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Evolution of Graphics Hardware 
Towards Programmability

• As graphics accelerators became more powerful, an 
increasing fraction of the graphics processing pipeline was 
implemented in hardware

• For performance reasons, this hardware was highly 
optimized and task-specific

• Over time, with ongoing increases in circuit density and 
the need for flexibility in lighting and texturing, graphics 
pipelines gradually incorporated programmability in 
specific pipeline stages

• Modern graphics accelerators are now processors in their 
own right (thus the new term “GPU”), and are composed 
primarily of large arrays of programmable processing units
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Programmable Graphics Hardware
Groundbreaking research systems:

AT&T Pixel Machine (1989): 
82 x DSP32 processors

UNC PixelFlow (1992-98): 
64 x (PA-8000 + 

8,192 bit-serial SIMD)
SGI RealityEngine (1990s):

Up to 12 i860-XP processors perform 
vertex operations (ucode), fixed-
func. fragment hardware

All mainstream GPUs now incorporate 
programmable processors

Reality Engine Vertex Processors

UNC PixelFlow Rack
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Benefits of Programmable Shading

• Potential for superior 
image quality with 
better shading 
algorithms

• Direct rendering of:
– Quadric surfaces
– Volumetric data

• Offload work from 
host CPU to GPU

Fixed-Function 
OpenGL

Programmable Shading: 
-same tessellation

-better shading
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Ray Traced Sphere Rendering with Programmable Shading
• Fixed-function OpenGL requires 

curved surfaces to be tessellated with 
triangles, lines, or points

• Fine tessellation required for good 
results with Gouraud shading; 
performance suffers

• Static tessellations look bad when 
viewer zooms in

• Programmable shading solution: 
– Ray trace spheres in fragment shader 
– GPU does all the work
– Spheres look good at all zoom levels
– Rendering time is proportional to 

pixel area covered by sphere
– Overdraw is a bigger penalty than 

for triangulated spheres

Fixed-Function OpenGL:
512 triangles per sphere

Programmable Shading:
12 triangle bounding box,
or 1 viewer-directed quad
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Sphere Fragment Shader

• Written in OpenGL 
Shading Language

• High-level C-like language 
with vector types and 
operations

• Compiled dynamically by 
the graphics driver at 
runtime

• Compiled machine code 
executes on GPU
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Use of GPUs For Computation
• Widespread support for programmable shading led 

researchers to begin experimenting with the use of GPUs 
for general purpose computation, “GPGPU”

• Early GPGPU efforts used existing graphics APIs to 
express computation in terms of drawing

• As one would expect, expressing general computation 
problems in terms of triangles and pixels and “drawing the 
answer” is obfuscating and painful to debug to say the 
least…

• Soon researchers began creating dedicated GPU 
programming tools, starting with Brook and Sh, and 
ultimately leading to a variety of commercial tools such as 
CUDA
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GPU Computing
• Commodity devices, omnipresent in modern computers

• Massively parallel hardware, hundreds of processing units, 
throughput oriented design

• Support all standard integer and floating point types 

• Programming tools allow software to be written in dialects 
of familiar C/C++ and integrated into legacy software

• GPU algorithms are often multicore-friendly due to 
attention paid to data locality and work decomposition, and 
can be successfully executed on multi-core CPUs as well, 
using special runtime systems (e.g. MCUDA)
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What Speedups Can GPUs Achieve?
• Single-GPU speedups of 8x to 30x vs. CPU core 

are quite common

• Best speedups (100x!) are attained on codes that 
are skewed towards floating point arithmetic, esp. 
CPU-unfriendly operations that prevent effective 
use of SSE or other vectorization

• Amdahl’s Law can prevent legacy codes from 
achieving peak speedups with only shallow GPU 
acceleration efforts
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Peak Single-precision Arithmetic 
Performance Trend
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Peak Memory Bandwidth Trend
GT200
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Comparison of CPU and GPU           
Hardware Architecture
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Computational Biology’s Insatiable 
Demand for Processing Power

