
NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Programming in CUDA:

the Essentials, Part 2

John E. Stone

Theoretical and Computational Biophysics Group

Beckman Institute for Advanced Science and Technology

University of Illinois at Urbana-Champaign

http://www.ks.uiuc.edu/Research/gpu/

Cape Town GPU Workshop

Cape Town, South Africa, April 30, 2013

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

NVIDIA Kepler GPU Streaming Multiprocessor - SMX

GPC GPC GPC GPC

1536KB

Level 2

Cache

SMX SMX

Tex Unit

48 KB Tex + Read-only Data Cache

64 KB L1 Cache / Shared Memory

~3-6 GB DRAM Memory w/ ECC 64 KB Constant Cache

SP SP SP DP
SFU LDST

SP SP SP DP

16 × Execution block =

 192 SP, 64 DP,

32 SFU, 32 LDST

SP SP SP DP
SFU LDST

SP SP SP DP

 Graphics Processor

 Cluster

GPC GPC GPC GPC

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

CUDA Work Abstraction

• Work is expressed as a multidimensional

array of independent work items called

“threads” – not the same thing as a CPU

thread

• CUDA Kernels can be thought of as telling a

GPU to compute all iterations of a set of

nested loops concurrently

• Threads are dynamically scheduled onto

hardware according to a hierarchy of thread

groupings

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

CUDA Work Abstractions:

 Grids, Thread Blocks, Threads
1-D, 2-D, or 3-D (SM >= 2.x)
Grid of thread blocks:

0,0 0,1

1,0 1,1

…

…

…

…

…

1-D, 2-D, 3-D
thread block:

SM / SMX

Thread blocks are
scheduled onto pool
of GPU SMs…

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

GPU Thread Block Execution

• Thread blocks are decomposed onto

hardware in 32-thread “warps”

• Hardware execution is scheduled in

units of warps – an SM can execute

warps from several thread blocks

• Warps run in SIMD-style execution:

– All threads execute the same

instruction in lock-step

– If one thread stalls, the entire warp

stalls…

– A branch taken by a thread has to be

taken by all threads... (divergence is

bad!)

1-D, 2-D, 3-D
thread block:

SM / SMX

Thread blocks are
multiplexed onto
pool of GPU SMs…

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

GPU Warp Branch Divergence

• Branch divergence: when not all threads take

the same branch, the entire warp has to

execute both sides of the branch

• GPU blocks memory writes from disabled

threads in the “if then” branch, then inverts

all thread enable states and runs the “else”

branch

• GPU hardware detects warp reconvergence

and then runs normally...

• Not unique to GPUs, an attribute of all SIMD

hardware designs…

• In the case of the GPU, we are at least

benefiting from a completely hardware-based

implementation…

1-D, 2-D, 3-D
thread block:

SM / SMX

Thread blocks are
multiplexed onto
pool of GPU SMs…

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

GPU Thread Block Collective Operations

• Threads within the same thread block

can communicate with each other in

fast on-chip shared memory

• Once scheduled on an SM, thread

blocks run until completion

• Because the order of thread block

execution is arbitrary and they can’t

be stopped, they cannot

communicate or synchronize with

other thread blocks

1-D, 2-D, 3-D
thread block:

SM / SMX

Thread blocks are
multiplexed onto
pool of GPU SMs…

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

CUDA Grid/Block/Thread Decomposition

Padding arrays out to full blocks
optimizes global memory performance
by guaranteeing memory coalescing

1-D, 2-D, or 3-D (SM >= 2.x)
Grid of thread blocks:

0,0 0,1

1,0 1,1

…

… …

…

…

1-D, 2-D, or 3-D
Computational Domain

1-D, 2-D, 3-D
thread block:

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Indexing Work
• Within a CUDA kernel:

– Grid: gridDim.[xyz]

– Block: blockDim.[xyz] and blockIdx.[xyz]

– Thread: threadIdx.[xyz]

• Example CUDA kernel with 1-D Indexing:

__global__ void cuda_add(float *c, float *a, float *b) {

 int idx = (blockIdx.x * blockDim.x) + threadIdx.x;

 c[idx] = a[idx] + b[idx];

}

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Running a GPU kernel:
int sz = N * sizeof(float);

…

cudaMalloc((void**) &a_gpu, sz);

cudaMemcpy(a_gpu, a, sz, cudaMemcpyHostToDevice);

… // do the same for ‘b_gpu’, allocate ‘c_gpu’

int Bsz = 256; // 1-D thread block size

cuda_add<<<N/Bsz, Bsz>>>(c, a, b);

cudaDeviceSynchronize(); // make CPU wait for completion

...

cudaMemcpy(c, c_gpu, sz, cudaMemcpyDeviceToHost);

cudaFree(a_gpu);

… // free ‘b_gpu’, and ‘c_gpu’…

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

What if Work Size Isn’t an Integer

Multiple of the Thread Block Size?
• Threads must check if they are “in bounds”:

__global__ void cuda_add(float *c, float *a, float *b, int N) {

 int idx = (blockIdx.x * blockDim.x) + threadIdx.x;

 if (idx < N) {

 c[idx] = a[idx] + b[idx];

 }

}

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Direct Coulomb Summation Performance

CUDA-Simple:

14.8x faster,

33% of fastest

GPU kernel

CUDA-Unroll8clx:

fastest GPU kernel,

44x faster than CPU,

291 GFLOPS on

GeForce 8800GTX

GPU computing. J. Owens, M. Houston, D. Luebke, S. Green, J. Stone,

J. Phillips. Proceedings of the IEEE, 96:879-899, 2008.

CPU

Number of thread blocks modulo number of SMs results in

significant performance variation for small workloads

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

An Approach to Writing CUDA Kernels
• Find an algorithm that can expose substantial parallelism,

we’ll ultimately need thousands of independent threads…

• Identify appropriate GPU memory or texture subsystems

used to store data used by kernel

• Are there trade-offs that can be made to exchange

computation for more parallelism?

– Though counterintuitive, past successes resulted from this strategy

– “Brute force” methods that expose significant parallelism do

surprisingly well on GPUs

• Analyze the real-world use case for the problem and select

a specialized kernel for the problem sizes that will be

heavily used

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Getting Performance From GPUs

• Don’t worry (much) about counting arithmetic

operations…at least until you have nothing else left to do

• GPUs provide tremendous memory bandwidth, but even

so, memory bandwidth often ends up being the

performance limiter

• Keep/reuse data in registers as long as possible

• The main consideration when programming GPUs is

accessing memory efficiently, and storing operands in

the most appropriate memory system according to data

size and access pattern

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Avoid Output Conflicts,

Conversion of Scatter to Gather

• Many CPU codes contain algorithms that “scatter”
outputs to memory, to reduce arithmetic

• Scattered output can create bottlenecks for GPU
performance due to bank conflicts

• On the GPU, it’s often better to do more
arithmetic, in exchange for a regularized output
pattern, or to convert “scatter” algorithms to
“gather” approaches

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Avoid Output Conflicts:

Privatization Schemes
• Privatization: use of private work areas for workers

– Avoid/reduce the need for thread synchronization barriers

– Avoid/reduce the need atomic increment/decrement
operations during work, use parallel reduction at the end…

• By working in separate memory buffers, workers
avoid read/modify/write conflicts of various kinds

• Huge GPU thread counts make it impractical to
privatize data on a per-thread basis, so GPUs must use
coarser granularity: warps, thread-blocks

• Use of the on-chip shared memory local to each SM
can often be considered a form of privatization

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Example: avoiding output conflicts when

summing numbers among threads in a block

N-way output conflict:
Correct results require costly barrier
synchronizations or atomic memory
operations ON EVERY ADD to prevent
threads from overwriting each other…

Parallel reduction: no output
conflicts, Log2(N) barriers

+=

=

+=

+=

+=

+=

Accumulate sums in thread-
local registers before doing any

reduction among threads

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Electrostatic Potential Maps

• Electrostatic potentials
evaluated on 3-D lattice:

• Applications include:

– Ion placement for
structure building

– Time-averaged potentials
for simulation

– Visualization and
analysis Isoleucine tRNA synthetase

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Overview of Direct Coulomb

Summation (DCS) Algorithm
• One of several ways to compute the electrostatic potentials

on a grid, ideally suited for the GPU

• Methods such as multilevel summation can achieve much

higher performance at the cost of additional complexity

• Begin with DCS for computing electrostatic maps:

– conceptually simple algorithm well suited to the GPU

– easy to fully explore

– requires very little background knowledge, unlike other methods

• DCS: for each lattice point, sum potential contributions for

all atoms in the simulated structure:

 potential[j] += atom[i].charge / rij

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Direct Coulomb Summation (DCS)

Algorithm Detail

• Each lattice point accumulates electrostatic
potential contribution from all atoms:

 potential[j] += atom[i].charge / rij

atom[i]

rij: distance
from lattice[j]

to atom[i]
Lattice point j

being evaluated

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

DCS Computational

Considerations
• Attributes of DCS algorithm for computing electrostatic maps:

– Highly data parallel

– Starting point for more sophisticated algorithms

– Single-precision FP arithmetic is adequate for intended uses

– Numerical accuracy can be further improved by compensated summation,

spatially ordered summation groupings, or with the use of double-

precision accumulation

– Interesting test case since potential maps are useful for various

visualization and analysis tasks

• Forms a template for related spatially evaluated function

summation algorithms in CUDA

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Single Slice DCS: Simple (Slow) C Version
void cenergy(float *energygrid, dim3 grid, float gridspacing, float z, const float *atoms,

 int numatoms) {

 int i,j,n;

 int atomarrdim = numatoms * 4;

 for (j=0; j<grid.y; j++) {

 float y = gridspacing * (float) j;

 for (i=0; i<grid.x; i++) {

 float x = gridspacing * (float) i;

 float energy = 0.0f;

 for (n=0; n<atomarrdim; n+=4) { // calculate potential contribution of each atom

 float dx = x - atoms[n];

 float dy = y - atoms[n+1];

 float dz = z - atoms[n+2];

 energy += atoms[n+3] / sqrtf(dx*dx + dy*dy + dz*dz);

