
NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Programming in CUDA:

the Essentials, Part 1

John E. Stone

Theoretical and Computational Biophysics Group

Beckman Institute for Advanced Science and Technology

University of Illinois at Urbana-Champaign

http://www.ks.uiuc.edu/Research/gpu/

Cape Town GPU Workshop

Cape Town, South Africa, April 29, 2013

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Evolution of Graphics Hardware

Towards Programmability
• As graphics accelerators became more powerful, an

increasing fraction of the graphics processing pipeline was
implemented in hardware

• For performance reasons, this hardware was highly
optimized and task-specific

• Over time, with ongoing increases in circuit density and the
need for flexibility in lighting and texturing, graphics
pipelines gradually incorporated programmability in specific
pipeline stages

• Modern graphics accelerators are now complete processors
in their own right (thus the new term “GPU”), and are
composed of large arrays of programmable processing units

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Origins of Computing on GPUs

• Widespread support for programmable shading led

researchers to begin experimenting with the use of GPUs

for general purpose computation, “GPGPU”

• Early GPGPU efforts used existing graphics APIs to

express computation in terms of drawing

• As expected, expressing general computation problems in

terms of triangles and pixels and “drawing the answer” is

obfuscating and painful to debug…

• Soon researchers began creating dedicated GPU

programming tools, starting with Brook and Sh, and

ultimately leading to a variety of commercial tools such as

RapidMind, CUDA, OpenCL, and others...

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

GPU Computing

• Commodity devices, omnipresent in modern
computers (over a million sold per week)

• Massively parallel hardware, hundreds of
processing units, throughput oriented
architecture

• Standard integer and floating point types supported

• Programming tools allow software to be written in
dialects of familiar C/C++ and integrated into
legacy software

• GPU algorithms are often multicore friendly due to
attention paid to data locality and data-parallel
work decomposition

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Benefits of GPUs vs. Other

Parallel Computing Approaches

• Increased compute power per unit volume

• Increased FLOPS/watt power efficiency

• Desktop/laptop computers easily

incorporate GPUs, no need to teach non-

technical users how to use a remote cluster

or supercomputer

• GPU can be upgraded without new OS

license fees, low cost hardware

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

What Speedups Can GPUs Achieve?

• Single-GPU speedups of 10x to 30x vs. one
CPU core are very common

• Best speedups can reach 100x or more,
attained on codes dominated by floating
point arithmetic, especially native GPU
machine instructions, e.g. expf(), rsqrtf(), …

• Amdahl’s Law can prevent legacy codes
from achieving peak speedups with shallow
GPU acceleration efforts

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

GPU Solution: Time-Averaged Electrostatics

• Thousands of trajectory frames

• 1.5 hour job reduced to 3 min

• GPU Speedup: 25.5x

• Per-node power consumption

on NCSA GPU cluster:

– CPUs-only: 448 Watt-hours

– CPUs+GPUs: 43 Watt-hours

• Power efficiency gain: 10x

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

0.1

1

10

100

10,000 100,000 1,000,000 5,000,000
Atoms

Billion atom

pairs/sec

Intel X5550, 4-cores @ 2.66GHz

6x NVIDIA Tesla C1060 (GT200)

4x NVIDIA Tesla C2050 (Fermi)

GPU Solution: Radial Distribution Function Histogramming

• 4.7 million atoms

• 4-core Intel X5550

CPU: 15 hours

• 4 NVIDIA C2050

GPUs: 10 minutes

• Fermi GPUs ~3x faster

than GT200 GPUs:

larger on-chip shared

memory

Precipitate

Liquid

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Science 5: Quantum Chemistry Visualization

• Chemistry is the result of
atoms sharing electrons

• Electrons occupy “clouds”
in the space around atoms

• Calculations for visualizing
these “clouds” are costly:
tens to hundreds of
seconds on CPUs – non-
interactive

• GPUs enable the dynamics
of electronic structures to be
animated interactively for
the first time

VMD enables interactive display of QM simulations, e.g.
Terachem, GAMESS

Taxol: cancer drug

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

GPU Solution: Computing C60 Molecular Orbitals

Device CPUs,

GPUs

Runtime

(s)

Speedup

Intel X5550-SSE 1 30.64 1.0

Intel X5550-SSE 8 4.13 7.4

GeForce GTX 480 1 0.255 120

GeForce GTX 480 4 0.081 378

2-D CUDA grid
on one GPU

3-D orbital lattice:
millions of points

Lattice slices
computed on

multiple GPUs
GPU threads
each compute

one point.

