Programming in CUDA: the Essentials, Part 1

John E. Stone

Theoretical and Computational Biophysics Group Beckman Institute for Advanced Science and Technology University of Illinois at Urbana-Champaign http://www.ks.uiuc.edu/Research/gpu/ Cape Town GPU Workshop Cape Town, South Africa, April 29, 2013

Evolution of Graphics Hardware Towards Programmability

- As graphics accelerators became more powerful, an increasing fraction of the graphics processing pipeline was implemented in hardware
- For performance reasons, this hardware was highly optimized and task-specific
- Over time, with ongoing increases in circuit density and the need for flexibility in lighting and texturing, graphics pipelines gradually incorporated programmability in specific pipeline stages
- Modern graphics accelerators are now complete processors in their own right (thus the new term "GPU"), and are composed of large arrays of programmable processing units

Origins of Computing on GPUs

- Widespread support for programmable shading led researchers to begin experimenting with the use of GPUs for general purpose computation, "GPGPU"
- Early GPGPU efforts used existing graphics APIs to express computation in terms of drawing
- As expected, expressing general computation problems in terms of triangles and pixels and "drawing the answer" is obfuscating and painful to debug...
- Soon researchers began creating dedicated GPU programming tools, starting with Brook and Sh, and ultimately leading to a variety of commercial tools such as RapidMind, CUDA, OpenCL, and others...

GPU Computing

- Commodity devices, omnipresent in modern computers (over a **million** sold per **week**)
- Massively parallel hardware, hundreds of processing units, **throughput oriented architecture**
- Standard integer and floating point types supported
- Programming tools allow software to be written in dialects of familiar C/C++ and integrated into legacy software
- GPU algorithms are often multicore friendly due to attention paid to **data locality** and **data-parallel work decomposition**

Benefits of GPUs vs. Other Parallel Computing Approaches

- Increased compute power per unit volume
- Increased FLOPS/watt power efficiency
- Desktop/laptop computers easily incorporate GPUs, no need to teach nontechnical users how to use a remote cluster or supercomputer
- GPU can be upgraded without new OS license fees, low cost hardware

What Speedups Can GPUs Achieve?

- Single-GPU speedups of **10x** to **30x** vs. one CPU core are very common
- Best speedups can reach **100x** or more, attained on codes dominated by floating point arithmetic, especially native GPU machine instructions, e.g. expf(), rsqrtf(), ...
- Amdahl's Law can prevent legacy codes from achieving peak speedups with shallow GPU acceleration efforts

GPU Solution: Time-Averaged Electrostatics

- Thousands of trajectory frames
- 1.5 hour job reduced to 3 min
- GPU Speedup: 25.5x
- Per-node power consumption on NCSA GPU cluster:
 - CPUs-only: 448 Watt-hours
 - CPUs+GPUs: 43 Watt-hours
- Power efficiency gain: 10x

GPU Solution: Radial Distribution Function Histogramming

- 4.7 million atoms
- 4-core Intel X5550
 CPU: 15 hours
- 4 NVIDIA C2050 GPUs: **10 minutes**
- Fermi GPUs ~3x faster than GT200 GPUs: larger on-chip shared memory

6

r/A

8

10

6

2

0

(1)_{d-q}g

Science 5: Quantum Chemistry Visualization

- Chemistry is the result of atoms sharing electrons
- Electrons occupy "clouds" in the space around atoms
- Calculations for visualizing these "clouds" are costly: tens to hundreds of seconds on CPUs – noninteractive
- GPUs enable the dynamics of electronic structures to be animated **interactively** for the first time

VMD enables interactive display of QM simulations, e.g. Terachem, GAMESS

Beckman Institute, U. Illinois at Urbana-Champaign

GPU Solution: Computing C₆₀ Molecular Orbitals

Molecular Orbital Inner Loop, Hand-Coded x86 SSE Hard to Read, Isn't It? (And this is the "pretty" version!)

for (shell=0; shell < maxshell; shell++) {</pre>

 $_m128 Cgto = _mm_setzero_ps();$

for (prim=0; prim<num_prim_per_shell[shell_counter]; prim++) {</pre>

float exponent = -basis_array[prim_counter];

float contract_coeff = basis_array[prim_counter + 1];

__m128 expval = _mm_mul_ps(_mm_load_ps1(&exponent), dist2);

__m128 ctmp = _mm_mul_ps(_mm_load_ps1(&contract_coeff), exp_ps(expval));

Cgto = _mm_add_ps(contracted_gto, ctmp);

prim_counter += 2;

