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CUDA Work Abstraction 

• Work is expressed as a multidimensional 

array of independent work items called 

“threads” – not the same thing as a CPU 

thread 

• CUDA Kernels can be thought of as telling a 

GPU to compute all iterations of a set of 

nested loops concurrently 

• Threads are dynamically scheduled onto 

hardware according to a hierarchy of thread 

groupings 
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CUDA Work Abstractions: 

 Grids, Thread Blocks, Threads 
1-D, 2-D, or 3-D (SM >= 2.x) 
Grid of thread blocks: 

0,0 0,1 

1,0 1,1 

… 

… 

… 

… 

… 

1-D, 2-D, 3-D 
thread block: 

SM / SMX 

Thread blocks are 
scheduled onto pool 
of GPU SMs… 
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GPU Thread Block Execution  

• Thread blocks are decomposed onto 

hardware in 32-thread “warps” 

• Hardware execution is scheduled in 

units of warps – an SM can execute 

warps from several thread blocks 

• Warps run in SIMD-style execution: 

– All threads execute the same 

instruction in lock-step  

– If one thread stalls, the entire warp 

stalls… 

– A branch taken by a thread has to be 

taken by all threads... (divergence is 

bad!) 

1-D, 2-D, 3-D 
thread block: 

SM / SMX 

Thread blocks are 
multiplexed onto 
pool of GPU SMs… 
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GPU Warp Branch Divergence 

• Branch divergence: when not all threads take 

the same branch,  the entire warp has to 

execute both sides of the branch  

• GPU blocks memory writes from disabled 

threads in the “if then” branch, then inverts 

all thread enable states and runs the “else” 

branch 

• GPU hardware detects warp reconvergence 

and then runs normally... 

• Not unique to GPUs, an attribute of all SIMD 

hardware designs… 

• In the case of the GPU, we are at least 

benefiting from a completely hardware-based 

implementation… 

 

1-D, 2-D, 3-D 
thread block: 

SM / SMX 

Thread blocks are 
multiplexed onto 
pool of GPU SMs… 
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GPU Thread Block Collective Operations 

• Threads within the same thread block 

can communicate with each other in 

fast on-chip shared memory 

• Once scheduled on an SM, thread 

blocks run until completion 

• Because the order of thread block 

execution is arbitrary and they can’t 

be stopped, they cannot 

communicate or synchronize with 

other thread blocks  

1-D, 2-D, 3-D 
thread block: 

SM / SMX 

Thread blocks are 
multiplexed onto 
pool of GPU SMs… 
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CUDA Grid/Block/Thread Decomposition 

Padding arrays out to full blocks 
optimizes global memory performance 
by guaranteeing memory coalescing 

1-D, 2-D, or 3-D (SM >= 2.x) 
Grid of thread blocks: 

0,0 0,1 

1,0 1,1 

… 

… … 

… 

… 

1-D, 2-D, or 3-D 
Computational Domain 

1-D, 2-D, 3-D 
thread block: 
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Indexing Work 
• Within a CUDA kernel: 

– Grid: gridDim.[xyz] 

– Block: blockDim.[xyz] and blockIdx.[xyz] 

– Thread: threadIdx.[xyz] 

• Example CUDA kernel with 1-D Indexing: 

__global__ void cuda_add(float *c, float *a, float *b) { 

  int idx = (blockIdx.x * blockDim.x) + threadIdx.x;  

  c[idx] = a[idx] + b[idx]; 

} 
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Running a GPU kernel: 
int sz = N * sizeof(float); 

… 

cudaMalloc((void**) &a_gpu, sz); 

cudaMemcpy(a_gpu, a, sz, cudaMemcpyHostToDevice); 

… // do the same for ‘b_gpu’, allocate ‘c_gpu’ 

int Bsz = 256; // 1-D thread block size 

cuda_add<<<N/Bsz, Bsz>>>(c, a, b); 

cudaDeviceSynchronize(); // make CPU wait for completion 

... 

cudaMemcpy(c, c_gpu, sz, cudaMemcpyDeviceToHost); 

cudaFree(a_gpu); 

… // free ‘b_gpu’, and ‘c_gpu’… 
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What if Work Size Isn’t an Integer 

Multiple of the Thread Block Size? 
• Threads must check if they are “in bounds”: 

__global__ void cuda_add(float *c, float *a, float *b, int N) { 

  int idx = (blockIdx.x * blockDim.x) + threadIdx.x;  

  if (idx < N) { 

    c[idx] = a[idx] + b[idx]; 

  } 

} 
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Direct Coulomb Summation Performance 

CUDA-Simple: 

14.8x faster, 

33% of fastest 

GPU kernel 

CUDA-Unroll8clx: 

fastest GPU kernel, 

44x faster than CPU, 

291 GFLOPS on 

GeForce 8800GTX 

GPU computing.  J. Owens, M. Houston, D. Luebke, S. Green, J. Stone, 

J. Phillips. Proceedings of the IEEE, 96:879-899, 2008. 

CPU 

Number of thread blocks modulo number of SMs results in 

significant performance variation for small workloads  
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An Approach to Writing CUDA Kernels  
• Find an algorithm that can expose substantial parallelism, 

we’ll ultimately need thousands of independent threads… 

• Identify appropriate GPU memory or texture subsystems 

used to store data used by kernel 

• Are there trade-offs that can be made to exchange 

computation for more parallelism? 