CUDA thread
blocks

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Molecular Orbital Inner Loop, Hand-Coded x86 SSE

Hard to Read, Isn’t It? (And this is the “pretty” version!)

for (shell=0; shell < maxshell; shell++) {

 __m128 Cgto = _mm_setzero_ps();

 for (prim=0; prim<num_prim_per_shell[shell_counter]; prim++) {

 float exponent = -basis_array[prim_counter];

 float contract_coeff = basis_array[prim_counter + 1];

 __m128 expval = _mm_mul_ps(_mm_load_ps1(&exponent), dist2);

 __m128 ctmp = _mm_mul_ps(_mm_load_ps1(&contract_coeff), exp_ps(expval));

 Cgto = _mm_add_ps(contracted_gto, ctmp);

 prim_counter += 2;

 }

 __m128 tshell = _mm_setzero_ps();

 switch (shell_types[shell_counter]) {

 case S_SHELL:

 value = _mm_add_ps(value, _mm_mul_ps(_mm_load_ps1(&wave_f[ifunc++]), Cgto)); break;

 case P_SHELL:

 tshell = _mm_add_ps(tshell, _mm_mul_ps(_mm_load_ps1(&wave_f[ifunc++]), xdist));

 tshell = _mm_add_ps(tshell, _mm_mul_ps(_mm_load_ps1(&wave_f[ifunc++]), ydist));

 tshell = _mm_add_ps(tshell, _mm_mul_ps(_mm_load_ps1(&wave_f[ifunc++]), zdist));

 value = _mm_add_ps(value, _mm_mul_ps(tshell, Cgto)); break;

Writing SSE kernels for CPUs requires
assembly language, compiler intrinsics,

various libraries, or a really smart
autovectorizing compiler and lots of luck...

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

for (shell=0; shell < maxshell; shell++) {

 float contracted_gto = 0.0f;

 for (prim=0; prim<num_prim_per_shell[shell_counter]; prim++) {

 float exponent = const_basis_array[prim_counter];

 float contract_coeff = const_basis_array[prim_counter + 1];

 contracted_gto += contract_coeff * exp2f(-exponent*dist2);

 prim_counter += 2;

 }

 float tmpshell=0;

 switch (const_shell_symmetry[shell_counter]) {

 case S_SHELL:

 value += const_wave_f[ifunc++] * contracted_gto; break;

 case P_SHELL:

 tmpshell += const_wave_f[ifunc++] * xdist;

 tmpshell += const_wave_f[ifunc++] * ydist

 tmpshell += const_wave_f[ifunc++] * zdist;

 value += tmpshell * contracted_gto; break;

Molecular Orbital Inner Loop in CUDA

Aaaaahhhh….

Data-parallel CUDA kernel
looks like normal C code for

the most part….

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Peak Arithmetic Performance Trend

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Peak Memory Bandwidth Trend

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

What Runs on a GPU?

• GPUs run data-parallel programs called

“kernels”

• GPUs are managed by a host CPU thread:

– Create a CUDA context

– Allocate/deallocate GPU memory

– Copy data between host and GPU memory

– Launch GPU kernels

– Query GPU status

– Handle runtime errors

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

CUDA Stream of Execution

• Host CPU thread

launches a CUDA

“kernel”, a memory

copy, etc. on the GPU

• GPU action runs to

completion

• Host synchronizes

with completed GPU

action

CPU GPU

CPU code
running

CPU waits for
GPU, ideally doing

something
productive

CPU code
running

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Comparison of CPU and GPU

Hardware Architecture

CPU: Cache heavy,
focused on individual
thread performance

GPU: ALU heavy,
massively parallel,
throughput oriented

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

GPU: Throughput-Oriented

Hardware Architecture
• GPUs have very small on-chip caches

• Main memory latency (several hundred clock cycles!) is

tolerated through hardware multithreading – overlap

memory transfer latency with execution of other work

• When a GPU thread stalls on a memory operation, the

hardware immediately switches context to a ready thread

• Effective latency hiding requires saturating the GPU with

lots of work – tens of thousands of independent work

items

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

GPU Memory Systems
• GPU arithmetic rates dwarf memory bandwidth

• For Kepler K20 hardware:

