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Outline

• Overview of GPU computing

- NVIDIA CUDA programming model

• GPU acceleration of NAMD and VMD

• Case study:  GPU acceleration of multilevel 
summation of electrostatic potentials
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Why GPU Computing?

• Cost effective, commodity devices

• Massively parallel hardware with hundreds of processing units 
offering substantial floating point performance over CPUs

• Fully programmable processors that support standard integer 
and floating point types

• Programming toolkits allow software to be written in dialects 
of C/C++ and integrated into legacy software

• GPU algorithms are generally multicore friendly due to data 
locality and data-parallel work decomposition

• We need more processing power, but CPU core speeds aren’t 
getting faster!  We must exploit GPU/multicore technologies!

Over a million
sold per week!
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What speedups can GPUs achieve?

• Single GPU speedups of 10x to 30x over one CPU 
core are common

• Best speedups of 100x or more attained for codes 
dominated by floating point arithmetic, especially for 
native GPU machine instructions, e.g. expf(), rsqrtf()

• Legacy codes employing “shallow” efforts at GPU 
acceleration might not exhibit these peak speedups 
due to Amdahl’s Law

• GPU programming toolkits require the programmer to 
balance architectural tradeoffs for best performance
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Comparison of CPU and GPU 
Hardware Architecture

CPU: Cache heavy,
focused on individual
thread performance

GPU: ALU heavy,
massively parallel,

throughput oriented
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NVIDIA GPU Architecture
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GPU Peak Single-precision Performance:
Exponential Trend
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GPU Peak Memory Bandwidth:
Linear Trend

GT200
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GPU Future Performance Trends

• We expect the ratio between floating point performance 
and memory bandwidth will continue to increase

• Algorithms with linear time complexity O(N) will be 
increasingly memory bound

• Implications for GPU algorithm design:

- Use shared memory and constant memory caches to amplify 
the effective GPU memory bandwidth

- We can benefit from tradeoffs that increase computational 
density while either decreasing memory access or increasing 
parallel scheduling (e.g. don’t use Newton’s 3rd Law to evaluate 
particle-particle interactions)
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NVIDIA CUDA Overview
• Hardware and software architecture for GPU 

computing, foundation for building higher level 
programming libraries and toolkits

• CUDA released in 2007:

- Data-parallel programming model

- Work is decomposed into grids of blocks containing 
warps of threads, multiplexed onto massively parallel 
GPU hardware

- Light-weight, low level of abstraction, exposes many 
GPU architecture features to enable development of 
high performance GPU kernels
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CUDA Threads, Blocks, Grids
• GPUs use hardware multithreading to hide latency and 

achieve high ALU utilization

• For high performance, a GPU must be saturated with 
concurrent work:  at least 10,000 threads

• A grid of hundreds of thread blocks is scheduled onto a 
large array of SIMT cores

• Each core executes several thread blocks of 64–512 threads 
each, switching among them to hide latencies for slow 
memory accesses, etc.

• 32-thread warps are executed in lock-step (e.g. in SIMD-like 
fashion)

• Conditionals are serialized over the if and else branches



NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

Mapping CUDA Abstractions onto GPU
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GPU Memory Accessible in CUDA

• Mapped host memory:  up to 4GB, ~5.7GB/sec bandwidth 
(PCIe), accessible by multiple GPUs

• Global memory:  up to 4GB, high latency (~600 clock cycles), 
140GB/sec bandwidth, accessible by all threads; also supports 
slow atomic operations

• Texture memory:  read-only, cached, and interpolated/filtered 
access to global memory

• Constant memory:  64KB, read-only, cached, fast/low-latency 
if data elements are accessed in unison by peer threads

• Shared memory:  16KB, low-latency, accessible among threads 
in the same block, fast if accessed without bank conflicts



NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

An Approach to Writing CUDA Kernels

• Find an algorithm that exposes substantial parallelism, 
thousands of independent threads

• Identify appropriate GPU memory subsystems for storage of 
data used by kernel

• Are there tradeoffs that can be made to exchange 
computation for more parallelism?