– Though counterintuitive, past successes resulted from this strategy 

– “Brute force” methods that expose significant parallelism do 

surprisingly well on GPUs 

• Analyze the real-world use case for the problem and select 

a specialized kernel for the problem sizes that will be 

heavily used 
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Getting Performance From GPUs 

• Don’t worry (much) about counting arithmetic 

operations…at least until you have nothing else left to do 

• GPUs provide tremendous memory bandwidth, but even 

so, memory bandwidth often ends up being the 

performance limiter 

• Keep/reuse data in registers as long as possible 

• The main consideration when programming GPUs is 

accessing memory efficiently, and storing operands in 

the most appropriate memory system according to data 

size and access pattern 
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Avoid Output Conflicts,  

Conversion of Scatter to Gather 

• Many CPU codes contain algorithms that “scatter” 
outputs to memory, to reduce arithmetic 

• Scattered output can create bottlenecks for GPU 
performance due to bank conflicts 

• On the GPU, it’s often better to do more 
arithmetic, in exchange for a regularized output 
pattern, or to convert “scatter” algorithms to 
“gather” approaches 
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Avoid Output Conflicts:  

Privatization Schemes 
• Privatization: use of private work areas for workers 

– Avoid/reduce the need for thread synchronization barriers 

– Avoid/reduce the need atomic increment/decrement 
operations during work, use parallel reduction at the end… 

• By working in separate memory buffers, workers 
avoid read/modify/write conflicts of various kinds 

• Huge GPU thread counts make it impractical to 
privatize data on a per-thread basis, so GPUs must use 
coarser granularity: warps, thread-blocks 

• Use of the on-chip shared memory local to each SM 
can often be considered a form of privatization 
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Example: avoiding output conflicts when 

summing numbers among threads in a block 

N-way output conflict:                 
Correct results require costly barrier 
synchronizations or atomic memory 
operations ON EVERY ADD to prevent 
threads from overwriting each other… 

Parallel reduction: no output 
conflicts, Log2(N) barriers 

+= 

= 

+= 

+= 

+= 

+= 

Accumulate sums in thread-
local registers before doing any 

reduction among threads 
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Electrostatic Potential Maps 

• Electrostatic potentials 
evaluated on 3-D lattice: 

 

 

 

• Applications include: 

– Ion placement for 
structure building 

– Time-averaged potentials 
for simulation 

– Visualization and 
analysis Isoleucine tRNA synthetase 
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Overview of Direct Coulomb 

Summation (DCS) Algorithm 
• One of several ways to compute the electrostatic potentials 

on a grid, ideally suited for the GPU 

• Methods such as multilevel summation can achieve much 

higher performance at the cost of additional complexity  

• Begin with DCS for computing electrostatic maps: 

– conceptually simple algorithm well suited to the GPU 

– easy to fully explore 

– requires very little background knowledge, unlike other methods 

• DCS: for each lattice point, sum potential contributions for 

all atoms in the simulated structure:  

 potential[j] +=  atom[i].charge / rij 
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Direct Coulomb Summation (DCS) 

Algorithm Detail 

• Each lattice point accumulates electrostatic 
potential contribution from all atoms: 

   potential[j] +=  atom[i].charge / rij 

atom[i] 

rij: distance 
from lattice[j] 

to atom[i] 
Lattice point j 

being evaluated 
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DCS Computational 

Considerations 
• Attributes of DCS algorithm for computing electrostatic maps: 

– Highly data parallel 

– Starting point for more sophisticated algorithms 

– Single-precision FP arithmetic is adequate for intended uses 

– Numerical accuracy can be further improved  by compensated summation, 

spatially ordered summation groupings, or with the use of double-

precision accumulation 

– Interesting test case since potential maps are useful for various 

visualization and analysis tasks 

• Forms a template for related spatially evaluated function 

summation algorithms in CUDA 



NIH BTRC for Macromolecular Modeling and Bioinformatics 

http://www.ks.uiuc.edu/ 

Beckman Institute, 
 U. Illinois at Urbana-Champaign 

Single Slice DCS: Simple (Slow) C Version  
void cenergy(float *energygrid, dim3 grid, float gridspacing, float z, const float *atoms, 

                      int numatoms) { 

  int i,j,n; 

  int atomarrdim = numatoms * 4; 

  for (j=0; j<grid.y; j++) { 

    float y = gridspacing * (float) j; 

    for (i=0; i<grid.x; i++) { 

      float x = gridspacing * (float) i; 

      float energy = 0.0f; 

      for (n=0; n<atomarrdim; n+=4) {     // calculate potential contribution of each atom 

        float dx = x - atoms[n    ]; 

        float dy = y - atoms[n+1]; 

        float dz = z - atoms[n+2]; 

        energy += atoms[n+3] / sqrtf(dx*dx + dy*dy + dz*dz); 

