JIT 1 0.0404  102      (758.)        

Intel X5550 CPU, Quadro M6000 GPU 

NVRTC JIT w/ data-specific kernel  yields a 1.7x speed 
increase over the fastest offline-compiled fully-general loop 

based kernel (constant memory kernel).  
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   contracted_gto = 1.832937 * expf(-7.868272*dist2); 

  contracted_gto += 1.405380 * expf(-1.881289*dist2); 

  contracted_gto += 0.701383 * expf(-0.544249*dist2); 

    for (shell=0; shell < maxshell; shell++)  { 

      float contracted_gto = 0.0f; 

 

      // Loop over the Gaussian primitives of CGTO 

      int maxprim = const_num_prim_per_shell[shell_counter]; 

      int shell_type = const_shell_symmetry[shell_counter]; 

      for (prim=0; prim < maxprim;  prim++) { 

        float exponent          = const_basis_array[prim_counter      ]; 

        float contract_coeff = const_basis_array[prim_counter + 1]; 

        contracted_gto += contract_coeff  * expf(-exponent*dist2); 

        prim_counter += 2; 

      } 

General loop-based 
data-dependent  MO 

CUDA kernel 

Runtime-generated 
data-specific MO 

CUDA kernel compiled 
via CUDA 7.0    
NVRTC JIT… 

1.8x Faster 
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   contracted_gto = 1.832937 * expf(-7.868272*dist2); 

    contracted_gto += 1.405380 * expf(-1.881289*dist2); 

    contracted_gto += 0.701383 * expf(-0.544249*dist2); 

    // P_SHELL 

    tmpshell = const_wave_f[ifunc++] * xdist; 

    tmpshell += const_wave_f[ifunc++] * ydist; 

    tmpshell += const_wave_f[ifunc++] * zdist; 

    value += tmpshell * contracted_gto; 

 

    contracted_gto = 0.187618 * expf(-0.168714*dist2); 

    // S_SHELL 

    value += const_wave_f[ifunc++] * contracted_gto; 

 

    contracted_gto = 0.217969 * expf(-0.168714*dist2); 

    // P_SHELL 

    tmpshell = const_wave_f[ifunc++] * xdist; 

    tmpshell += const_wave_f[ifunc++] * ydist; 

    tmpshell += const_wave_f[ifunc++] * zdist; 

    value += tmpshell * contracted_gto; 

 

    contracted_gto = 3.858403 * expf(-0.800000*dist2); 

    // D_SHELL 

    tmpshell = const_wave_f[ifunc++] * xdist2; 

    tmpshell += const_wave_f[ifunc++] * ydist2; 

    tmpshell += const_wave_f[ifunc++] * zdist2; 

    tmpshell += const_wave_f[ifunc++] * xdist * ydist; 

    tmpshell += const_wave_f[ifunc++] * xdist * zdist; 

    tmpshell += const_wave_f[ifunc++] * ydist * zdist; 

    value += tmpshell * contracted_gto; 

    for (shell=0; shell < maxshell; shell++)  { 

      float contracted_gto = 0.0f; 

 

      // Loop over the Gaussian primitives of CGTO 

      int maxprim = const_num_prim_per_shell[shell_counter]; 

      int shell_type = const_shell_symmetry[shell_counter]; 

      for (prim=0; prim < maxprim;  prim++) { 

        float exponent          = const_basis_array[prim_counter      ]; 

        float contract_coeff = const_basis_array[prim_counter + 1]; 

        contracted_gto += contract_coeff  * expf(-exponent*dist2); 

        prim_counter += 2; 

      } 

 

      float tmpshell=0; 

      switch (shell_type) { 

        case S_SHELL: 

          value += const_wave_f[ifunc++] * contracted_gto; 

          break; 

[…..] 

        case D_SHELL: 

          tmpshell += const_wave_f[ifunc++] * xdist2; 

          tmpshell += const_wave_f[ifunc++] * ydist2; 

          tmpshell += const_wave_f[ifunc++] * zdist2; 

          tmpshell += const_wave_f[ifunc++] * xdist * ydist; 

          tmpshell += const_wave_f[ifunc++] * xdist * zdist; 

          tmpshell += const_wave_f[ifunc++] * ydist * zdist; 

          value += tmpshell * contracted_gto; 

          break; 

General loop-based 
data-dependent  MO 

CUDA kernel 

Runtime-generated 
data-specific MO 

CUDA kernel compiled 
via CUDA 7.0    
NVRTC JIT… 

1.8x Faster 
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Experiments Porting VMD CUDA 

Kernels to OpenCL 

• Why mess with OpenCL? 