 }

 energygrid[grid.x*grid.y*k + grid.x*j + i] = energy;

 }

 }

}

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

DCS Algorithm Design Observations

• Electrostatic maps used for ion placement require evaluation of
~20 potential lattice points per atom for a typical biological
structure

• Atom list has the smallest memory footprint, best choice for the
inner loop (both CPU and GPU)

• Lattice point coordinates are computed on-the-fly

• Atom coordinates are made relative to the origin of the
potential map, eliminating redundant arithmetic

• Arithmetic can be significantly reduced by precalculating and
reusing distance components, e.g. create a new array containing
X, Q, and dy^2 + dz^2, updated on-the-fly for each row (CPU)

• Vectorized CPU versions benefit greatly from SSE instructions

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Direct Coulomb Summation Runtime

GPU
underutilized

GPU fully utilized,
~40x faster than CPU

GeForce 8800 GTX

Accelerating molecular modeling applications with graphics processors.
J. Stone, J. Phillips, P. Freddolino, D. Hardy, L. Trabuco, K. Schulten.

J. Comp. Chem., 28:2618-2640, 2007.

Lower

is better

GPU initialization
time: ~110ms

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

DCS Observations for GPU

Implementation
• Naive implementation has a low ratio of FP arithmetic

operations to memory transactions (at least for a GPU…)

• The innermost loop will consume operands VERY quickly

• Since atoms are read-only, they are ideal candidates for
texture memory or constant memory

• GPU implementations must access constant memory
efficiently, avoid shared memory bank conflicts, coalesce
global memory accesses, and overlap arithmetic with
global memory latency

• Map is padded out to a multiple of the thread block size:

– Eliminates conditional handling at the edges, thus also eliminating
the possibility of branch divergence

– Assists with memory coalescing

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

CUDA DCS Implementation Overview

• Allocate and initialize potential map memory on host CPU

• Allocate potential map slice buffer on GPU

• Preprocess atom coordinates and charges

• Loop over slices:

– Copy slice from host to GPU

– Loop over groups of atoms until done:

• Copy atom data to GPU

• Run CUDA Kernel on atoms and slice resident on GPU accumulating

new potential contributions into slice

– Copy slice from GPU back to host

• Free resources

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Global Memory

Texture Texture Texture Texture Texture Texture Texture

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

GPU Constant Memory

Direct Coulomb Summation on the GPU

Host

Atomic

Coordinates

Charges

Threads compute

up to 8 potentials,

skipping by half-warps

Thread blocks:

64-256 threads

Grid of thread blocks

Lattice padding

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

DCS CUDA Block/Grid Decomposition
(non-unrolled)

Padding waste

Grid of thread blocks:

0,0 0,1

1,0 1,1

…

…

… … …

Thread blocks:

64-256 threads

Threads compute

1 potential each

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

DCS CUDA Block/Grid

Decomposition (non-unrolled)

• 16x16 CUDA thread blocks are a nice

starting size with a satisfactory number of

threads

• Small enough that there’s not much waste

due to padding at the edges

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Notes on Benchmarking CUDA Kernels:

Initialization Overhead
• When a host thread initially binds to a CUDA context,

there is a small (~100ms) delay during the first CUDA
runtime call that touches state on the device

• The first time each CUDA kernel is executed, there’s a
small delay while the driver compiles the device-
independent PTX intermediate code for the physical device
associated with the current context

• In most real codes, these sources of one-time initialization
overhead would occur at application startup and should not
be a significant factor.

• The exception to this is that newly-created host threads
incur overhead when they bind to their device, so it’s best
to re-use existing host threads than to generate them
repeatedly

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Notes on Benchmarking CUDA Kernels:

Power Management, Async Operations
• Modern GPUs (and of course CPUs) incorporate power

management hardware that reduces clock rates and/or

powers down functional units when idle

• In order to benchmark peak performance of CUDA

kernels, both the GPU(s) and CPU(s) must be awoken

from their respective low-power modes

• In order to get accurate and repeatable timings, do a “warm

up” pass prior to running benchmark timings on your

kernel and any associated I/O

• Call cudaThreadSynchronize() prior to stopping timers to

verify that any outstanding kernels and I/Os have

completed

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

DCS Version 1: Const+Precalc

187 GFLOPS, 18.6 Billion Atom Evals/Sec
(GeForce 8800 GTX)

• Pros:

– Pre-compute dz^2 for entire slice

– Inner loop over read-only atoms, const memory ideal

– If all threads read the same const data at the same time,

performance is similar to reading a register

• Cons:

– Const memory only holds ~4000 atom coordinates and charges

– Potential summation must be done in multiple kernel invocations

per slice, with const atom data updated for each invocation

– Host must shuffle data in/out for each pass

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

…

 float curenergy = energygrid[outaddr];

 float coorx = gridspacing * xindex;

 float coory = gridspacing * yindex;

 int atomid;

 float energyval=0.0f;

 for (atomid=0; atomid<numatoms; atomid++) {

 float dx = coorx - atominfo[atomid].x;

 float dy = coory - atominfo[atomid].y;

 energyval += atominfo[atomid].w *

 rsqrtf(dx*dx + dy*dy + atominfo[atomid].z);

 }

 energygrid[outaddr] = curenergy + energyval;

DCS Version 1: Kernel Structure

Start global memory reads
early. Kernel hides some of

its own latency.