      } 

      energygrid[grid.x*grid.y*k + grid.x*j + i] = energy; 

    } 

  } 

} 
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DCS Algorithm Design Observations 

• Electrostatic maps used for ion placement require evaluation of 
~20 potential lattice points per atom for a typical biological 
structure 

• Atom list has the smallest memory footprint, best choice for the 
inner loop (both CPU and GPU) 

• Lattice point coordinates are computed on-the-fly 

• Atom coordinates are made relative to the origin of the 
potential map, eliminating redundant arithmetic 

• Arithmetic can be significantly reduced by precalculating and 
reusing distance components, e.g. create a new array containing 
X, Q, and dy^2 + dz^2, updated on-the-fly for each row (CPU) 

• Vectorized CPU versions benefit greatly from SSE instructions 
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Direct Coulomb Summation Runtime 

GPU 
underutilized 

GPU fully utilized, 
~40x faster than CPU 

GeForce 8800 GTX 

Accelerating molecular modeling applications with graphics processors. 
J. Stone, J. Phillips, P. Freddolino, D. Hardy, L. Trabuco, K. Schulten.   

J. Comp. Chem., 28:2618-2640, 2007. 

Lower  

is better 

GPU initialization 
time: ~110ms  



NIH BTRC for Macromolecular Modeling and Bioinformatics 

http://www.ks.uiuc.edu/ 

Beckman Institute, 
 U. Illinois at Urbana-Champaign 

DCS Observations for GPU 

Implementation 
• Naive implementation has a low ratio of FP arithmetic 

operations to memory transactions (at least for a GPU…) 

• The innermost loop will consume operands VERY quickly 

• Since atoms are read-only, they are ideal candidates for 
texture memory or constant memory 

• GPU implementations must access constant memory 
efficiently, avoid shared memory bank conflicts, coalesce 
global memory accesses, and overlap arithmetic with 
global memory latency 

• Map is padded out to a multiple of the thread block size: 

– Eliminates conditional handling at the edges, thus also eliminating 
the possibility of branch divergence 

– Assists with memory coalescing 
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CUDA DCS Implementation Overview 

• Allocate and initialize potential map memory on host CPU 

• Allocate potential map slice buffer on GPU 

• Preprocess atom coordinates and charges 

• Loop over slices: 

– Copy slice from host to GPU 

– Loop over groups of atoms until done: 

• Copy atom data to GPU 

• Run CUDA Kernel on atoms and slice resident on GPU accumulating 

new potential contributions into slice 

– Copy slice from GPU back to host 

• Free resources 
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Global Memory 

Texture Texture Texture Texture Texture Texture Texture 

Parallel Data 
Cache 

Parallel Data 
Cache 

Parallel Data 
Cache 

Parallel Data 
Cache 

Parallel Data 
Cache 

Parallel Data 
Cache 

GPU Constant Memory 

Direct Coulomb Summation on the GPU 

Host 

Atomic 

Coordinates 

Charges 

Threads compute 

up to 8 potentials,  

skipping by half-warps 

Thread blocks: 

64-256 threads 

Grid of thread blocks 

Lattice padding 
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DCS CUDA Block/Grid Decomposition  
(non-unrolled) 

Padding waste 

Grid of thread blocks: 

0,0 0,1 

1,0 1,1 

… 

… 

… … … 

Thread blocks:  

64-256 threads 

Threads compute 

1 potential each 
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DCS CUDA Block/Grid 

Decomposition (non-unrolled) 

• 16x16 CUDA thread blocks are a nice 

starting size with a satisfactory number of 

threads 

• Small enough that there’s not much waste 

due to padding at the edges 
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Notes on Benchmarking CUDA Kernels: 

Initialization Overhead 
• When a host thread initially binds to a CUDA context, 

there is a small (~100ms) delay during the first CUDA 
runtime call that touches state on the device 

• The first time each CUDA kernel is executed, there’s a 
small delay while the driver compiles the device-
independent PTX intermediate code for the physical device 
associated with the current context 

• In most real codes, these sources of one-time initialization 
overhead would occur at application startup and should not 
be a significant factor. 