}

__m128 tshell = _mm_setzero_ps();
switch (shell_types[shell_counter]) {
 case S_SHELL:

Writing SSE kernels for CPUs requires assembly language, compiler intrinsics, various libraries, or a really smart autovectorizing compiler **and lots of luck...**

value = _mm_add_ps(value, _mm_mul_ps(_mm_load_ps1(&wave_f[ifunc++]), Cgto)); break; case P_SHELL:

tshell = _mm_add_ps(tshell, _mm_mul_ps(_mm_load_ps1(&wave_f[ifunc++]), xdist)); tshell = _mm_add_ps(tshell, _mm_mul_ps(_mm_load_ps1(&wave_f[ifunc++]), ydist)); tshell = _mm_add_ps(tshell, _mm_mul_ps(_mm_load_ps1(&wave_f[ifunc++]), zdist)); value = _mm_add_ps(value, _mm_mul_ps(tshell, Cgto)); break;

Molecular Orbital Inner Loop in CUDA

```
for (shell=0; shell < maxshell; shell++) {</pre>
```

```
float contracted_gto = 0.0f;
```

for (prim=0; prim<num_prim_per_shell[shell_counter]; prim++) {</pre>

float exponent = const_basis_array[prim_counter];

float contract_coeff = const_basis_array[prim_counter + 1];

contracted_gto += contract_coeff * exp2f(-exponent*dist2);

prim_counter += 2;

float tmpshell=0;

```
switch (const_shell_symmetry[shell_counter]) {
  case S_SHELL:
```

```
value += const_wave_f[ifunc++] * contracted_gto; break;
```

```
case P_SHELL:
```

```
tmpshell += const_wave_f[ifunc++] * xdist;
```

```
tmpshell += const_wave_f[ifunc++] * ydist
```

```
tmpshell += const_wave_f[ifunc++] * zdist;
```

value += tmpshell * contracted_gto; break;

Aaaaahhhh....

Data-parallel CUDA kernel looks like normal C code for the most part....

Theoretical GB/s

Peak Memory Bandwidth Trend

What Runs on a GPU?

- GPUs run data-parallel programs called "kernels"
- GPUs are managed by a host CPU thread:
 - Create a CUDA context
 - Allocate/deallocate GPU memory
 - Copy data between host and GPU memory
 - Launch GPU kernels
 - Query GPU status
 - Handle runtime errors

CUDA Stream of Execution

- Host CPU thread launches a CUDA "kernel", a memory copy, etc. on the GPU
- GPU action runs to completion
- Host synchronizes with completed GPU action

Comparison of CPU and GPU Hardware Architecture

CPU: Cache heavy, focused on individual thread performance

Control	ALU	ALU
	ALU	ALU
Cache		
DRAM		

GPU: ALU heavy, massively parallel, throughput oriented

GPU: Throughput-Oriented Hardware Architecture

- GPUs have very small on-chip caches
- Main memory latency (several hundred clock cycles!) is tolerated through hardware multithreading – **overlap memory transfer latency with execution of other work**
- When a GPU thread stalls on a memory operation, the hardware immediately switches context to a ready thread
- Effective latency hiding requires saturating the GPU with lots of work tens of thousands of independent work items

GPU Memory Systems

- GPU arithmetic rates dwarf memory bandwidth
- For Kepler K20 hardware:
 - ~2 TFLOPS vs. ~250 GB/sec
 - The ratio is roughly 40 FLOPS per memory reference for single-precision floating point
- GPUs include multiple fast on-chip memories to help **narrow the gap**:
 - Registers
 - Constant memory (64KB)
 - Shared memory (48KB / 16KB)
 - Read-only data cache / Texture cache (48KB)

GPUs Require ~20,000 Independent Threads for Full Utilization, Latency Hidding

Accelerating molecular modeling applications with graphics processors. J. Stone, J. Phillips, P. Freddolino, D. Hardy, L. Trabuco, K. Schulten. *J. Comp. Chem.*, 28:2618-2640, 2007.