– OpenCL is very similar to CUDA, though a few years 
behind in terms of HPC features, aims to be the 
“OpenGL” of heterogeneous computing 

– As with CUDA, OpenCL provides a low-level language 
for writing high performance kernels, until compilers 
do a much better job of generating this kind of code 

– Potential to eliminate hand-coded SSE for CPU 
versions of compute intensive code, looks more like C 
and is easier for non-experts to read than hand-coded 
SSE or other vendor-specific instruction sets, intrinsics 
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Molecular Orbital Inner Loop, Hand-Coded SSE 

Hard to Read, Isn’t It?  (And this is the “pretty” version!) 
for (shell=0; shell < maxshell; shell++) { 

    __m128 Cgto = _mm_setzero_ps(); 

    for (prim=0; prim<num_prim_per_shell[shell_counter]; prim++) { 

        float exponent         = -basis_array[prim_counter      ]; 

        float contract_coeff =  basis_array[prim_counter + 1]; 

        __m128 expval = _mm_mul_ps(_mm_load_ps1(&exponent), dist2); 

        __m128 ctmp = _mm_mul_ps(_mm_load_ps1(&contract_coeff), exp_ps(expval)); 

        Cgto = _mm_add_ps(contracted_gto, ctmp); 

        prim_counter += 2; 

    } 

    __m128 tshell = _mm_setzero_ps(); 

    switch (shell_types[shell_counter]) { 

        case S_SHELL: 

            value = _mm_add_ps(value, _mm_mul_ps(_mm_load_ps1(&wave_f[ifunc++]), Cgto));    break; 

        case P_SHELL: 

            tshell = _mm_add_ps(tshell, _mm_mul_ps(_mm_load_ps1(&wave_f[ifunc++]), xdist)); 

            tshell = _mm_add_ps(tshell, _mm_mul_ps(_mm_load_ps1(&wave_f[ifunc++]), ydist)); 

            tshell = _mm_add_ps(tshell, _mm_mul_ps(_mm_load_ps1(&wave_f[ifunc++]), zdist)); 

            value = _mm_add_ps(value, _mm_mul_ps(tshell, Cgto)); 

            break; 

Until now, writing SSE kernels for CPUs 
required assembly language, compiler 

intrinsics, various libraries, or a really smart 
autovectorizing compiler and lots of luck... 
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Molecular Orbital Inner Loop, OpenCL Vec4 

Ahhh, much easier to read!!! 
for (shell=0; shell < maxshell; shell++) { 

     float4 contracted_gto = 0.0f; 

     for (prim=0; prim < const_num_prim_per_shell[shell_counter];  prim++) { 

          float exponent          = const_basis_array[prim_counter      ]; 

          float contract_coeff = const_basis_array[prim_counter + 1]; 

          contracted_gto += contract_coeff * native_exp2(-exponent*dist2); 

          prim_counter += 2; 

     } 

     float4 tmpshell=0.0f; 

     switch (const_shell_symmetry[shell_counter]) { 

          case S_SHELL: 

              value += const_wave_f[ifunc++] * contracted_gto;       break; 

         case P_SHELL: 

              tmpshell += const_wave_f[ifunc++] * xdist; 

              tmpshell += const_wave_f[ifunc++] * ydist; 

              tmpshell += const_wave_f[ifunc++] * zdist;  

              value += tmpshell * contracted_gto; 

              break;    

OpenCL’s C-like kernel language 
is easy to read, even 4-way 
vectorized kernels can look 
similar to scalar CPU code. 