Only dependency on global
memory read is at the end of

the kernel…

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

DCS CUDA Block/Grid

Decomposition (unrolled)
• Reuse atom data and partial distance components multiple times

• Use “unroll and jam” to unroll the outer loop into the inner loop

• Uses more registers, but increases arithmetic intensity
significantly

• Kernels that unroll the inner loop calculate more than one lattice
point per thread result in larger computational tiles:

– Thread count per block must be decreased to reduce computational tile
size as unrolling is increased

– Otherwise, tile size gets bigger as threads do more than one lattice point
evaluation, resulting on a significant increase in padding and wasted
computations at edges

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

• Add each atom’s contribution to several lattice

points at a time, distances only differ in one

component:
potential[j] += atom[i].charge / rij

potential[j+1] += atom[i].charge / ri(j+1)

…

DCS CUDA Algorithm: Unrolling Loops

Atom[i]

Distances to
Atom[i]

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

DCS CUDA Block/Grid Decomposition
(unrolled)

Padding waste

Grid of thread blocks:

0,0 0,1

1,0 1,1

…

… …

…

Thread blocks:

64-256 threads

Threads compute

up to 8 potentials

…

Unrolling increases
computational tile size

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

DCS Version 2: Const+Precalc+Loop Unrolling

259 GFLOPS, 33.4 Billion Atom Evals/Sec
(GeForce 8800 GTX)

• Pros:

– Although const memory is very fast, loading values into registers

costs instruction slots

– We can reduce the number of loads by reusing atom coordinate

values for multiple voxels, by storing in regs

– By unrolling the X loop by 4, we can compute dy^2+dz^2 once

and use it multiple times, much like the CPU version of the code

does

• Cons:

– Compiler won’t do this type of unrolling for us (yet)

– Uses more registers, one of several finite resources

– Increases effective tile size, or decreases thread count in a block,

though not a problem at this level

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

DCS Version 2: Inner Loop
…for (atomid=0; atomid<numatoms; atomid++) {

 float dy = coory - atominfo[atomid].y;

 float dysqpdzsq = (dy * dy) + atominfo[atomid].z;

 float x = atominfo[atomid].x;

 float dx1 = coorx1 - x;

 float dx2 = coorx2 - x;

 float dx3 = coorx3 - x;

 float dx4 = coorx4 - x;

 float charge = atominfo[atomid].w;

 energyvalx1 += charge * rsqrtf(dx1*dx1 + dysqpdzsq);

 energyvalx2 += charge * rsqrtf(dx2*dx2 + dysqpdzsq);

 energyvalx3 += charge * rsqrtf(dx3*dx3 + dysqpdzsq);

 energyvalx4 += charge * rsqrtf(dx4*dx4 + dysqpdzsq);

 }

Compared to non-unrolled
kernel: memory loads are

decreased by 4x, and FLOPS
per evaluation are reduced, but

register use is increased…

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

DCS Version 3:

Const+Shared+Loop Unrolling+Precalc

268 GFLOPS, 36.4 Billion Atom Evals/Sec

• Pros:

– Loading prior potential values from global memory

into shared memory frees up several registers, so

we can afford to unroll by 8 instead of 4

– Using fewer registers allows co-scheduling of more

blocks, increasing GPU “occupancy”

• Cons:

– Bumping against hardware limits (uses all const

memory, most shared memory, and a largish

number of registers)

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

DCS Version 3: Kernel Structure
• Loads 8 potential map lattice points from global

memory at startup, and immediately stores them

into shared memory before going into inner loop.

We would otherwise consume too many registers

and lose performance (on GeForce 8800 at least…)

• Processes 8 lattice points at a time in the inner loop

• Additional performance gains are achievable by

coalescing global memory reads at start/end

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

DCS Version 3: Inner Loop
…for (v=0; v<8; v++)

 curenergies[tid + nthr * v] = energygrid[outaddr + v];

 float coorx = gridspacing * xindex;

 float coory = gridspacing * yindex;

 float energyvalx1=0.0f; […….] float energyvalx8=0.0f;

 for (atomid=0; atomid<numatoms; atomid++) {

 float dy = coory - atominfo[atomid].y;

 float dysqpdzsq = (dy * dy) + atominfo[atomid].z;

 float dx = coorx - atominfo[atomid].x;

 energyvalx1 += atominfo[atomid].w * rsqrtf(dx*dx + dysqpdzsq);

 dx += gridspacing;

