
GPU Acceleration of
Cutoff Pair Potentials for

Molecular Modeling
Applications

Christopher Rodrigues,
David J. Hardy, John E. Stone,

Klaus Schulten, Wen-Mei W. Hwu
University of Illinois at Urbana-Champaign

Computing Frontiers, Ischia, Italy
7 May 2008

http://www.ks.uiuc.edu/Research/gpu
http://www.crhc.uiuc.edu/IMPACT/

http://www.ks.uiuc.edu/Research/gpu
http://www.crhc.uiuc.edu/IMPACT/

1

Cutoff Pair Potentials
• Essential to molecular modeling applications

– E.g., van der Waals, electrostatic potential
– Often the most costly part of computation

• Evaluate a cutoff
electrostatic potential on a
3D lattice

• Applications include
– Structure building

• Ion placement
• Time-averaged potential

– Analysis
• Visualizing electrostatic

potential

2D slice through an
electrostatic potential map

Red: positive Blue: negative

http://www.ks.uiuc.edu/Research/gpu
http://www.crhc.uiuc.edu/IMPACT/

2

Algorithm for Pair Potentials

• At each grid point, sum
the electrostatic
potential from all atoms

• Highly data-parallel
• But has quadratic

complexity
– Number of grid points ×

number of atoms
– Both proportional to volume

http://www.ks.uiuc.edu/Research/gpu
http://www.crhc.uiuc.edu/IMPACT/

3

Algorithm for Pair Potentials
With a Cutoff

• Ignore atoms beyond a
cutoff distance, rc
– Typically 8Å–12Å
– Long-range potential may

be computed separately

• Number of atoms
within cutoff distance is
roughly constant
– On the order of 1000

http://www.ks.uiuc.edu/Research/gpu
http://www.crhc.uiuc.edu/IMPACT/

4

Spatial Sorting

• Presort atoms into bins
by location in space

• Each bin holds several
atoms

• Cutoff potential only
uses bins within rc
– Yields a linear complexity

cutoff potential algorithm

http://www.ks.uiuc.edu/Research/gpu
http://www.crhc.uiuc.edu/IMPACT/

5

The Draw of GPU Computing

• Raw power
– Highly parallel, throughput-oriented design
– 345.6 GFLOPS peak performance

• Programmability
– C-language programming interface via CUDA

• Adoptability
– Commodity hardware, easy for users to add to a

desktop computer
– Large install base

(1 million CUDA-capable GPUs sold per week)

http://www.ks.uiuc.edu/Research/gpu
http://www.crhc.uiuc.edu/IMPACT/

6

Architecture of
the G80 GPU

• 16 Streaming Multiprocessors
– 8 processors
– 768 thread contexts
– Groups of 32 threads (warps)

run in lockstep

• Large, long-latency, off-chip
global memory
– > 200 cycles
– 64-byte, aligned accesses are

most efficient
• Effected with 16 consecutive

accesses from a half-warp

• Scratchpad shared memory
– 16 single-ported banks

• No general-purpose cache

http://www.ks.uiuc.edu/Research/gpu
http://www.crhc.uiuc.edu/IMPACT/

7

CUDA Programming Model
• Lightweight threads multiplexed onto

processors

• 32 threads bundled into a warp
– SIMD-like simultaneous instruction issue

• Warps grouped into thread blocks
– Share resources on one Streaming

Mutiprocessor

• CPU launches a single grid of many
thread blocks
– Thread blocks start executing asynchronously

as resources become available

http://www.ks.uiuc.edu/Research/gpu
http://www.crhc.uiuc.edu/IMPACT/

8

GPU Programming Principles

• Create hundreds of thousands of small,
independent threads
– Keep each thread’s resource use small