• Simulations still fall short of 
biological timescales

• Large simulations extremely 
difficult to prepare, analyze

• Order of magnitude increase in 
performance would allow use of 
more sophisticated models
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Calculating Electrostatic Potential Maps
• Used in molecular 

structure building, 
analysis, visualization, 
simulation

• Electrostatic potentials 
evaluated on a uniformly 
spaced 3-D lattice

• Each lattice point contains 
sum of electrostatic 
contributions of all atoms
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Direct Coulomb Summation
• At each lattice point, sum potential 

contributions for all atoms in the simulated 
structure: 

potential[j] +=  charge[i] / Rij

Atom[i]

Rij: distance 
from lattice[j] 

to Atom[i]
Lattice point j 

being evaluated
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Single Slice DCS: Simple (Slow) C Version
void cenergy(float *energygrid, dim3 grid, float gridspacing, float z, const float *atoms, int numatoms) {

int i,j,n;
int atomarrdim = numatoms * 4;
for (j=0; j<grid.y; j++) {

float y = gridspacing * (float) j;
for (i=0; i<grid.x; i++) {
float x = gridspacing * (float) i;
float energy = 0.0f;
for (n=0; n<atomarrdim; n+=4) {     // calculate potential contribution of each atom
float dx = x - atoms[n    ];
float dy = y - atoms[n+1];
float dz = z - atoms[n+2];
energy += atoms[n+3] / sqrtf(dx*dx + dy*dy + dz*dz);

}
energygrid[grid.x*grid.y*k + grid.x*j + i] = energy;

}
}

}
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Direct Coulomb Summation on the GPU

• GPU outruns a CPU core by 44x
• Work is decomposed into tens of thousands of 

independent threads, multiplexed onto hundreds of 
GPU processing units

• Single-precision FP arithmetic is adequate for intended 
application

• Numerical accuracy can be further improved  by 
compensated summation, spatially ordered summation 
groupings, or accumulation of potential in double-
precision

• Starting point for more sophisticated algorithms
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DCS CUDA Block/Grid Decomposition 
(non-unrolled)

Grid of thread blocks:

Padding waste

0,0 0,1

1,0 1,1

…

…

… … …

Thread blocks: 
64-256 threads

Threads compute
1 potential each
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• Reuse atom data and partial distance components 
multiple times

• Add each atom’s contribution to several lattice points at 
a time, where distances only differ in one component

DCS CUDA Algorithm: Unrolling Loops

Atom[i]

Distances to 
Atom[i]
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DCS Inner Loop (Unroll and Jam)
…
for (atomid=0; atomid<numatoms; atomid++) {
float dy = coory - atominfo[atomid].y;
float dysqpdzsq = (dy * dy) + atominfo[atomid].z;
float dx1 = coorx1 - atominfo[atomid].x;
float dx2 = coorx2 - atominfo[atomid].x;
float dx3 = coorx3 - atominfo[atomid].x;
float dx4 = coorx4 - atominfo[atomid].x;
energyvalx1 += atominfo[atomid].w * rsqrtf(dx1*dx1 + dysqpdzsq);
energyvalx2 += atominfo[atomid].w * rsqrtf(dx2*dx2 + dysqpdzsq);
energyvalx3 += atominfo[atomid].w * rsqrtf(dx3*dx3 + dysqpdzsq);
energyvalx4 += atominfo[atomid].w * rsqrtf(dx4*dx4 + dysqpdzsq);

}
…
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DCS CUDA Block/Grid Decomposition 
(unrolled, coalesced)

Grid of thread blocks:

Padding waste

0,0 0,1

1,0 1,1

…

… …

…

Thread blocks: 
64-256 threads

…

Unrolling increases 
computational tile size

Threads compute
up to 8 potentials, 

skipping by half-warps
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DCS Version 4: Kernel Structure
291.5 GFLOPS, 39.5 Billion Atom

Evals/Sec
• Processes 8 lattice points at a time in the inner 

loop
• Subsequent lattice points computed by each 

thread are offset to guarantee coalesced memory 
accesses

• Loads and increments 8 potential map lattice 
points from global memory at completion of of 
the summation, avoiding register consumption

• Code is too long to show, but is available by 
request
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Direct Coulomb Summation Runtime

GPU 
underutilized

GPU fully utilized, 
~40x faster than CPU

Accelerating molecular modeling applications with graphics processors. 
J. Stone, J. Phillips, P. Freddolino, D. Hardy, L. Trabuco, K. Schulten. 