• The exception to this is that newly-created host threads 
incur overhead when they bind to their device, so it’s best 
to re-use existing host threads than to generate them 
repeatedly 
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Notes on Benchmarking CUDA Kernels: 

Power Management, Async Operations 
• Modern GPUs (and of course CPUs) incorporate power 

management hardware that reduces clock rates and/or 

powers down functional units when idle 

• In order to benchmark peak performance of CUDA 

kernels, both the GPU(s) and CPU(s) must be awoken 

from their respective low-power modes  

• In order to get accurate and repeatable timings, do a “warm 

up” pass prior to running benchmark timings on your 

kernel and any associated I/O 

• Call cudaThreadSynchronize() prior to stopping timers to 

verify that any outstanding kernels and I/Os have 

completed 
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DCS Version 1: Const+Precalc 

187 GFLOPS, 18.6 Billion Atom Evals/Sec 
(GeForce 8800 GTX) 

• Pros: 

– Pre-compute dz^2 for entire slice 

– Inner loop over read-only atoms, const memory ideal 

– If all threads read the same const data at the same time, 

performance is similar to reading a register 

• Cons: 

– Const memory only holds ~4000 atom coordinates and charges 

– Potential summation must be done in multiple kernel invocations 

per slice, with const atom data updated for each invocation 

– Host must shuffle data in/out for each pass 
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… 

  float curenergy = energygrid[outaddr]; 

  float coorx = gridspacing * xindex; 

  float coory = gridspacing * yindex; 

  int atomid; 

  float energyval=0.0f; 

   for (atomid=0; atomid<numatoms; atomid++) { 

    float dx = coorx - atominfo[atomid].x; 

    float dy = coory - atominfo[atomid].y; 

    energyval += atominfo[atomid].w *   

                                  rsqrtf(dx*dx + dy*dy + atominfo[atomid].z); 

  } 

  energygrid[outaddr] = curenergy + energyval; 

DCS Version 1: Kernel Structure 

Start global memory reads 
early. Kernel hides some of 

its own latency. 

Only dependency on global 
memory read is at the end of 

the kernel… 
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DCS CUDA Block/Grid 

Decomposition (unrolled) 
• Reuse atom data and partial distance components multiple times 

• Use “unroll and jam” to unroll the outer loop into the inner loop 

• Uses more registers, but increases arithmetic intensity 
significantly 

• Kernels that unroll the inner loop calculate more than one lattice 
point per thread result in larger computational tiles: 

– Thread count per block must be decreased to reduce computational tile 
size as unrolling is increased 

– Otherwise, tile size gets bigger as threads do more than one lattice point 
evaluation, resulting on a significant increase in padding and wasted 
computations at edges 
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• Add each atom’s contribution to several lattice 

points at a time, distances only differ in one 

component: 
potential[j    ] +=  atom[i].charge / rij 

potential[j+1] +=  atom[i].charge / ri(j+1) 

… 

DCS CUDA Algorithm: Unrolling Loops 

Atom[i] 

Distances to 
Atom[i] 
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DCS CUDA Block/Grid Decomposition  
(unrolled) 

Padding waste 

Grid of thread blocks: 

0,0 0,1 

1,0 1,1 

… 

… … 

… 

Thread blocks:  

64-256 threads 

Threads compute 

up to 8 potentials 

… 

Unrolling increases 
computational tile size 
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DCS Version 2: Const+Precalc+Loop Unrolling 

259 GFLOPS, 33.4 Billion Atom Evals/Sec 
(GeForce 8800 GTX) 

• Pros: 

– Although const memory is very fast, loading values into registers 

costs instruction slots 

– We can reduce the number of loads by reusing atom coordinate 

values for multiple voxels, by storing in regs 

– By unrolling the X loop by 4, we can compute dy^2+dz^2 once 

and use it multiple times, much like the CPU version of the code 

does 

• Cons: 

– Compiler won’t do this type of unrolling for us (yet) 

– Uses more registers, one of several finite resources 

– Increases effective tile size, or decreases thread count in a block, 

though not a problem at this level 
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DCS Version 2: Inner Loop 
…for (atomid=0; atomid<numatoms; atomid++) { 

      float dy = coory - atominfo[atomid].y; 

      float dysqpdzsq = (dy * dy) + atominfo[atomid].z; 

      float x = atominfo[atomid].x; 

      float dx1 = coorx1 - x; 

      float dx2 = coorx2 - x; 

      float dx3 = coorx3 - x; 

      float dx4 = coorx4 - x; 

      float charge = atominfo[atomid].w; 

      energyvalx1 += charge * rsqrtf(dx1*dx1 + dysqpdzsq); 

      energyvalx2 += charge * rsqrtf(dx2*dx2 + dysqpdzsq); 

      energyvalx3 += charge * rsqrtf(dx3*dx3 + dysqpdzsq); 

      energyvalx4 += charge * rsqrtf(dx4*dx4 + dysqpdzsq); 

    } 

Compared to non-unrolled 
kernel: memory loads are 

decreased by 4x, and FLOPS 
per evaluation are reduced, but 

register use is increased… 
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DCS Version 3:  

Const+Shared+Loop Unrolling+Precalc 

268 GFLOPS, 36.4 Billion Atom Evals/Sec 

• Pros: 

– Loading prior potential values from global memory 

into shared memory frees up several registers, so 

we can afford to unroll by 8 instead of 4 

– Using fewer registers allows co-scheduling of more 

blocks, increasing GPU “occupancy” 

• Cons: 

– Bumping against hardware limits (uses all const 

memory, most shared memory, and a largish 

number of registers) 
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DCS Version 3: Kernel Structure 
• Loads 8 potential map lattice points from global 

memory at startup, and immediately stores them 

into shared memory before going into inner loop. 

