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Evolution of Graphics Hardware 

Towards Programmability 
• As graphics accelerators became more powerful, an 

increasing fraction of the graphics processing pipeline was 
implemented in hardware 

• For performance reasons, this hardware was highly 
optimized and task-specific 

• Over time, with ongoing increases in circuit density and the 
need for flexibility in lighting and texturing, graphics 
pipelines gradually incorporated programmability in specific 
pipeline stages 

• Modern graphics accelerators are now complete processors 
in their own right (thus the new term “GPU”), and are 
composed of large arrays of programmable processing units 
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Origins of Computing on GPUs 

• Widespread support for programmable shading led 

researchers to begin experimenting with the use of GPUs 

for general purpose computation, “GPGPU” 

• Early GPGPU efforts used existing graphics APIs to 

express computation in terms of drawing 

• As expected, expressing general computation problems in 

terms of triangles and pixels and “drawing the answer” is 

obfuscating and painful to debug… 

• Soon researchers began creating dedicated GPU 

programming tools, starting with Brook and Sh, and 

ultimately leading to a variety of commercial tools such as 

RapidMind, CUDA, OpenCL, and others... 
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GPU Computing 

• Commodity devices, omnipresent in modern 
computers (over a million sold per week) 

• Massively parallel hardware, hundreds of 
processing units, throughput oriented 
architecture 

• Standard integer and floating point types supported 

• Programming tools allow software to be written in 
dialects of familiar C/C++ and integrated into 
legacy software 

• GPU algorithms are often multicore friendly due to 
attention paid to data locality and data-parallel 
work decomposition 
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Benefits of GPUs vs. Other 

Parallel Computing Approaches 

• Increased compute power per unit volume 

• Increased FLOPS/watt power efficiency 

• Desktop/laptop computers easily 

incorporate GPUs, no need to teach non-

technical users how to use a remote cluster 

or supercomputer 

• GPU can be upgraded without new OS 

license fees, low cost hardware 
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What Speedups Can GPUs Achieve? 

• Single-GPU speedups of 10x to 30x vs. one 
CPU core are very common 

• Best speedups can reach 100x or more, 
attained on codes dominated by  floating 
point arithmetic, especially native GPU 
machine instructions, e.g. expf(), rsqrtf(), … 

• Amdahl’s Law can prevent legacy codes 
from achieving peak speedups with shallow 
GPU acceleration efforts 
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GPU Solution: Time-Averaged Electrostatics 

• Thousands of trajectory frames 

• 1.5 hour job reduced to 3 min 

• GPU Speedup: 25.5x 

• Per-node power consumption 

on NCSA GPU cluster: 

– CPUs-only:  448 Watt-hours 

– CPUs+GPUs: 43 Watt-hours 

• Power efficiency gain: 10x 
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GPU Solution: Radial Distribution Function Histogramming 

• 4.7 million atoms 

• 4-core Intel X5550 

CPU: 15 hours  

• 4 NVIDIA C2050 

GPUs: 10 minutes  

• Fermi GPUs ~3x faster 

than GT200 GPUs: 

larger on-chip shared 

memory 

Precipitate 

Liquid 
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Science 5: Quantum Chemistry Visualization  

• Chemistry is the result of 
atoms sharing electrons 

• Electrons occupy “clouds” 
in the space around atoms 

• Calculations for visualizing 
these “clouds” are costly:  
tens to hundreds of 
seconds on CPUs – non-
interactive 

• GPUs enable the dynamics 
of electronic structures to be 
animated interactively for 
the first time 

VMD enables interactive display of QM simulations, e.g. 
Terachem, GAMESS 

Taxol: cancer drug 
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GPU Solution: Computing C60 Molecular Orbitals 

Device CPUs,  

GPUs 

Runtime 

(s) 

Speedup 

Intel X5550-SSE 1 30.64 1.0 

Intel X5550-SSE 8 4.13 7.4 

GeForce GTX 480 1 0.255 120 

GeForce GTX 480 4 0.081 378 

2-D CUDA grid 
on one GPU 

              

3-D orbital lattice: 
millions of points 

              

Lattice slices 
computed on 

multiple GPUs 
GPU threads 
each compute 

one point. 

CUDA thread 
blocks 
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Molecular Orbital Inner Loop, Hand-Coded x86 SSE 

Hard to Read, Isn’t It?  (And this is the “pretty” version!) 

for (shell=0; shell < maxshell; shell++) { 

    __m128 Cgto = _mm_setzero_ps(); 

    for (prim=0; prim<num_prim_per_shell[shell_counter]; prim++) { 

        float exponent         = -basis_array[prim_counter      ]; 

        float contract_coeff =  basis_array[prim_counter + 1]; 

        __m128 expval = _mm_mul_ps(_mm_load_ps1(&exponent), dist2); 

        __m128 ctmp = _mm_mul_ps(_mm_load_ps1(&contract_coeff), exp_ps(expval)); 

        Cgto = _mm_add_ps(contracted_gto, ctmp); 

        prim_counter += 2; 