- Although counterintuitive, this strategy has resulted in past success

- “Brute force” methods that expose significant parallelism do 
surprisingly well on current GPUs

• Analyze the real-world use case for the problem and 
optimize the kernel for problem size and characteristics that 
will be heavily used
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NAMD — “Nanoscale Molecular Dynamics”

• CHARMM, AMBER, OPLS, force fields

• Efficient PME full electrostatics

• Conjugate gradient minimization

• Temperature and pressure controls

• Steered molecular dynamics (many methods)

• Interactive molecular dynamics (with VMD)

• Locally enhanced sampling

• Alchemical free energy perturbation

• User extensible in Tcl for forces and algorithms

• All features run in parallel and scale to millions of atoms!
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Molecular Mechanics Force Field
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NAMD Hybrid Decomposition

• Spatially decompose 
data and communication

• Separate but related 
work decomposition

• “Compute objects” 
facilitate iterative, 
measurement-based 
load balancing system

Kalé et al., J. Comp. Phys. 151:283-312, 1999.
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NAMD Overlapping Execution

Offload to GPU
847 objects 100,000

Example 
Configuration

Objects are assigned to processors and queued as data arrives.

108
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Overlapping GPU and CPU 
with Communication
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Nonbonded Forces with CUDA
• Decompose work into pairs of patches, identical to NAMD structure

• Each thread block is assigned to a pair of patches (replacing a nonbonded 
compute object).

16kB Shared Memory
Patch A Coordinates & Parameters

32kB Registers
Patch B Coords, Params, & Forces

Texture Unit
Force Table
Interpolation

Constants
Exclusions

8kB cache
8kB cache

32-way SIMD Multiprocessor
32-256 multiplexed threads

768 MB Main Memory, no cache, 300+ cycle latency

Force computation on single multiprocessor (GeForce 8800 GTX has 16)

Stone, et al., J. Comp. Chem.  28:2618-2640, 2007
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New NCSA “8+2” Lincoln Cluster

• CPU:  2 Intel E5410 Quad-Core 2.33 GHz

• GPU:  2 NVIDIA C1060

- Actually S1070 shared by two nodes

• How to share a GPU among 4 CPU cores?

- Send all GPU work to one process?

- Coordinate via messages to avoid conflict?

- Or just hope for the best?
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NCSA Lincoln Cluster Performance
(8 cores and 2 GPUs per node)
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VMD — “Visual Molecular Dynamics”

• Visualization and analysis of molecular dynamics 
simulations, sequence data, volumetric data, quantum 
chemistry simulations, particle systems, ...

• User extensible with scripting and plugins

• http://www.ks.uiuc.edu/Research/vmd/

http://www.ks.uiuc.edu/Research/vmd/
http://www.ks.uiuc.edu/Research/vmd/
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Range of VMD Usage Scenarios

• Users run VMD on a diverse range of hardware:  
laptops, desktops, clusters, and supercomputers

• Typically used as a desktop application for 
interactive 3D molecular graphics and analysis

• Can also be run in pure text mode for numerically 
intensive analysis tasks, batch mode movie 
rendering, etc.

• GPU acceleration provides an opportunity to 
make some slow, or batch, calculations capable 
of being run interactively, or on-demand...
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CUDA Acceleration in VMD

Molecular orbital  
calculation and display:
factor of 120x faster

Imaging of gas migration
 pathways in proteins with

implicit ligand sampling:

factor of 20x to 30x faster

Electrostatic field 
calculation, ion placement:

factor of 20x to 44x faster
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Electrostatic Potential Maps
• Electrostatic potentials 

evaluated on 3D lattice:

• Applications include:

- Ion placement for 
structure building

- Time-averaged potentials 
for simulation

- Visualization and analysis

Isoleucine tRNA synthetase



NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

Direct Coulomb Summation

• Each lattice point accumulates electrostatic 
potential contribution from all atoms: 
   potential[j] +=  charge[i] / rij

atom[i]

rij: distance 
from lattice[j] 

to atom[i]
Lattice point j 

being evaluated

(naïve approach)
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Direct Coulomb Summation on GPU
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Direct Coulomb Summation Performance

Accelerating molecular modeling applications with graphics processors.
J. Stone, J. Phillips, P. Freddolino, D. Hardy, L. Trabuco, K. Schulten.   