J. Comp. Chem., 28:2618-2640, 2007.

Lower 
is better
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Direct Coulomb Summation Performance

CUDA-Simple: 
14.8x faster,

33% of fastest 
GPU kernel

CUDA-Unroll8clx:
fastest GPU kernel,

44x faster than CPU, 
291 GFLOPS on 

GeForce 8800GTX

GPU computing.  J. Owens, M. Houston, D. Luebke, S. Green, J. Stone, 
J. Phillips. Proceedings of the IEEE, 96:879-899, 2008.

CPU
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Multi-GPU Direct Coulomb Summation
• 4-GPU (2 Quadroplex) 

Opteron node at NCSA
• 157 billion evals/sec
• 1.16 TFLOPS
• 176x speedup vs. Intel 

QX6700 CPU core w/ SSE

NCSA GPU Cluster
• 4-GPU GTX 280 (GT200)
• 241 billion evals/sec
• 1.78 TFLOPS
• 271x speedup vs.         

Intel QX6700 CPU core 
w/ SSE

http://www.ncsa.uiuc.edu/Projects/GPUcluster/
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Infinite vs. Cutoff Potentials
• Infinite range potential:

– All atoms contribute to all lattice points
– Summation algorithm has quadratic complexity

• Cutoff (range-limited) potential:
– Atoms contribute within cutoff distance to lattice points
– Summation algorithm has linear time complexity 
– Has many applications in molecular modeling:

• Replace electrostatic potential with shifted form
• Short-range part for fast methods of approximating full 

electrostatics
• Used for fast decaying interactions (e.g. Lennard-Jones, 

Buckingham)
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Hybrid of spatial and force decomposition:

•Spatial decomposition of atoms into cubes 
(called patches)

•For every pair of interacting patches, 
create one object for calculating 
electrostatic interactions

•Recent: Blue Matter, Desmond, etc. use 
this idea in some form

NAMD Parallel Molecular Dynamics

• Designed from the beginning as a parallel program
• Uses the Charm++ philosophy:

– Decompose computation into a large number of objects
– Intelligent Run-time system (Charm++) assigns objects to processors for dynamic load 

balancing with minimal communication

Kale et al., J. Comp. Phys. 151:283-312, 1999.
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847 objects 100,000

Example 
Configuration

Objects are assigned to processors and queued as data arrives.

108

Phillips et al., SC2002.

Offload to GPU

NAMD Overlapping Execution
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texture<float4> force_table;
__constant__ unsigned int exclusions[];
__shared__ atom jatom[];
atom iatom;      // per-thread atom, stored in registers
float4 iforce;   // per-thread force, stored in registers
for ( int j = 0; j < jatom_count; ++j ) {

float dx = jatom[j].x - iatom.x; float dy = jatom[j].y - iatom.y; float dz = jatom[j].z - iatom.z;
float r2 = dx*dx + dy*dy + dz*dz;
if ( r2 < cutoff2 ) {

float4 ft = texfetch(force_table, 1.f/sqrt(r2));
bool excluded = false;
int indexdiff = iatom.index - jatom[j].index;
if ( abs(indexdiff) <= (int) jatom[j].excl_maxdiff ) {
indexdiff += jatom[j].excl_index;
excluded = ((exclusions[indexdiff>>5] & (1<<(indexdiff&31))) != 0);

}
float f = iatom.half_sigma + jatom[j].half_sigma;  // sigma
f *= f*f;  // sigma^3
f *= f;  // sigma^6
f *= ( f * ft.x + ft.y );  // sigma^12 * fi.x - sigma^6 * fi.y
f *= iatom.sqrt_epsilon * jatom[j].sqrt_epsilon;
float qq = iatom.charge * jatom[j].charge;
if ( excluded ) { f = qq * ft.w; }  // PME correction
else { f += qq * ft.z; }  // Coulomb
iforce.x += dx * f;  iforce.y += dy * f; iforce.z += dz * f;
iforce.w += 1.f;  // interaction count or energy

}
} Stone et al., J. Comp. Chem. 28:2618-2640, 2007.