We would otherwise consume too many registers 

and lose performance (on GeForce 8800 at least…) 

• Processes 8 lattice points at a time in the inner loop 

• Additional performance gains are achievable by 

coalescing global memory reads at start/end 
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DCS Version 3: Inner Loop 
…for (v=0; v<8; v++) 

      curenergies[tid + nthr * v] = energygrid[outaddr + v]; 

    float coorx = gridspacing * xindex; 

    float coory = gridspacing * yindex; 

    float energyvalx1=0.0f;  […….] float energyvalx8=0.0f; 

    for (atomid=0; atomid<numatoms; atomid++) { 

        float dy = coory - atominfo[atomid].y; 

        float dysqpdzsq = (dy * dy) + atominfo[atomid].z; 

        float dx = coorx - atominfo[atomid].x; 

        energyvalx1 += atominfo[atomid].w * rsqrtf(dx*dx + dysqpdzsq); 

        dx += gridspacing; 

[…] 

        energyvalx8 += atominfo[atomid].w * rsqrtf(dx*dx + dysqpdzsq); 

    } 

    __syncthreads(); // guarantee that shared memory values are ready for reading by all threads 

    energygrid[outaddr      ] = energyvalx1 + curenergies[tid                 ]; 

[…] 

    energygrid[outaddr + 7] = energyvalx2 + curenergies[tid + nthr * 7]; 
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DCS Version 4:  

Const+Loop Unrolling+Coalescing 

291.5 GFLOPS, 39.5 Billion Atom Evals/Sec 

• Pros: 

– Simplified structure compared to version 3, no use of shared memory, 

register pressure kept at bay by doing global memory operations only at 

the end of the kernel 

– Using fewer registers allows co-scheduling of more blocks, increasing 

GPU “occupancy” 

– Doesn’t have as strict of a thread block dimension requirement as 

version 3, computational tile size can be smaller 

• Cons: 

– The computation tile size is still large, so small potential maps don’t 

perform as well as large ones 
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DCS Version 4: Kernel Structure 
• Processes 8 lattice points at a time in the inner loop 

• Subsequent lattice points computed by each thread 

are offset by a half-warp to guarantee coalesced 

memory accesses 

• Loads and increments 8 potential map lattice points 

from global memory at completion of of the 

summation, avoiding register consumption 
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DCS Version 4: Inner Loop 
…float coory = gridspacing * yindex; 

    float coorx = gridspacing * xindex; 

    float gridspacing_coalesce = gridspacing * BLOCKSIZEX; 

    int atomid; 

    for (atomid=0; atomid<numatoms; atomid++) { 

      float dy = coory - atominfo[atomid].y; 

      float dyz2 = (dy * dy) + atominfo[atomid].z; 

      float dx1 = coorx - atominfo[atomid].x; 

[…] 

      float dx8 = dx7 + gridspacing_coalesce; 

      energyvalx1 += atominfo[atomid].w * rsqrtf(dx1*dx1 + dyz2); 

[…] 

      energyvalx8 += atominfo[atomid].w * rsqrtf(dx8*dx8 + dyz2); 

   } 

   energygrid[outaddr                               ] += energyvalx1; 

[...] 

   energygrid[outaddr+7*BLOCKSIZEX] += energyvalx7; 

 

Points spaced for 
memory coalescing 

Reuse partial distance 
components dy^2 + dz^2 

Global memory ops 
occur only at the end 

of the kernel, 
decreases register use 
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DCS CUDA Block/Grid Decomposition  

             (unrolled, coalesced) 

Padding waste 

Grid of thread blocks: 

0,0 0,1 

1,0 1,1 

… 

… … 

… 

Thread blocks:  

64-256 threads 

… 

Unrolling increases 
computational tile size 

Threads compute 

up to 8 potentials,  

skipping by half-warps 
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Direct Coulomb Summation Performance 

CUDA-Simple: 
14.8x faster, 

33% of fastest 
GPU kernel 

CUDA-Unroll8clx: 

fastest GPU kernel, 

44x faster than CPU, 
291 GFLOPS on 

GeForce 8800GTX 

GPU computing.  J. Owens, M. Houston, D. Luebke, S. Green, J. Stone, 
J. Phillips. Proceedings of the IEEE, 96:879-899, 2008. 