All 4-way vectors shown in green.  
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Apples to Oranges Performance Results: 

OpenCL Molecular Orbital Kernels 
Kernel Cores Runtime (s) Speedup 

Intel QX6700 CPU ICC-SSE (SSE intrinsics) 1 46.580 1.00 

Intel Core2 Duo CPU OpenCL scalar 2 43.342 1.07 

Intel Core2 Duo CPU OpenCL vec4 2 8.499 5.36 

Cell OpenCL vec4*** no __constant 16 6.075 7.67 

Radeon 4870 OpenCL scalar 10 2.108 22.1 

Radeon 4870 OpenCL vec4 10 1.016 45.8 

GeForce GTX 285 OpenCL vec4 30 0.364 127.9 

GeForce GTX 285 CUDA 2.1 scalar 30 0.361 129.0 

GeForce GTX 285 OpenCL scalar 30 0.335 139.0 

GeForce GTX 285 CUDA 2.0 scalar 30 0.327 142.4 

Minor varations in compiler quality can have a strong effect on “tight” kernels.  The two 
results shown for CUDA demonstrate performance variability with compiler revisions, and 
that with vendor effort, OpenCL has the potential to match the performance of other APIs. 
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Radial Distribution Function 

• RDFs describes how 
atom density varies 
with distance 

• Can be compared with 
experiments 

• Shape indicates phase  
of matter: sharp peaks 
appear for solids, 
smoother for liquids 

• Quadratic time 
complexity O(N2) 

Solid 

Liquid 
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Histogramming 

• Partition population 

of data values into 

discrete bins 

• Compute by 

traversing input 

population and 

incrementing bin 

counters 

0

0.5

1

1.5

2

0.00 1.00 2.00 3.00 4.00

Atom pair distance histogram
(normalized)
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Computing RDFs 

• Compute distances for all pairs of atoms between 

two groups of atoms A and B 

• A and B may be the same, or different 

• Use nearest image convention for periodic systems 

• Each pair distance is inserted into a histogram 

• Histogram is normalized one of several ways 

depending on use, but usually according to the 

volume of the spherical shells associated with each 

histogram bin 
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Computing RDFs on CPUs 

• Atom coordinates can be traversed in a 

strictly consecutive access pattern, yielding 

good cache utilization 

• Since RDF histograms are usually small to 

moderate in size, they normally fit entirely 

in L2 cache 

• CPUs can compute the entire histogram in a 

single pass, regardless of the problem size 

or number of histogram bins 
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Histogramming on the CPU 

(slow-and-simple C) 

memset(histogram, 0, sizeof(histogram)); 

for (i=0; i<numdata; i++) { 

  float val = data[i]; 

  if (val >= minval  && val <= maxval) { 

    int bin = (val - minval) / bindelta; 

    histogram[bin]++; 

  } 

} 

Fetch-and-increment: 

random access updates 
to histogram bins… 
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Parallel Histogramming on        

Multi-core CPUs 
• Parallel updates to a single histogram bin creates a 

potential output conflict 

• CPUs have atomic increment instructions, but they 
often take hundreds of clock cycles; unsuitable… 

• SSE can’t be used effectively: lacks ability to 
“scatter” to memory (e.g. no scatter-add, no 
indexed store instructions) 

• For small numbers of CPU cores, it is best to 
replicate and privatize the histogram for each 
CPU thread, compute them independently, and 
combine the separate histograms in a final 
reduction step 
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Computing RDFs on the GPU 

• Need tens of thousands of independent threads 

• Each GPU thread computes one or more atom pair 
distances 

• Performance is limited by the speed of histogramming 

• Histograms are best stored in fast on-chip shared 
memory 

• Small size of shared memory severely constrains the 
range of viable histogram update techniques  

• Fast CUDA implementation on Fermi: 30-92x faster 
than CPU 
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Computing Atom Pair Distances on 

the GPU 

• Memory access pattern is simple 

• Primary consideration is amplification of 

effective memory bandwidth, through use 

of GPU on-chip shared memory, caches, 

and broadcast of data to multiple or all 

threads in a thread block 
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Radial Distribution Functions on GPUs 

• Load blocks of atoms into shared memory and 
constant memory, compute periodic boundary 
conditions and atom-pair distances, all in parallel… 

• Each thread computes all pair distances between its 
atom and all atoms in constant memory, incrementing 
the appropriate bin counter in the RDF histogram.. 