J. Comp. Chem., 28:2618-2640, 2007.

GPU 
underutilized

GPU fully utilized, 
~40x faster than CPU

Lower 
is better

Cold start GPU 
initialization time: 

~110ms 
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Using Multiple GPUs for 
Direct Coulomb Summation

GPU 1 GPU N…

NCSA GPU Cluster
http://www.ncsa.uiuc.edu/Projects/GPUcluster/

Evals/sec TFLOPS Speedup*

4-GPU (2 Quadroplex) 
Opteron node at NCSA

157 billion 1.16 176

4-GPU GTX 280 
(GT200)

241 billion 1.78 271

*Speedups relative to Intel QX6700 CPU core w/ SSE

http://www.ncsa.uiuc.edu/Projects/GPUcluster/
http://www.ncsa.uiuc.edu/Projects/GPUcluster/
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Photobiology of Vision and Photosynthesis
Investigations of the chromatophore, a photosynthetic organelle

Full chromatophore model will permit structural, chemical and 
kinetic investigations at a structural systems biology level

Electrostatic field of chromatophore model
from multilevel summation method:

computed with 3 GPUs (G80) in ~90 seconds, 
46x faster than single CPU core 

Electrostatics needed to build full 
structural model, place ions, study 

macroscopic properties

Partial model:    
~10M atoms

Light
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Multilevel Summation Method
• Approximates full electrostatic potential

• Calculates sum of smoothed pairwise potentials 
interpolated from a hierarchy of lattices

• Advantages over PME (particle-mesh Ewald) and/or FMM 
(fast multipole method):

- Algorithm has linear time complexity

- Permits non-periodic and periodic boundaries

- Produces continuous forces for dynamics (advantage over FMM)

- Avoids 3D FFTs for better parallel scaling (advantage over PME)

- Spatial separation allows use of multiple time steps

- Can be extended to other types of pairwise interactions
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Multilevel Summation Main Ideas 
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Multilevel Summation Calculation 
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potential
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Multilevel Summation on the GPU

Computational steps CPU (s) w/ GPU (s) Speedup

Short-range cutoff 480.07 14.87 32.3

Long-range anterpolation 0.18

restriction 0.16

lattice cutoff 49.47 1.36 36.4

prolongation 0.17

interpolation 3.47

Total 533.52 20.21 26.4

Performance profile for 0.5 Å map of potential for  1.5 M atoms.
Hardware platform is Intel QX6700 CPU and NVIDIA GTX 280.

Accelerate  short-range cutoff  and  lattice cutoff  parts

Multilevel summation of electrostatic potentials using graphics processing units.  
D. Hardy, J. Stone, K. Schulten.  J. Parallel Computing, 35:164-177, 2009.



NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

Cutoff radius rij: distance 
from lattice[j] 

to atom[i]

Lattice point j 
being evaluated atom[i]

• Each lattice point accumulates electrostatic potential 
contribution from atoms within cutoff distance:

   if (rij < cutoff)
      potential[j] += (charge[i] / rij) * s(rij)

• Smoothing function s(r) is algorithm dependent

Short-range Cutoff Summation
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Cutoff Summation on the GPU
• Atoms are spatially hashed into fixed-size bins (8 deep, stored x/y/z/q)

• CPU handles overflowed bins, so GPU kernel can be aggressive
(choosing 4Å bin length works well in practice)

• GPU thread block calculates corresponding region of potential map

• Solve costly bin/region neighbor checks with lookup table of offsets

Global memory Constant memory

Offsets for bin 
neighborhood

Shared memory

atom bin

Potential 
map 
regions

Bins of atoms

Each thread block cooperatively loads 
atom bins from surrounding neighborhood 
into shared memory for evaluation