    } 

    __m128 tshell = _mm_setzero_ps(); 

    switch (shell_types[shell_counter]) { 

        case S_SHELL: 

            value = _mm_add_ps(value, _mm_mul_ps(_mm_load_ps1(&wave_f[ifunc++]), Cgto));    break; 

        case P_SHELL: 

            tshell = _mm_add_ps(tshell, _mm_mul_ps(_mm_load_ps1(&wave_f[ifunc++]), xdist)); 

            tshell = _mm_add_ps(tshell, _mm_mul_ps(_mm_load_ps1(&wave_f[ifunc++]), ydist)); 

            tshell = _mm_add_ps(tshell, _mm_mul_ps(_mm_load_ps1(&wave_f[ifunc++]), zdist)); 

            value = _mm_add_ps(value, _mm_mul_ps(tshell, Cgto));       break; 

Writing SSE kernels for CPUs requires 
assembly language, compiler intrinsics, 

various libraries, or a really smart 
autovectorizing compiler and lots of luck... 
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for (shell=0; shell < maxshell; shell++) { 

      float contracted_gto = 0.0f; 

      for (prim=0; prim<num_prim_per_shell[shell_counter]; prim++) {  

        float exponent          = const_basis_array[prim_counter     ]; 

        float contract_coeff = const_basis_array[prim_counter + 1]; 

        contracted_gto += contract_coeff * exp2f(-exponent*dist2); 

        prim_counter += 2; 

      } 

      float tmpshell=0; 

      switch (const_shell_symmetry[shell_counter]) { 

        case S_SHELL: 

          value += const_wave_f[ifunc++] * contracted_gto;    break; 

        case P_SHELL: 

          tmpshell += const_wave_f[ifunc++] * xdist; 

          tmpshell += const_wave_f[ifunc++] * ydist 

          tmpshell += const_wave_f[ifunc++] * zdist; 

          value += tmpshell * contracted_gto;   break; 

Molecular Orbital Inner Loop in CUDA 
 

Aaaaahhhh…. 

Data-parallel CUDA kernel 
looks like normal C code for 

the most part…. 
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Peak Arithmetic Performance Trend 
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Peak Memory Bandwidth Trend 
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What Runs on a GPU? 

• GPUs run data-parallel programs called 

“kernels” 

• GPUs are managed by a host CPU thread: 

– Create a CUDA context 

– Allocate/deallocate GPU memory 

– Copy data between host and GPU memory 

– Launch GPU kernels 

– Query GPU status 

– Handle runtime errors 
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CUDA Stream of Execution 

• Host CPU thread 

launches a CUDA 

“kernel”, a memory 

copy, etc. on the GPU 

• GPU action runs to 

completion 

• Host synchronizes 

with completed GPU 

action 

CPU GPU 

CPU code 
running 

CPU waits for 
GPU, ideally doing 

something 
productive 

CPU code 
running 
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Comparison of CPU and GPU           

Hardware Architecture 

CPU: Cache heavy, 
focused on individual 
thread performance  

GPU: ALU heavy, 
massively parallel, 
throughput oriented 
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GPU: Throughput-Oriented 

Hardware Architecture 
• GPUs have very small on-chip caches 

• Main memory latency (several hundred clock cycles!) is 

tolerated through hardware multithreading – overlap 

memory transfer latency with execution of other work 

• When a GPU thread stalls on a memory operation, the 

hardware immediately switches context to a ready thread 

• Effective latency hiding requires saturating the GPU with 

lots of work – tens of thousands of independent work 

items 
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GPU Memory Systems 
• GPU arithmetic rates dwarf memory bandwidth 

• For Kepler K20 hardware: 

– ~2 TFLOPS vs. ~250 GB/sec 

– The ratio is roughly 40 FLOPS per memory 

reference for single-precision floating point 

• GPUs include multiple fast on-chip memories to 

help narrow the gap: 

– Registers 

– Constant memory (64KB) 

– Shared memory (48KB / 16KB) 

– Read-only data cache / Texture cache (48KB) 
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GPUs Require ~20,000 Independent Threads 

for Full Utilization, Latency Hidding 

GPU 

underutilized 

GPU fully utilized, 

~40x faster than CPU 

Accelerating molecular modeling applications with graphics processors. 

J. Stone, J. Phillips, P. Freddolino, D. Hardy, L. Trabuco, K. Schulten.   

J. Comp. Chem., 28:2618-2640, 2007. 

Lower  

is better 

Host thread 

 GPU Cold Start: 

context init, 

device binding, 

kernel PTX JIT: 

~110ms  
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Graphics Processor 

         Cluster 

NVIDIA Fermi GPU Streaming Multiprocessor 
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64 KB L1 Cache / Shared Memory 

~3-6 GB DRAM Memory w/ ECC 64KB Constant Cache 
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NVIDIA Kepler GPU Streaming Multiprocessor - SMX 

GPC GPC GPC GPC 

1536KB 

Level 2 

Cache 

SMX SMX 

Tex Unit 

48 KB  Tex + Read-only Data Cache 

64 KB L1 Cache / Shared Memory 

~3-6 GB DRAM Memory w/ ECC 64 KB Constant Cache 

SP SP SP DP 
SFU LDST 

SP SP SP DP 

16 × Execution block = 

 192 SP, 64 DP,  

32 SFU, 32 LDST 

SP SP SP DP 
SFU LDST 

SP SP SP DP 

 Graphics Processor 

         Cluster 

GPC GPC GPC GPC 
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