– ~2 TFLOPS vs. ~250 GB/sec

– The ratio is roughly 40 FLOPS per memory

reference for single-precision floating point

• GPUs include multiple fast on-chip memories to

help narrow the gap:

– Registers

– Constant memory (64KB)

– Shared memory (48KB / 16KB)

– Read-only data cache / Texture cache (48KB)

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

GPUs Require ~20,000 Independent Threads

for Full Utilization, Latency Hidding

GPU

underutilized

GPU fully utilized,

~40x faster than CPU

Accelerating molecular modeling applications with graphics processors.

J. Stone, J. Phillips, P. Freddolino, D. Hardy, L. Trabuco, K. Schulten.

J. Comp. Chem., 28:2618-2640, 2007.

Lower

is better

Host thread

 GPU Cold Start:

context init,

device binding,

kernel PTX JIT:

~110ms

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

Instruction Fetch/Dispatch

Instruction L1 Data L1

Texture Processor

 Cluster

SM Shared Memory

Streaming Processor Array

Streaming Multiprocessor

T
e

x
tu

re
 U

n
it

Streaming

Processor

ADD, SUB

MAD, Etc…

 Special

Function Unit

SIN, EXP,

RSQRT, Etc…

TPC TPC TPC TPC TPC TPC TPC TPC TPC TPC

SM

SM

Constant Cache

R
e

a
d

-o
n

ly
,

8
k

B
 s

p
a

ti
a

l
c

a
c

h
e

,

1
/2

/3
-D

 i
n

te
rp

o
la

ti
o

n

64kB, read-only

FP64 Unit

FP64 Unit (double precision)

NVIDIA
GT200

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Graphics Processor

 Cluster

NVIDIA Fermi GPU Streaming Multiprocessor

GPC GPC GPC GPC

768KB

Level 2

Cache SP SP

SP

SP

SP SP

SP

SP

SP SP

SP

SP

SP SP

SP

SP

SP SP

SP

SP

SP SP

SP

SP

SP SP

SP

SP

SP SP

SP

SP

SFU

SFU

SFU

SFU

SM

LDST LDST

LDST LDST

LDST LDST

LDST LDST

LDST LDST

LDST LDST

LDST LDST

LDST LDST

SM

SM SM

Tex Tex Tex Tex

Texture Cache

64 KB L1 Cache / Shared Memory

~3-6 GB DRAM Memory w/ ECC 64KB Constant Cache

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

NVIDIA Kepler GPU Streaming Multiprocessor - SMX

GPC GPC GPC GPC

1536KB

Level 2

Cache

SMX SMX

Tex Unit

48 KB Tex + Read-only Data Cache

64 KB L1 Cache / Shared Memory

~3-6 GB DRAM Memory w/ ECC 64 KB Constant Cache

SP SP SP DP
SFU LDST

SP SP SP DP

16 × Execution block =

 192 SP, 64 DP,

32 SFU, 32 LDST

SP SP SP DP
SFU LDST

SP SP SP DP

 Graphics Processor

 Cluster

GPC GPC GPC GPC

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Acknowledgements

• Theoretical and Computational Biophysics

Group, University of Illinois at Urbana-

Champaign

• NCSA Blue Waters Team

• NCSA Innovative Systems Lab

• NVIDIA CUDA Center of Excellence,

University of Illinois at Urbana-Champaign

• The CUDA team at NVIDIA

• NIH support: P41-RR005969

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

GPU Computing Publications
http://www.ks.uiuc.edu/Research/gpu/

• Lattice Microbes: High‐performance stochastic simulation method
for the reaction‐diffusion master equation.
E. Roberts, J. E. Stone, and Z. Luthey‐Schulten.
J. Computational Chemistry 34 (3), 245-255, 2013.

• Fast Visualization of Gaussian Density Surfaces for Molecular
Dynamics and Particle System Trajectories. M. Krone, J. E. Stone,
T. Ertl, and K. Schulten. EuroVis Short Papers, pp. 67-71, 2012.