[…]

 energyvalx8 += atominfo[atomid].w * rsqrtf(dx*dx + dysqpdzsq);

 }

 __syncthreads(); // guarantee that shared memory values are ready for reading by all threads

 energygrid[outaddr] = energyvalx1 + curenergies[tid];

[…]

 energygrid[outaddr + 7] = energyvalx2 + curenergies[tid + nthr * 7];

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

DCS Version 4:

Const+Loop Unrolling+Coalescing

291.5 GFLOPS, 39.5 Billion Atom Evals/Sec

• Pros:

– Simplified structure compared to version 3, no use of shared memory,

register pressure kept at bay by doing global memory operations only at

the end of the kernel

– Using fewer registers allows co-scheduling of more blocks, increasing

GPU “occupancy”

– Doesn’t have as strict of a thread block dimension requirement as

version 3, computational tile size can be smaller

• Cons:

– The computation tile size is still large, so small potential maps don’t

perform as well as large ones

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

DCS Version 4: Kernel Structure
• Processes 8 lattice points at a time in the inner loop

• Subsequent lattice points computed by each thread

are offset by a half-warp to guarantee coalesced

memory accesses

• Loads and increments 8 potential map lattice points

from global memory at completion of of the

summation, avoiding register consumption

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

DCS Version 4: Inner Loop
…float coory = gridspacing * yindex;

 float coorx = gridspacing * xindex;

 float gridspacing_coalesce = gridspacing * BLOCKSIZEX;

 int atomid;

 for (atomid=0; atomid<numatoms; atomid++) {

 float dy = coory - atominfo[atomid].y;

 float dyz2 = (dy * dy) + atominfo[atomid].z;

 float dx1 = coorx - atominfo[atomid].x;

[…]

 float dx8 = dx7 + gridspacing_coalesce;

 energyvalx1 += atominfo[atomid].w * rsqrtf(dx1*dx1 + dyz2);

[…]

 energyvalx8 += atominfo[atomid].w * rsqrtf(dx8*dx8 + dyz2);

 }

 energygrid[outaddr] += energyvalx1;

[...]

 energygrid[outaddr+7*BLOCKSIZEX] += energyvalx7;

Points spaced for
memory coalescing

Reuse partial distance
components dy^2 + dz^2

Global memory ops
occur only at the end

of the kernel,
decreases register use

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

DCS CUDA Block/Grid Decomposition

 (unrolled, coalesced)

Padding waste

Grid of thread blocks:

0,0 0,1

1,0 1,1

…

… …

…

Thread blocks:

64-256 threads

…

Unrolling increases
computational tile size

Threads compute

up to 8 potentials,

skipping by half-warps

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Direct Coulomb Summation Performance

CUDA-Simple:
14.8x faster,

33% of fastest
GPU kernel

CUDA-Unroll8clx:

fastest GPU kernel,

44x faster than CPU,
291 GFLOPS on

GeForce 8800GTX

GPU computing. J. Owens, M. Houston, D. Luebke, S. Green, J. Stone,
J. Phillips. Proceedings of the IEEE, 96:879-899, 2008.

CPU

Number of thread blocks modulo number of SMs results in

significant performance variation for small workloads

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Multi-GPU DCS Potential Map

Calculation

• Both CPU and GPU versions of the code

are easily parallelized by decomposing the

3-D potential map into slices, and

computing them concurrently

• Potential maps often have 50-500 slices in

the Z direction, so plenty of coarse grain

parallelism is still available via the DCS

algorithm

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Multi-GPU DCS Algorithm:

• One host thread is created for each CUDA GPU,

attached according to host thread ID:

– First CUDA call binds that thread’s CUDA context to

that GPU for life

• Map slices are decomposed cyclically onto the

available GPUs

• Map slices are usually larger than the host

memory page size, so false sharing and related

effects are not a problem for this application

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Multi-GPU Direct Coulomb Summation
(GeForce 8800 GTX)

• Effective memory

bandwidth scales with the

number of GPUs utilized

• PCIe bus bandwidth not a

bottleneck for this algorithm

• 117 billion evals/sec

• 863 GFLOPS

• 131x speedup vs. CPU core

• Power: 700 watts during

benchmark Quad-core Intel QX6700

Three NVIDIA GeForce 8800GTX

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

GPU 1 GPU N …

Multi-GPU Direct

Coulomb Summation

NCSA GPU Cluster
http://www.ncsa.uiuc.edu/Projects/GPUcluster/

Evals/sec TFLOPS Speedup*

4-GPU (2 Quadroplex)

Opteron node at NCSA

157 billion 1.16 176

4-GPU GTX 280 (GT200) 241 billion 1.78 271

*Speedups relative to Intel QX6700 CPU core w/ SSE

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Satellite Tobacco Mosaic Virus (STMV)

Ion Placement

Multi-GPU DCS Performance:

Initial Ion Placement Lattice Calculation

• Original virus DCS ion
placement ran for 110 CPU-
hours on SGI Altix Itanium2

• Same calculation now takes
1.35 GPU-hours

• 27 minutes (wall clock) if three
GPUs are used concurrently

• CUDA Initial ion placement
lattice calculation performance:

– 82 times faster for virus
(STMV) structure

– 110 times faster for ribosome

• Three GPUs give performance
equivalent to ~330 SGI Altix
CPUs for the ribosome case

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Brief Shared Memory Example:

Multiple Debye-Hückel Electrostatics

• Part of Poisson-Boltzmann solver in the

popular APBS electrostatics solver package

• Method: compute electrostatic potentials at

grid points on boundary faces of box

containing molecule

• Screening function:

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

 Shared memory: MDH Kernel (CUDA)
extern shared f loat smem [] ;

int igrid = (blockIdx .x blockDim.x) + threadIdx .x ; int lsize = blockDim.x ; int lid= threadIdx .x ;

float lgx = gx [igrid] ; float lgy = gy [igrid] ; float lg z = gz [igrid] ; float v = 0.0 f ;

for (int jatom = 0 ; jatom < natoms ; jatom+=lsize) {

 __syncthreads () ;

 i f ((jatom + l i d) < natoms) {

 smem[lid] = ax [jatom + lid] ;

 smem[lid + lsize] = ay [jatom + lid] ;

 smem[lid + 2 * lsize] = az [jatom + lid] ;

 smem[lid + 3 * lsize] = charge [jatom + lid] ;

 smem[lid + 4 * lsize] = size [jatom + lid] ;

 }

 __syncthreads () ;

 i f ((jatom+l s i z e) > natoms) l s i z e = natoms − jatom ;

 for (int i =0; i<l s i z e ; i++) {

 f loat dx = lgx − smem[i] ;

 f loat dy = lgy − smem[i + lsize] ;

 f loat dz = lgz − smem[i + 2 * lsize] ;

 f loat dist = sqrtf (dxdx + dydy + dzdz) ;

 v += smem[i+3*lsize] * expf(−xkappa (dist − smem[i+4*lsize])) / (1.0 f + xkappa smem[i+4*lsize]) * dist) ;

 }

 }

 val [igrid] = pre1 * v;

Collectively load atoms from

global memory into shared

memory

Loop over all all atoms in shared

memory accumulating potential

contributions into grid points

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Infinite vs. Cutoff Potentials

• Infinite range potential:

– All atoms contribute to all lattice points

– Summation algorithm has quadratic complexity

• Cutoff (range-limited) potential:

– Atoms contribute within cutoff distance to lattice points

– Summation algorithm has linear time complexity

– Has many applications in molecular modeling:

• Replace electrostatic potential with shifted form

• Short-range part for fast methods of approximating full electrostatics

• Used for fast decaying interactions (e.g. Lennard-Jones, Buckingham)

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Short-Range Cutoff Summation

• Each lattice point accumulates electrostatic potential
contribution from atoms within cutoff distance:

 if (rij < cutoff)

 potential[j] += (charge[i] / rij) * s(rij)

• Smoothing function s(r) is algorithm dependent

Cutoff radius rij: distance

from lattice[j]

to atom[i]

Lattice point j

being evaluated
atom[i]

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

CUDA Cutoff Electrostatic Potential Summation

Global memory Constant memory
Offsets for bin

neighborhood

Shared memory

atom bin

Potential

map

regions Bins of atoms

(fixed size)

•Atoms are spatially hashed into fixed-size bins (guarantees coalescing)

•CPU handles overflowed bins (GPU kernel can be very aggressive)

•GPU thread block calculates corresponding region of potential map,

•GPU bin/region neighbor checks are costly; solved with universal table look-up

Look-up table

encodes “logic” of

spatial geometry

Each thread block cooperatively
loads atom bins from surrounding

neighborhood into shared memory for
evaluation: GATHER

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Spatial Sorting of Atoms Into “Bins”

• Sort atoms into bins by

their coordinates

• Each bin is sized to

guarantee GPU memory

coalescing

• Each bin holds up to 8

atoms, containing 4 FP

values (3 coords, 1 charge)

• Each lattice point gathers

potentials from atom bins

within cutoff

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Using the CPU to Optimize GPU Performance

• GPU performs best when the work evenly divides

into the number of threads/processing units

• Optimization strategy:

– Use the CPU to “regularize” the GPU workload

– Use fixed size bin data structures, with “empty” slots

skipped or producing zeroed out results

– Handle exceptional or irregular work units on the CPU;

GPU processes the bulk of the work concurrently

– On average, the GPU is kept highly occupied, attaining

a high fraction of peak performance

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

© John E. Stone, 2007-2009

University of Illinois, Urbana-Champaign

59

GPU acceleration of cutoff pair potentials for molecular modeling applications. C.
Rodrigues, D. Hardy, J. Stone, K. Schulten, W. Hwu. Proceedings of the 2008

Conference On Computing Frontiers, pp. 273-282, 2008.