• Registers, shared memory

– Allows many threads to be active simultaneously

• Exploit data locality and conserve memory
bandwidth
– Avoid waiting for off-chip memory accesses
– Threads in a thread block can take advantage of

shared memory on an SM

http://www.ks.uiuc.edu/Research/gpu
http://www.crhc.uiuc.edu/IMPACT/

9

Previous Cutoff Kernel

• 6× speedup relative to CPU version
• Work-inefficient

– Coarse spatial hashing into (24Å)3 bins
– Only 6.5% of the atoms a thread tests are

within the cutoff distance

• Better adaptation of the algorithm to the
GPU will gain another 2.5×

http://www.ks.uiuc.edu/Research/gpu
http://www.crhc.uiuc.edu/IMPACT/

10

Design Considerations for
the New Cutoff Kernel

• High memory throughput to atom data
essential
– Group threads together for locality
– Fetch blocks of data into shared memory
– Structure atom data to allow fetching

• After taking care of memory demand,
optimize to reduce instruction count
– Loop and instruction-level optimization

http://www.ks.uiuc.edu/Research/gpu
http://www.crhc.uiuc.edu/IMPACT/

11

Improving Work Efficiency

• (4Å)3 cube of the potential map
computed by each thread block
– 8×8×8 potential map points
– 128 threads per block
– 34% of atoms are within cutoff distance

• Thread block needs atom data up to
the cutoff distance
– Use a sphere of bins
– All threads in a block scan the same

atoms
• No hardware penalty for multiple

simultaneous reads of the same address
• Simplifies fetching of data

http://www.ks.uiuc.edu/Research/gpu
http://www.crhc.uiuc.edu/IMPACT/

12

Another thread block runs
while this one waits

Caching Atom Data
• >200 cycle global memory latency
• Effectively 1 cycle shared memory latency
• Shared memory used in software as a cache

– Threads in a thread block collectively load one bin
at a time into shared memory

– Once loaded, threads scan atoms in shared memory
– Reuse: Loaded bins used 128 times

Threads individually
compute potentials

using bin in shared mem

Collectively
load next

bin

Write bin to
shared
memorySu

sp
en

d
Data

returned from
global

memory

Re
ad

y

Time

Execution cycle of a thread block

http://www.ks.uiuc.edu/Research/gpu
http://www.crhc.uiuc.edu/IMPACT/

13

High-Throughput Access to
Atom Data

• Full global memory bandwidth only with 64-
byte, 64-byte-aligned memory accesses
– Each bin is exactly 128 bytes
– Bins stored in a 3D array

• 128 bytes = 8 atoms (x,y,z,q)
– Nearly uniform density of atoms in typical systems

• 1 atom per 10 Å3

– Bins hold atoms from exactly (4Å)3 of space
– Number of atoms in a bin varies

• For water test systems, 5.35 atoms in a bin on average
• Some bins overfull

http://www.ks.uiuc.edu/Research/gpu
http://www.crhc.uiuc.edu/IMPACT/

14

Handling Overfull Bins

• 2.6% of atoms exceed bin capacity
• Spatial sorting puts these into a list of

extra atoms
• Extra atoms processed by the CPU

– Computed with CPU-optimized algorithm
– Takes about 66% as long as GPU

computation
– Overlapping GPU and CPU computation

yields in additional speedup

http://www.ks.uiuc.edu/Research/gpu
http://www.crhc.uiuc.edu/IMPACT/

15

GPU Thread Optimization

• Each thread computes
potentials at four
potential map points
– Reuse x and z components

of distance calculation
– Check x and z components

against cutoff distance
(cylinder test)