• Immersive Out-of-Core Visualization of Large-Size and Long-
Timescale Molecular Dynamics Trajectories. J. Stone, K. Vandivort,
and K. Schulten. G. Bebis et al. (Eds.): 7th International Symposium on
Visual Computing (ISVC 2011), LNCS 6939, pp. 1-12, 2011.

• Fast Analysis of Molecular Dynamics Trajectories with Graphics
Processing Units – Radial Distribution Functions. B. Levine, J.
Stone, and A. Kohlmeyer. J. Comp. Physics, 230(9):3556-3569, 2011.

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

GPU Computing Publications
http://www.ks.uiuc.edu/Research/gpu/

• Quantifying the Impact of GPUs on Performance and Energy Efficiency in

HPC Clusters. J. Enos, C. Steffen, J. Fullop, M. Showerman, G. Shi, K. Esler, V.

Kindratenko, J. Stone, J Phillips. International Conference on Green Computing,

pp. 317-324, 2010.

• GPU-accelerated molecular modeling coming of age. J. Stone, D. Hardy, I.

Ufimtsev, K. Schulten. J. Molecular Graphics and Modeling, 29:116-125, 2010.

• OpenCL: A Parallel Programming Standard for Heterogeneous Computing.

J. Stone, D. Gohara, G. Shi. Computing in Science and Engineering, 12(3):66-

73, 2010.

• An Asymmetric Distributed Shared Memory Model for Heterogeneous

Computing Systems. I. Gelado, J. Stone, J. Cabezas, S. Patel, N. Navarro, W.

Hwu. ASPLOS ’10: Proceedings of the 15th International Conference on

Architectural Support for Programming Languages and Operating Systems, pp.

347-358, 2010.

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

GPU Computing Publications
http://www.ks.uiuc.edu/Research/gpu/

• GPU Clusters for High Performance Computing. V. Kindratenko, J. Enos, G.

Shi, M. Showerman, G. Arnold, J. Stone, J. Phillips, W. Hwu. Workshop on

Parallel Programming on Accelerator Clusters (PPAC), In Proceedings IEEE

Cluster 2009, pp. 1-8, Aug. 2009.

• Long time-scale simulations of in vivo diffusion using GPU hardware.

E. Roberts, J. Stone, L. Sepulveda, W. Hwu, Z. Luthey-Schulten. In IPDPS’09:

Proceedings of the 2009 IEEE International Symposium on Parallel & Distributed

Computing, pp. 1-8, 2009.

• High Performance Computation and Interactive Display of Molecular

Orbitals on GPUs and Multi-core CPUs. J. Stone, J. Saam, D. Hardy, K.

Vandivort, W. Hwu, K. Schulten, 2nd Workshop on General-Purpose

Computation on Graphics Pricessing Units (GPGPU-2), ACM International

Conference Proceeding Series, volume 383, pp. 9-18, 2009.

• Probing Biomolecular Machines with Graphics Processors. J. Phillips, J.

Stone. Communications of the ACM, 52(10):34-41, 2009.

• Multilevel summation of electrostatic potentials using graphics processing

units. D. Hardy, J. Stone, K. Schulten. J. Parallel Computing, 35:164-177, 2009.

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

GPU Computing Publications
http://www.ks.uiuc.edu/Research/gpu/

• Adapting a message-driven parallel application to GPU-accelerated clusters.

J. Phillips, J. Stone, K. Schulten. Proceedings of the 2008 ACM/IEEE Conference

on Supercomputing, IEEE Press, 2008.

• GPU acceleration of cutoff pair potentials for molecular modeling

applications. C. Rodrigues, D. Hardy, J. Stone, K. Schulten, and W. Hwu.

Proceedings of the 2008 Conference On Computing Frontiers, pp. 273-282, 2008.

• GPU computing. J. Owens, M. Houston, D. Luebke, S. Green, J. Stone, J.

Phillips. Proceedings of the IEEE, 96:879-899, 2008.

• Accelerating molecular modeling applications with graphics processors. J.

Stone, J. Phillips, P. Freddolino, D. Hardy, L. Trabuco, K. Schulten. J. Comp.

Chem., 28:2618-2640, 2007.

• Continuous fluorescence microphotolysis and correlation spectroscopy. A.

Arkhipov, J. Hüve, M. Kahms, R. Peters, K. Schulten. Biophysical Journal,

93:4006-4017, 2007.