Streaming Multiprocessor

64KB Constant Cache

64 KB L1 Cache / Shared Memory

Streaming Multiprocessor - SMX

64 KB Constant Cache

64 KB L1 Cache / Shared Memory

48 KB Tex + Read-only Data Cache

16 × Execution block = 192 SP, 64 DP, 32 SFU, 32 LDST

Acknowledgements

- Theoretical and Computational Biophysics Group, University of Illinois at Urbana-Champaign
- NCSA Blue Waters Team
- NCSA Innovative Systems Lab
- NVIDIA CUDA Center of Excellence, University of Illinois at Urbana-Champaign
- The CUDA team at NVIDIA
- NIH support: P41-RR005969

- Lattice Microbes: High-performance stochastic simulation method for the reaction-diffusion master equation.
 E. Roberts, J. E. Stone, and Z. Luthey-Schulten.
 J. Computational Chemistry 34 (3), 245-255, 2013.
- Fast Visualization of Gaussian Density Surfaces for Molecular Dynamics and Particle System Trajectories. M. Krone, J. E. Stone, T. Ertl, and K. Schulten. *EuroVis Short Papers*, pp. 67-71, 2012.
- Immersive Out-of-Core Visualization of Large-Size and Long-Timescale Molecular Dynamics Trajectories. J. Stone, K. Vandivort, and K. Schulten. G. Bebis et al. (Eds.): *7th International Symposium on Visual Computing (ISVC 2011)*, LNCS 6939, pp. 1-12, 2011.
- Fast Analysis of Molecular Dynamics Trajectories with Graphics Processing Units – Radial Distribution Functions. B. Levine, J. Stone, and A. Kohlmeyer. J. Comp. Physics, 230(9):3556-3569, 2011.

- Quantifying the Impact of GPUs on Performance and Energy Efficiency in HPC Clusters. J. Enos, C. Steffen, J. Fullop, M. Showerman, G. Shi, K. Esler, V. Kindratenko, J. Stone, J Phillips. *International Conference on Green Computing*, pp. 317-324, 2010.
- GPU-accelerated molecular modeling coming of age. J. Stone, D. Hardy, I. Ufimtsev, K. Schulten. J. Molecular Graphics and Modeling, 29:116-125, 2010.
- OpenCL: A Parallel Programming Standard for Heterogeneous Computing. J. Stone, D. Gohara, G. Shi. *Computing in Science and Engineering*, 12(3):66-73, 2010.
- An Asymmetric Distributed Shared Memory Model for Heterogeneous Computing Systems. I. Gelado, J. Stone, J. Cabezas, S. Patel, N. Navarro, W. Hwu. ASPLOS '10: Proceedings of the 15th International Conference on Architectural Support for Programming Languages and Operating Systems, pp. 347-358, 2010.

- GPU Clusters for High Performance Computing. V. Kindratenko, J. Enos, G. Shi, M. Showerman, G. Arnold, J. Stone, J. Phillips, W. Hwu. *Workshop on Parallel Programming on Accelerator Clusters (PPAC),* In Proceedings IEEE Cluster 2009, pp. 1-8, Aug. 2009.
- Long time-scale simulations of in vivo diffusion using GPU hardware.
 E. Roberts, J. Stone, L. Sepulveda, W. Hwu, Z. Luthey-Schulten. In *IPDPS'09: Proceedings of the 2009 IEEE International Symposium on Parallel & Distributed Computing*, pp. 1-8, 2009.
- High Performance Computation and Interactive Display of Molecular Orbitals on GPUs and Multi-core CPUs. J. Stone, J. Saam, D. Hardy, K. Vandivort, W. Hwu, K. Schulten, 2nd Workshop on General-Purpose Computation on Graphics Pricessing Units (GPGPU-2), ACM International Conference Proceeding Series, volume 383, pp. 9-18, 2009.
- **Probing Biomolecular Machines with Graphics Processors**. J. Phillips, J. Stone. *Communications of the ACM*, 52(10):34-41, 2009.
- Multilevel summation of electrostatic potentials using graphics processing units. D. Hardy, J. Stone, K. Schulten. *J. Parallel Computing*, 35:164-177, 2009.

- Adapting a message-driven parallel application to GPU-accelerated clusters. J. Phillips, J. Stone, K. Schulten. *Proceedings of the 2008 ACM/IEEE Conference on Supercomputing*, IEEE Press, 2008.
- GPU acceleration of cutoff pair potentials for molecular modeling applications. C. Rodrigues, D. Hardy, J. Stone, K. Schulten, and W. Hwu. *Proceedings of the 2008 Conference On Computing Frontiers*, pp. 273-282, 2008.
- **GPU computing**. J. Owens, M. Houston, D. Luebke, S. Green, J. Stone, J. Phillips. *Proceedings of the IEEE*, 96:879-899, 2008.
- Accelerating molecular modeling applications with graphics processors. J. Stone, J. Phillips, P. Freddolino, D. Hardy, L. Trabuco, K. Schulten. *J. Comp. Chem.*, 28:2618-2640, 2007.
- Continuous fluorescence microphotolysis and correlation spectroscopy. A. Arkhipov, J. Hüve, M. Kahms, R. Peters, K. Schulten. *Biophysical Journal*, 93:4006-4017, 2007.