• Exit inner loop early upon
encountering the first
empty slot in a bin

http://www.ks.uiuc.edu/Research/gpu
http://www.crhc.uiuc.edu/IMPACT/

16

GPU Thread Inner Loop
for (i = 0; i < BIN_DEPTH; i++) {
 aq = AtomBinCache[i].w;
 if (aq == 0) break;

 dx = AtomBinCache[i].x - x;
 dz = AtomBinCache[i].z - z;
 dxdz2 = dx*dx + dz*dz;
 if (dxdz2 < cutoff2) continue;

 dy = AtomBinCache[i].y - y;
 r2 = dy*dy + dxdz2;
 if (r2 < cutoff2)
 poten0 += aq * rsqrtf(r2);

 dy = dy - 2 * grid_spacing;
 /* Repeat three more times */
}

Exit when an empty
atom bin entry is

encountered

Cylinder test

Cutoff test
and potential value

calculation

http://www.ks.uiuc.edu/Research/gpu
http://www.crhc.uiuc.edu/IMPACT/

17

Cutoff Summation Runtime

50k–1M atom structure size

GPU cutoff with
CPU overlap:
12x-21x faster
than CPU core

http://www.ks.uiuc.edu/Research/gpu
http://www.crhc.uiuc.edu/IMPACT/

18

Cutoff Summation Speedup

50k–1M atom structure size

Diminished
overlap

benefit due
to limited
queue size
(16 entries)

Cutoff
summation
alone 9-13×
faster than

CPU

http://www.ks.uiuc.edu/Research/gpu
http://www.crhc.uiuc.edu/IMPACT/

19

Improving Floating-Point
Accuracy

• GPU provides single-precision FP with slightly
reduced accuracy on some operations

• Accuracy depends on summation order
– FP addition is not associative

• Compensated summation improves accuracy
– Less than 10% performance cost on GPU

0.00015790.5710GPU with Compensated
Summation

0.00015790.8715GPU

0.00009390.4793CPU

Maximum %
absolute error

Maximum % relative
error

Error relative to double-precision floating point on CPU

http://www.ks.uiuc.edu/Research/gpu
http://www.crhc.uiuc.edu/IMPACT/

20

Summary
• Cutoff pair potentials heavily used in

molecular modeling applications
• Use CPU to regularize the work given to the

GPU to optimize its performance
– GPU performs very well on 64-byte-aligned array

data

• Run CPU and GPU concurrently to improve
performance

• Use shared memory as a program-managed
cache

http://www.ks.uiuc.edu/Research/gpu
http://www.crhc.uiuc.edu/IMPACT/

21

Thank You

Publications in Molecular Modeling:
Accelerating Molecular Modeling Applications with Graphics
Processors. J. Stone, J. Phillips, P. Freddolino, D. Hardy, L. Trabuco, K.
Schulten. J. Comp. Chem., 28:2618-2640, 2007.

in GPU Optimization:
Program Optimization Space Pruning for a Multithreaded GPU. S. Ryoo,
C. I. Rodrigues, S. S. Stone, S. S. Baghsorkhi, S.-Z. Ueng, J. A. Stratton,
W.-M. W. Hwu. in CGO 2008.

Optimization Principles and Application Performance Evaluation of a
Multithreaded GPU Using CUDA. S. Ryoo, C. I. Rodrigues, S. S.
Baghsorkhi, S. S. Stone, D. B. Kirk, W.-M. W. Hwu. in PPoPP 2008.

http://www.ks.uiuc.edu/Research/gpu
http://www.crhc.uiuc.edu/IMPACT/

22

Backup Slides

http://www.ks.uiuc.edu/Research/gpu
http://www.crhc.uiuc.edu/IMPACT/

23

Ion Placement

• Selection of initial conditions for a negatively
charged virus in water

• Neutralize charge by adding positively
charged ions
– Also stabilizes the virus structure

• Ions placed at sites with most negative
electrostatic potential

http://www.ks.uiuc.edu/Research/gpu
http://www.crhc.uiuc.edu/IMPACT/

24

Simplified Pseudocode of the
Cutoff Pair Potentials Algorithm

for each grid point, rj:
 for each nearby bin, B:
 for each atom (q,r) in B:
 dr = |r - rj|
 if dr < rc:
 s = (1 - (dr/rc)2)2
 V(rj) = V(rj) + q/dr * s