Cutoff Summation Runtime

GPU cutoff with
CPU overlap:

17x-21x faster than
CPU core

If asynchronous
stream blocks due
to queue filling,
performance will

degrade from
peak…

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Cutoff Summation Observations
• Use of CPU to handle overflowed bins is very

effective, overlaps completely with GPU work

• One caveat when using streaming API is to avoid
overfilling the stream queue with work, as doing
so can trigger blocking behavior (greatly improved
in current drivers)

• The use of compensated summation (all GPUs) or
double-precision (SM >= 1.3 only) for potential
accumulation resulted in only a ~10%
performance penalty vs. pure single-precision
arithmetic, while reducing the effects of floating
point truncation

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Multilevel Summation
• Approximates full electrostatic potential

• Calculates sum of smoothed pairwise potentials

interpolated from a hierarchy of lattices

• Advantages over PME and/or FMM:

– Algorithm has linear time complexity

– Permits non-periodic and periodic boundaries

– Produces continuous forces for dynamics (advantage over FMM)

– Avoids 3-D FFTs for better parallel scaling (advantage over PME)

– Spatial separation allows use of multiple time steps

– Can be extended to other pairwise interactions

 • Skeel, Tezcan, Hardy, J Comp Chem, 2002 — Computing forces for molecular dynamics

• Hardy, Stone, Schulten, J Paral Comp, 2009 — GPU-acceleration of potential map calculation

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Multilevel Summation Main Ideas







atoms

h-lattice

2h-lattice

Split the 1/r potential Interpolate the smoothed potentials

a 2a

.

.

.

.

.

.

• Split the 1/r potential into a short-range cutoff part plus smoothed parts that are
successively more slowly varying. All but the top level potential are cut off.

• The smoothed potentials are interpolated from successively coarser lattices.

• The lattice spacing is doubled at each successive level. The cutoff distance is also
doubled.

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Multilevel Summation Calculation

map

potential

exact

short-range

interactions

interpolated

long-range

interactions

 

short-range cutoff

interpolation anterpolation

h-lattice cutoff

2h-lattice cutoff

4h-lattice

restriction

restriction

prolongation

prolongation
long-range

parts

Computational Steps

atom

charges

map

potentials

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Multilevel Summation on the GPU

Computational steps CPU (s) w/ GPU (s) Speedup

Short-range cutoff 480.07 14.87 32.3

Long-range anterpolation 0.18

restriction 0.16

lattice cutoff 49.47 1.36 36.4

prolongation 0.17

interpolation 3.47

Total 533.52 20.21 26.4

Performance profile for 0.5 Å map of potential for 1.5 M atoms.

Hardware platform is Intel QX6700 CPU and NVIDIA GTX 280.

Accelerate short-range cutoff and lattice cutoff parts

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Photobiology of Vision and Photosynthesis
Investigations of the chromatophore, a photosynthetic organelle

Electrostatic field of chromatophore model

from multilevel summation method:

computed with 3 GPUs (G80) in ~90 seconds,

46x faster than single CPU

Electrostatics needed to build full
structural model, place ions, study

macroscopic properties

Partial model:
~10M atoms

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Lessons Learned
• GPU algorithms need fine-grained parallelism and

sufficient work to fully utilize the hardware

• Fine-grained GPU work decompositions compose

well with the comparatively coarse-grained

decompositions used for multicore or distributed

memory programing

• Much of GPU algorithm optimization revolves

around efficient use of multiple memory systems

and latency hiding

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Lessons Learned (2)
• The host CPU can potentially be used

to “regularize” the computation for

the GPU, yielding better overall

performance

• Overlapping CPU work with GPU

can hide some communication and

unaccelerated computation

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Multi-core CPUs, Accelerators and

Production Software

• A few of my rants about the ongoing state
of parallel programming, accelerators…

• Currently, a programmer writes multiple
codes for the same kernel, e.g. pthreads,
MPI, CUDA, SSE, straight C, …

• Error, exception handling in a multi-kernel
environment can be quite tricky, particularly
if buried within child threads, with various
other operations in-flight already

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Multi-core CPUs, Accelerators and

Production Software (2)

• Current APIs are composable, but can get quite messy:

– Combinatorial expansion of multiple APIs and techniques
leads to significant code bloat

– Pure library-based interfaces are particularly unwieldy due to
code required for packing/unpacking function parameters

– Simple pthreads code can quickly bloat to hundreds of lines of
code if there are many thread-specific memory allocations,
parameters, etc to deal with

• Current systems do very little with NUMA topology
info, CPU affinity, etc

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Acknowledgements

• Theoretical and Computational Biophysics

Group, University of Illinois at Urbana-

Champaign

• NCSA Blue Waters Team

• NCSA Innovative Systems Lab

• NVIDIA CUDA Center of Excellence,

University of Illinois at Urbana-Champaign

• The CUDA team at NVIDIA

• NIH support: P41-RR005969

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

GPU Computing Publications
http://www.ks.uiuc.edu/Research/gpu/

• Lattice Microbes: High‐performance stochastic simulation method
for the reaction‐diffusion master equation.
E. Roberts, J. E. Stone, and Z. Luthey‐Schulten.
J. Computational Chemistry 34 (3), 245-255, 2013.