CPU 

Number of thread blocks modulo number of SMs results in 

significant performance variation for small workloads  
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Multi-GPU DCS Potential Map 

Calculation 

• Both CPU and GPU versions of the code 

are easily parallelized by decomposing the 

3-D potential map into slices, and 

computing them concurrently 

• Potential maps often have 50-500 slices in 

the Z direction, so plenty of coarse grain 

parallelism is still available via the DCS 

algorithm 
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Multi-GPU DCS Algorithm: 

• One host thread is created for each CUDA GPU, 

attached according to host thread ID: 

– First CUDA call binds that thread’s CUDA context to 

that GPU for life 

• Map slices are decomposed cyclically onto the 

available GPUs 

• Map slices are usually larger than the host 

memory page size, so false sharing and related 

effects are not a problem for this application 
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Multi-GPU Direct Coulomb Summation  
(GeForce 8800 GTX) 

• Effective memory 

bandwidth scales with the 

number of GPUs utilized 

• PCIe bus bandwidth not a 

bottleneck for this algorithm 

• 117 billion evals/sec 

• 863 GFLOPS 

• 131x speedup vs. CPU core 

• Power: 700 watts during 

benchmark Quad-core Intel QX6700 

Three NVIDIA GeForce 8800GTX  
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GPU 1 GPU N … 

Multi-GPU Direct 

Coulomb Summation  

NCSA GPU Cluster 
http://www.ncsa.uiuc.edu/Projects/GPUcluster/ 

Evals/sec TFLOPS Speedup* 

4-GPU (2 Quadroplex) 

Opteron node at NCSA 

157 billion 1.16 176 

4-GPU GTX 280 (GT200) 241 billion 1.78 271 

*Speedups relative to Intel QX6700 CPU core w/ SSE 
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Satellite Tobacco Mosaic Virus (STMV) 

Ion Placement 

Multi-GPU DCS Performance: 

Initial Ion Placement Lattice Calculation 

• Original virus DCS ion 
placement ran for 110 CPU-
hours on SGI Altix Itanium2 

• Same calculation now takes 
1.35 GPU-hours 

• 27 minutes (wall clock) if three 
GPUs are used concurrently 

• CUDA Initial ion placement 
lattice calculation performance: 

–  82 times faster for virus 
(STMV) structure 

– 110 times faster for ribosome 

• Three GPUs give performance 
equivalent to ~330 SGI Altix 
CPUs for the ribosome case 
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Brief Shared Memory Example: 

Multiple Debye-Hückel Electrostatics 

• Part of Poisson-Boltzmann solver in the 

popular APBS electrostatics solver package 

• Method: compute electrostatic potentials at 

grid points on boundary faces of box 

containing molecule 

• Screening function: 
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 Shared memory: MDH Kernel (CUDA) 
extern shared f loat smem [ ] ; 

int igrid = (blockIdx .x  blockDim.x ) + threadIdx .x ;      int lsize = blockDim.x ;    int lid= threadIdx .x ; 

float lgx = gx [ igrid ] ;  float lgy = gy [ igrid ] ;  float lg z = gz [ igrid ] ;  float v = 0.0 f ; 

for ( int jatom = 0 ; jatom < natoms ; jatom+=lsize ) {  

    __syncthreads ( ) ; 

    i f ( ( jatom + l i d ) < natoms ) {  

        smem[ lid                   ] = ax [ jatom + lid] ; 

        smem[ lid +       lsize ] = ay [ jatom + lid] ; 

        smem[ lid + 2 * lsize ] = az [ jatom + lid] ; 

        smem[ lid + 3 * lsize ] = charge [ jatom + lid] ; 

        smem[ lid + 4 * lsize ] = size [ jatom + lid] ; 

    } 

    __syncthreads ( ) ; 

    i f ( ( jatom+l s i z e ) > natoms ) l s i z e = natoms − jatom ; 

        for ( int i =0; i<l s i z e ; i++) { 

            f loat dx = lgx − smem[ i                  ] ; 

            f loat dy = lgy − smem[ i +      lsize ] ; 

            f loat dz = lgz − smem[ i + 2 * lsize ] ; 

            f loat dist = sqrtf ( dxdx + dydy + dzdz ) ; 

            v += smem[i+3*lsize] * expf(−xkappa ( dist − smem[ i+4*lsize ] ) ) / (1.0 f + xkappa  smem[ i+4*lsize ]) * dist) ; 

        } 

   } 

   val [ igrid ] = pre1 * v;  

 

Collectively load atoms from 

global memory into shared 

memory 

Loop over all all atoms in shared 

memory accumulating potential 

contributions into grid points 
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Infinite vs. Cutoff Potentials  

• Infinite range potential: 

– All atoms contribute to all lattice points 

– Summation algorithm has quadratic complexity 

• Cutoff (range-limited) potential: 

– Atoms contribute within cutoff distance to lattice points 

– Summation algorithm has linear time complexity  

– Has many applications in molecular modeling: 

• Replace electrostatic potential with shifted form 

• Short-range part for fast methods of approximating full electrostatics 

• Used for fast decaying interactions (e.g. Lennard-Jones, Buckingham)  
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Short-Range Cutoff Summation 