4 

2.5Å 
Each RDF histogram bin 

contains count of particles 
within a certain distance 

range  



NIH BTRC for Macromolecular Modeling and Bioinformatics 

http://www.ks.uiuc.edu/ 

Beckman Institute, 
 U. Illinois at Urbana-Champaign 

GPU Histogramming 

• Tens of thousands of threads concurrently 
computing atom distance pairs… 

• Far too many threads for a simple per-thread 
histogram privatization approach like CPU… 

• Viable approach: per-warp histograms 

• Fixed size shared memory limits histogram size 
that can be computed in a single pass 

• Large histograms require multiple passes, but we 
can skip block pairs that are known not to 
contribute to a histogram window 
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Per-warp Histogram Approach 

• Each warp maintains its own private histogram in 

on-chip shared memory 

• Each thread in the warp computes an atom pair 

distance and updates a histogram bin in parallel 

• Conflicting histogram bin updates are resolved 

using one of two schemes: 

– Shared memory write combining with thread-tagging 

technique (older hardware, e.g. G80, G9x) 

– atomicAdd() to shared memory (new hardware) 
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RDF Inner Loops (abbreviated, xdist-only) 
// loop over all atoms in constant memory 

for (iblock=0; iblock<loopmax2; iblock+=3*NCUDABLOCKS*NBLOCK) { 

    __syncthreads(); 

    for (i=0; i<3; i++) xyzi[threadIdx.x + i*NBLOCK]=pxi[iblock + i*NBLOCK]; // load coords… 

    __syncthreads(); 

    for (joffset=0; joffset<loopmax; joffset+=3) { 

        rxij=fabsf(xyzi[idxt3  ] - xyzj[joffset  ]);  // compute distance, PBC min image convention 

        rxij2=celld.x - rxij; 

        rxij=fminf(rxij, rxij2); 

        rij=rxij*rxij; 

        […other distance components…] 

        rij=sqrtf(rij + rxij*rxij); 

        ibin=__float2int_rd((rij-rmin)*delr_inv); 

        if (ibin<nbins && ibin>=0 && rij>rmin2) { 

          atomicAdd(llhists1+ibin, 1U); 

        } 

    } //joffset 

} //iblock 
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Writing/Updating Histogram in 

Global Memory 

• When thread block completes, add 

independent per-warp histograms together, 

and write to per-thread-block histogram in 

global memory 

• Final reduction of all per-thread-block 

histograms stored in global memory 

3 4 1 18 4 8 15 

3 1 1 1 4 12 6 

3 4 9 3 4 8 7 

9 9 11 22 12 28 28 
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Preventing Integer Overflows 

• Since all-pairs RDF calculation computes many 
billions of pair distances, we have to prevent 
integer overflow for the 32-bit histogram bin 
counters (supported by the atomicAdd() routine) 

• We compute full RDF calculation in multiple 
kernel launches, so each kernel launch computes 
partial histogram 

• Host routines read GPUs and increment large  
(e.g. long, or double) histogram counters in host 
memory after each kernel completes 
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Multi-GPU Load Balance 

• Many early CUDA codes 
assumed all GPUs were identical  

• Host machines may contain a 
diversity of GPUs of varying 
capability (discrete, IGP, etc) 

• Different GPU on-chip and global 
memory capacities may need 
different problem “tile” sizes 

• Static decomposition works 
poorly for non-uniform workload, 
or diverse GPUs 

GPU 1 

14 SMs 

GPU N 

30 SMs 
… 
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Multi-GPU Dynamic Work Distribution 

// Each GPU worker thread loops over 

// subset of work items… 

while (!threadpool_next_tile(&parms, 

tilesize, &tile){ 

  // Process one work item… 

  // Launch one CUDA kernel for each 

  //   loop iteration taken… 

  // Shared iterator automatically  

  //   balances load on GPUs 

} 

GPU 1 GPU N 
… 

Dynamic work 
distribution 
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Multi-GPU RDF Calculation 

• Distribute combinations of 
tiles of atoms and histogram 
regions to different GPUs 

• Decomposed over two 
dimensions to obtain enough 
work units to balance GPU 
loads 

• Each GPU computes its own 
histogram, and all results are 
combined for final histogram 

GPU 1 

14 SMs 

GPU N 

30 SMs 
… 
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Multi-GPU Runtime  

Error/Exception Handling 
• Competition for resources 

from other applications can 
cause runtime failures, e.g. 
GPU out of memory half way 
through an algorithm 