Nonbonded Forces
CUDA Code

Force Interpolation

Exclusions

Parameters

Accumulation
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Molecular Simulations: Virology
• Simulations lead to better understanding 

of the mechanics of viral infections

• Better understanding of infection 
mechanics at the molecular level may 
result in more effective treatments for 
diseases

• Since viruses are large, their 
computational “viewing” requires 
tremendous resources, in particular large 
parallel computers

• GPUs can significantly accelerate the 
simulation, analyses, and visualization of 
such structures

Satellite Tobacco Mosaic Virus (STMV)
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STMV benchmark, 1M atoms,12A cutoff,  PME every 4 steps, 
on 2.4 GHz AMD Opteron + NVIDIA Quadro FX 5600

NAMD Performance on 
NCSA GPU Cluster, April 2008
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NAMD Performance on 
NCSA GPU Cluster, April 2008

• STMV virus (1M atoms)
• 60 GPUs match performance 

of 330 CPU cores
• 5.5-7x overall application 

speedup w/ G80-based GPUs
• Overlap with CPU
• Off-node results done first
• Plans for better performance

– Tune or port remaining work
– Balance GPU load
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NAMD Performance on 
GT200 GPU Cluster, August 2008

• 8 GT200s, 240 SPs @ 1.3GHz:
– 72x faster than a single CPU core
– 9x overall application speedup vs.     

8 CPU cores
– 32% faster overall than 8 nodes of 

G80 cluster
– GT200 CUDA kernel is 54% faster
– ~8% variation in GPU load

• Cost of double-precision for force 
accumulation is minimal: only 
8% slower than single-precision
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GPU Kernel Performance, May 2008
GeForce 8800GTX w/ CUDA 1.1, Driver 169.09

http://www.ks.uiuc.edu/Research/gpu/

Calculation / Algorithm Algorithm class Speedup vs. Intel 
QX6700 CPU core

Fluorescence microphotolysis Iterative matrix / stencil 12x

Pairlist calculation Particle pair distance test 10-11x

Pairlist update Particle pair distance test 5-15x

Cutoff electron density sum Particle-grid w/ cutoff 15-23x

MSM long-range Grid-grid w/ cutoff 22x
Direct Coulomb summation Particle-grid 44x

Molecular dynamics           
non-bonded force calc.

N-body cutoff force 
calculations

10x                         
20x (w/ pairlist)

MSM short-range Particle-grid w/ cutoff 24x
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Lessons Learned
• GPU algorithms need fine-grained parallelism and 

sufficient work to fully utilize the hardware
• Fine-grained GPU work decompositions compose 

well with the comparatively coarse-grained 
decompositions used for multicore or distributed 
memory programing

• Much of GPU algorithm optimization revolves 
around efficient use of multiple memory systems 
and latency hiding
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Lessons Learned (2)

• The host CPU can potentially be used 
to “regularize” the computation for 
the GPU, yielding better overall 
performance

• Overlapping CPU work with GPU 
can hide some communication and 
unaccelerated computation



NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Acknowledgement
• Additional Information and References:

– http://www.ks.uiuc.edu/Research/gpu/
• Acknowledgement, questions, source code 

requests:
– John Stone (johns@ks.uiuc.edu)
– Theoretical and Computational Biophysics Group, 

NIH Resource for Macromolecular Modeling and 
Bioinformatics
Beckman Institute for Advanced Science and 
Technology,

– NCSA GPU Cluster
– NVIDIA

• NIH funding: P41-RR05969



NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Publications
http://www.ks.uiuc.edu/Research/gpu/

• Adapting a message-driven parallel application to GPU-accelerated clusters. 
J. Phillips, J. Stone, K. Schulten.  Proceedings of the 2008 ACM/IEEE 
Conference on Supercomputing, (in press)

• GPU acceleration of cutoff pair potentials for molecular modeling applications. 
C. Rodrigues, D. Hardy, J. Stone, K. Schulten, W. Hwu. Proceedings of the 
2008 Conference On Computing Frontiers, pp. 273-282, 2008.

• GPU computing.  J. Owens, M. Houston, D. Luebke, S. Green, J. Stone, 
J. Phillips. Proceedings of the IEEE, 96:879-899, 2008.

• Accelerating molecular modeling applications with graphics processors. 
J. Stone, J. Phillips, P. Freddolino, D. Hardy, L. Trabuco, K. Schulten.  
J. Comp. Chem., 28:2618-2640, 2007.

• Continuous fluorescence microphotolysis and correlation spectroscopy. 
A. Arkhipov, J. Hüve, M. Kahms, R. Peters, K. Schulten. Biophysical Journal, 
93:4006-4017, 2007. 
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