• Each lattice point accumulates electrostatic potential 
contribution from atoms within cutoff distance: 

   if (rij < cutoff) 

      potential[j] += (charge[i] / rij) * s(rij) 

• Smoothing function s(r) is algorithm dependent 

Cutoff radius rij: distance 

from lattice[j] 

to atom[i] 

Lattice point j 

being evaluated 
atom[i] 
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CUDA Cutoff Electrostatic Potential Summation 

Global memory Constant memory 
Offsets for bin 

neighborhood 

Shared memory 

atom bin 

Potential 

map 

regions Bins of atoms 

(fixed size) 

•Atoms are spatially hashed into fixed-size bins (guarantees coalescing) 

•CPU handles overflowed bins (GPU kernel can be very aggressive) 

•GPU thread block calculates corresponding region of potential map,  

•GPU bin/region neighbor checks are costly; solved with universal table look-up 

Look-up table 

encodes “logic” of 

spatial geometry  

Each thread block cooperatively 
loads atom bins from surrounding 

neighborhood into shared memory for 
evaluation: GATHER  
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Spatial Sorting of Atoms Into “Bins” 

• Sort atoms into bins by 

their coordinates 

• Each bin is sized to 

guarantee GPU memory 

coalescing 

• Each bin holds up to 8 

atoms, containing 4 FP 

values (3 coords, 1 charge) 

• Each lattice point gathers 

potentials from atom bins 

within cutoff 
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Using the CPU to Optimize GPU Performance 

• GPU performs best when the work evenly divides 

into the number of threads/processing units 

• Optimization strategy:  

– Use the CPU to “regularize” the GPU workload 

– Use fixed size bin data structures, with “empty” slots 

skipped or producing zeroed out results 

– Handle exceptional or irregular work units on the CPU; 

GPU processes the bulk of the work concurrently 

– On average, the GPU is kept highly occupied, attaining 

a high fraction of peak performance 
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GPU acceleration of cutoff pair potentials for molecular modeling applications. C. 
Rodrigues, D. Hardy, J. Stone, K. Schulten, W. Hwu. Proceedings of the 2008 

Conference On Computing Frontiers, pp. 273-282, 2008. 

Cutoff Summation Runtime 

GPU cutoff with 
CPU overlap: 

17x-21x faster than 
CPU core 

If asynchronous 
stream blocks due 
to queue filling, 
performance will 

degrade from 
peak… 
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Cutoff Summation Observations 
• Use of CPU to handle overflowed bins is very 

effective, overlaps completely with GPU work 

• One caveat when using streaming API is to avoid 
overfilling the stream queue with work, as doing 
so can trigger blocking behavior (greatly improved 
in current drivers) 

• The use of compensated summation (all GPUs) or 
double-precision (SM >= 1.3 only) for potential 
accumulation resulted in only a ~10% 
performance penalty vs. pure single-precision 
arithmetic, while reducing the effects of floating 
point truncation 
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Multilevel Summation 
• Approximates full electrostatic potential 

• Calculates sum of smoothed pairwise potentials 

interpolated from a hierarchy of lattices 

• Advantages over PME and/or FMM: 

– Algorithm has linear time complexity 

– Permits non-periodic and periodic boundaries 

– Produces continuous forces for dynamics (advantage over FMM) 

– Avoids 3-D FFTs for better parallel scaling (advantage over PME) 

– Spatial separation allows use of multiple time steps 

– Can be extended to other pairwise interactions 

 • Skeel, Tezcan, Hardy, J Comp Chem, 2002 — Computing forces for molecular dynamics 

• Hardy, Stone, Schulten, J Paral Comp, 2009 — GPU-acceleration of potential map calculation 
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Multilevel Summation Main Ideas  

 

 

 

atoms 

h-lattice 

2h-lattice 

Split the 1/r potential Interpolate the smoothed potentials 

a 2a 

. 

. 

. 

. 

. 

. 

•  Split the 1/r potential into a short-range cutoff part plus smoothed parts that are 
successively more slowly varying.  All but the top level potential are cut off. 

•  The smoothed potentials are interpolated from successively coarser lattices. 

• The lattice spacing is doubled at each successive level.  The cutoff distance is also 
doubled. 
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Multilevel Summation Calculation  

map 

potential 

exact 

short-range 

interactions 

interpolated 

long-range 

interactions 

  

short-range cutoff 

interpolation anterpolation 

h-lattice cutoff 

2h-lattice cutoff 

4h-lattice 

restriction 

restriction 

prolongation 

prolongation 
long-range 

parts 

Computational Steps 

atom 

charges 

map 

potentials 
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Multilevel Summation on the GPU 

Computational steps CPU (s) w/ GPU (s) Speedup 

Short-range cutoff 480.07 14.87 32.3 

Long-range anterpolation 0.18 

restriction 0.16 

lattice cutoff 49.47 1.36 36.4 

prolongation 0.17 

interpolation 3.47 

Total 533.52 20.21 26.4 

Performance profile for 0.5 Å map of potential for  1.5 M atoms. 