• Handle exceptions, e.g. 
convergence failure, NaN 
result, insufficient compute 
capability/features 

• Handle and/or reschedule 
failed tiles of work 

GPU 1 

SM 1.1 

128MB 

GPU N 

SM 2.0 

3072MB 

… 

Original 
Workload 

Retry Stack 
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Multi-GPU RDF Performance 

• 4 NVIDIA GTX480 
GPUs 30 to 92x faster 
than 4-core Intel X5550 
CPU 

• Fermi GPUs ~3x faster 
than GT200 GPUs: 
larger on-chip shared 
memory 

Fast Analysis of Molecular Dynamics Trajectories with Graphics 
Processing Units – Radial Distribution Functions. B. Levine, J. Stone, 

and A. Kohlmeyer. J. Comp. Physics, 230(9):3556-3569, 2011. 
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GPU Computing Publications 
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• Fast Visualization of Gaussian Density Surfaces for Molecular Dynamics and Particle System 

Trajectories. M. Krone, J. E. Stone,  T. Ertl, and K. Schulten. EuroVis Short Papers, pp. 67-71, 

2012. 

• Fast Analysis of Molecular Dynamics Trajectories with Graphics Processing Units – Radial 

Distribution Functions.  B. Levine, J. Stone, and A. Kohlmeyer. J. Comp. Physics, 230(9):3556-

3569, 2011. 

• Immersive Out-of-Core Visualization of Large-Size and Long-Timescale Molecular Dynamics 
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Enos, C. Steffen, J. Fullop, M. Showerman, G. Shi, K. Esler, V. Kindratenko, J. Stone, J Phillips. 

International Conference on Green Computing, pp. 317-324, 2010. 

• GPU-accelerated molecular modeling coming of age.  J. Stone, D. Hardy, I. Ufimtsev, K. 

Schulten.  J. Molecular Graphics and Modeling, 29:116-125, 2010. 

• OpenCL: A Parallel Programming Standard for Heterogeneous Computing. J. Stone, D. 

Gohara, G. Shi.  Computing in Science and Engineering, 12(3):66-73, 2010. 
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Systems.  I. Gelado, J. Stone, J. Cabezas, S. Patel, N. Navarro, W. Hwu.  ASPLOS ’10: 

Proceedings of the 15th International Conference on Architectural Support for Programming 

Languages and Operating Systems, pp. 347-358, 2010. 

• GPU Clusters for High Performance Computing.  V. Kindratenko, J. Enos, G. Shi, M. 

Showerman, G. Arnold, J. Stone, J. Phillips, W. Hwu.  Workshop on Parallel Programming on 

Accelerator Clusters (PPAC), In Proceedings IEEE Cluster 2009, pp. 1-8, Aug. 2009. 

• Long time-scale simulations of in vivo diffusion using GPU hardware.  E. Roberts, J. Stone, 

L. Sepulveda, W. Hwu, Z. Luthey-Schulten. In IPDPS’09: Proceedings of the 2009 IEEE 

International Symposium on Parallel & Distributed Computing, pp. 1-8, 2009. 

• High Performance Computation and Interactive Display of Molecular Orbitals on GPUs 

and Multi-core CPUs.    J. Stone, J. Saam, D. Hardy, K. Vandivort, W. Hwu, K. Schulten, 2nd 

Workshop on General-Purpose Computation on Graphics Pricessing Units (GPGPU-2), ACM 

International Conference Proceeding Series, volume 383, pp. 9-18, 2009. 

• Probing Biomolecular Machines with Graphics Processors.  J. Phillips, J. Stone.  

Communications of the ACM, 52(10):34-41, 2009. 

• Multilevel summation of electrostatic potentials using graphics processing units. D. Hardy, 

J. Stone, K. Schulten. J. Parallel Computing, 35:164-177, 2009. 



NIH BTRC for Macromolecular Modeling and Bioinformatics 

http://www.ks.uiuc.edu/ 

Beckman Institute, 
 U. Illinois at Urbana-Champaign 

GPU Computing Publications 
http://www.ks.uiuc.edu/Research/gpu/ 
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• GPU acceleration of cutoff pair potentials for molecular modeling applications.                                
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• Accelerating molecular modeling applications with graphics processors. J. Stone, J. Phillips, 
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