• Fast Visualization of Gaussian Density Surfaces for Molecular
Dynamics and Particle System Trajectories. M. Krone, J. E. Stone,
T. Ertl, and K. Schulten. EuroVis Short Papers, pp. 67-71, 2012.

• Immersive Out-of-Core Visualization of Large-Size and Long-
Timescale Molecular Dynamics Trajectories. J. Stone, K. Vandivort,
and K. Schulten. G. Bebis et al. (Eds.): 7th International Symposium on
Visual Computing (ISVC 2011), LNCS 6939, pp. 1-12, 2011.

• Fast Analysis of Molecular Dynamics Trajectories with Graphics
Processing Units – Radial Distribution Functions. B. Levine, J.
Stone, and A. Kohlmeyer. J. Comp. Physics, 230(9):3556-3569, 2011.

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

GPU Computing Publications
http://www.ks.uiuc.edu/Research/gpu/

• Quantifying the Impact of GPUs on Performance and Energy Efficiency in

HPC Clusters. J. Enos, C. Steffen, J. Fullop, M. Showerman, G. Shi, K. Esler, V.

Kindratenko, J. Stone, J Phillips. International Conference on Green Computing,

pp. 317-324, 2010.

• GPU-accelerated molecular modeling coming of age. J. Stone, D. Hardy, I.

Ufimtsev, K. Schulten. J. Molecular Graphics and Modeling, 29:116-125, 2010.

• OpenCL: A Parallel Programming Standard for Heterogeneous Computing.

J. Stone, D. Gohara, G. Shi. Computing in Science and Engineering, 12(3):66-

73, 2010.

• An Asymmetric Distributed Shared Memory Model for Heterogeneous

Computing Systems. I. Gelado, J. Stone, J. Cabezas, S. Patel, N. Navarro, W.

Hwu. ASPLOS ’10: Proceedings of the 15th International Conference on

Architectural Support for Programming Languages and Operating Systems, pp.

347-358, 2010.

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

GPU Computing Publications
http://www.ks.uiuc.edu/Research/gpu/

• GPU Clusters for High Performance Computing. V. Kindratenko, J. Enos, G.

Shi, M. Showerman, G. Arnold, J. Stone, J. Phillips, W. Hwu. Workshop on

Parallel Programming on Accelerator Clusters (PPAC), In Proceedings IEEE

Cluster 2009, pp. 1-8, Aug. 2009.

• Long time-scale simulations of in vivo diffusion using GPU hardware.

E. Roberts, J. Stone, L. Sepulveda, W. Hwu, Z. Luthey-Schulten. In IPDPS’09:

Proceedings of the 2009 IEEE International Symposium on Parallel & Distributed

Computing, pp. 1-8, 2009.

• High Performance Computation and Interactive Display of Molecular

Orbitals on GPUs and Multi-core CPUs. J. Stone, J. Saam, D. Hardy, K.

Vandivort, W. Hwu, K. Schulten, 2nd Workshop on General-Purpose

Computation on Graphics Pricessing Units (GPGPU-2), ACM International

Conference Proceeding Series, volume 383, pp. 9-18, 2009.

• Probing Biomolecular Machines with Graphics Processors. J. Phillips, J.

Stone. Communications of the ACM, 52(10):34-41, 2009.

• Multilevel summation of electrostatic potentials using graphics processing

units. D. Hardy, J. Stone, K. Schulten. J. Parallel Computing, 35:164-177, 2009.

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

GPU Computing Publications
http://www.ks.uiuc.edu/Research/gpu/

• Adapting a message-driven parallel application to GPU-accelerated clusters.

J. Phillips, J. Stone, K. Schulten. Proceedings of the 2008 ACM/IEEE Conference

on Supercomputing, IEEE Press, 2008.

• GPU acceleration of cutoff pair potentials for molecular modeling

applications. C. Rodrigues, D. Hardy, J. Stone, K. Schulten, and W. Hwu.

Proceedings of the 2008 Conference On Computing Frontiers, pp. 273-282, 2008.

• GPU computing. J. Owens, M. Houston, D. Luebke, S. Green, J. Stone, J.

Phillips. Proceedings of the IEEE, 96:879-899, 2008.

• Accelerating molecular modeling applications with graphics processors. J.

Stone, J. Phillips, P. Freddolino, D. Hardy, L. Trabuco, K. Schulten. J. Comp.

Chem., 28:2618-2640, 2007.

• Continuous fluorescence microphotolysis and correlation spectroscopy. A.

Arkhipov, J. Hüve, M. Kahms, R. Peters, K. Schulten. Biophysical Journal,

93:4006-4017, 2007.