Hardware platform is Intel QX6700 CPU and NVIDIA GTX 280. 

Accelerate  short-range cutoff  and  lattice cutoff  parts 
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Photobiology of Vision and Photosynthesis 
Investigations of the chromatophore, a photosynthetic organelle 

Electrostatic field of chromatophore model 

from multilevel summation method: 

computed with 3 GPUs (G80) in ~90 seconds,  

46x faster than single CPU  

Electrostatics needed to build full 
structural model, place ions, study 

macroscopic properties 

Partial model:    
~10M atoms 
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Lessons Learned 
• GPU algorithms need fine-grained parallelism and 

sufficient work to fully utilize the hardware 

• Fine-grained GPU work decompositions compose 

well with the comparatively coarse-grained 

decompositions used for multicore or distributed 

memory programing 

• Much of GPU algorithm optimization revolves 

around efficient use of multiple memory systems 

and latency hiding 
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Lessons Learned (2) 
• The host CPU can potentially be used 

to “regularize” the computation for 

the GPU, yielding better overall 

performance 

• Overlapping CPU work with GPU 

can hide some communication and 

unaccelerated computation 
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Multi-core CPUs, Accelerators and 

Production Software 

• A few of my rants about the ongoing state 
of parallel programming, accelerators… 

• Currently, a programmer writes multiple 
codes for the same kernel, e.g. pthreads, 
MPI, CUDA, SSE, straight C, … 

• Error, exception handling in a multi-kernel 
environment can be quite tricky, particularly 
if buried within child threads, with various 
other operations in-flight already 
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Multi-core CPUs, Accelerators and 

Production Software (2) 

• Current APIs are composable, but can get quite messy: 

– Combinatorial expansion of multiple APIs and techniques 
leads to significant code bloat 

– Pure library-based interfaces are particularly unwieldy due to 
code required for packing/unpacking function parameters 

– Simple pthreads code can quickly bloat to hundreds of lines of 
code if there are many thread-specific memory allocations, 
parameters, etc to deal with 

• Current systems do very little with NUMA topology 
info, CPU affinity, etc 
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Kindratenko, J. Stone, J Phillips. International Conference on Green Computing, 

pp. 317-324, 2010. 

• GPU-accelerated molecular modeling coming of age.  J. Stone, D. Hardy, I. 
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• OpenCL: A Parallel Programming Standard for Heterogeneous Computing. 

J. Stone, D. Gohara, G. Shi.  Computing in Science and Engineering, 12(3):66-

73, 2010. 
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Computing Systems.  I. Gelado, J. Stone, J. Cabezas, S. Patel, N. Navarro, W. 

Hwu.  ASPLOS ’10: Proceedings of the 15th International Conference on 

Architectural Support for Programming Languages and Operating Systems, pp. 

347-358, 2010. 
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GPU Computing Publications 
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• Long time-scale simulations of in vivo diffusion using GPU hardware.                  

E. Roberts, J. Stone, L. Sepulveda, W. Hwu, Z. Luthey-Schulten. In IPDPS’09: 

Proceedings of the 2009 IEEE International Symposium on Parallel & Distributed 

Computing, pp. 1-8, 2009. 

• High Performance Computation and Interactive Display of Molecular 

Orbitals on GPUs and Multi-core CPUs. J. Stone, J. Saam, D. Hardy, K. 

Vandivort, W. Hwu, K. Schulten, 2nd Workshop on General-Purpose 

Computation on Graphics Pricessing Units (GPGPU-2), ACM International 

Conference Proceeding Series, volume 383, pp. 9-18, 2009. 

• Probing Biomolecular Machines with Graphics Processors.  J. Phillips, J. 

Stone.  Communications of the ACM, 52(10):34-41, 2009. 

• Multilevel summation of electrostatic potentials using graphics processing 

units. D. Hardy, J. Stone, K. Schulten. J. Parallel Computing, 35:164-177, 2009. 
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• Adapting a message-driven parallel application to GPU-accelerated clusters.         

J. Phillips, J. Stone, K. Schulten.  Proceedings of the 2008 ACM/IEEE Conference 

on Supercomputing, IEEE Press, 2008. 

• GPU acceleration of cutoff pair potentials for molecular modeling 

applications.    C. Rodrigues, D. Hardy, J. Stone, K. Schulten, and W. Hwu. 

Proceedings of the 2008 Conference On Computing Frontiers, pp. 273-282, 2008. 

• GPU computing.  J. Owens, M. Houston, D. Luebke, S. Green, J. Stone, J. 

Phillips. Proceedings of the IEEE, 96:879-899, 2008. 

• Accelerating molecular modeling applications with graphics processors. J. 

Stone, J. Phillips, P. Freddolino, D. Hardy, L. Trabuco, K. Schulten. J. Comp. 

Chem., 28:2618-2640, 2007. 

• Continuous fluorescence microphotolysis and correlation spectroscopy. A. 
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