Lookup table 
encodes “logic” of 

spatial geometry 
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Using CPU to Improve GPU Performance

• GPU performs best when the work evenly divides 
into the number of threads / processing units

• Optimization strategy:

- Use the CPU to “regularize” the GPU workload

- Use fixed size bin data structures, with “empty” slots 
skipped or producing zeroed out results

- Handle exceptional or irregular work units on the CPU 
while the GPU processes the bulk of the work

- On average, the GPU is kept highly occupied to attain 
good fraction of peak performance
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Cutoff Summation Performance

GPU acceleration of cutoff pair potentials for molecular modeling applications. 
C. Rodrigues, D. Hardy, J. Stone, K. Schulten, W. Hwu. Proceedings of the 2008 

Conference On Computing Frontiers, pp. 273-282, 2008.

GPU cutoff with 
CPU overlap:

17x-21x faster than 
CPU core

If asynchronous 
stream blocks due 

to queue filling, 
performance will 

degrade from 
peak…
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Cutoff Summation Observations
• Use of CPU to handle overflowed bins is very 

effective, overlaps well with GPU work

• Caveat when using streaming API to invoke GPU 
kernel:  avoid overfilling stream queue with work 
so as not to trigger blocking behavior (improved 
in current drivers)

• Increasing floating point precision with 
compensated summation (all GPUs) or double-
precision (GT200 only) for potential accumulation 
results in just ~10% performance penalty versus 
pure single-precision arithmetic
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Lattice Cutoff Summation
• Each lattice point accumulates electrostatic potential contribution from all 

lattice point charges within cutoff distance

• Relative distances are the same between points on a uniform lattice, 
multiplication by a precomputed stencil of “weights”

• Weights at each level are identical up to a scaling factor (due to choice of 
splitting and doubling of lattice spacing and cutoff)

• Calculate as 3D convolution of sub-cube of lattice point charges with 
enclosing cube of weights, size determined by cutoff a and grid spacing h

- Cube length is 2×⎡2a/h⎤−1; we use a=12Å and h=2Å for cube stencil size 23x23x23

Cutoff radius

Accumulate potential

Sphere of 
lattice point 

charges
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Lattice Cutoff Summation on GPU
• Store stencil of weights in constant memory (padded up to next multiple of 4)

• Assign GPU thread block to calculate 4x4x4 region of lattice potentials, stored contiguously

• Regions stored in flattened array, each level padded with zero charge region, levels stored 
contiguously, constant memory stores mapping of 3D region level sets into flattened array

• Load nearby regions of lattice point charges into shared memory (analogous to loading 
atom bins for short-range cutoff)

• Evaluate all lattice levels concurrently, scaling by level factor (keeps GPU from running out 
of work at upper lattice levels)

Shared memory

Global memory Constant memory

Lattice 
potential 
regions

Each thread block cooperatively loads 
lattice charge regions into shared memory 
for evaluation, multiply by weight stencil 
from constant memory

Lattice 
charge 
regions

Stencil of weights

Subset of lattice 
charge regions
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Evaluation Using Sliding Window
• Every thread in block needs to simultaneously read and 

use the same weight from constant memory

• Read into shared memory an 8x8x8 block (8 regions) 
of lattice point charges

• Slide a window of size 4x4x4 by 4 shifts along each 
dimension
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Lessons Learned
• GPU algorithms need fine-grained parallelism and 

sufficient work to fully utilize the hardware

• Efficient use of GPU multiple memory systems and 
latency hiding is essential for good performance

• CPU can be used to “regularize” computation for GPU, 
handling exceptional cases for overall better performance

• Overlapping CPU work with GPU can hide some 
communication and unaccelerated computation

• Targeted use of double-precision floating point arithmetic 
or compensated summation can improve overall 
numerical precision at low cost to performance
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Looking Forward to NVIDIA Fermi
• New architecture “Fermi” expected in 2010, features include:

- ECC memory (GDDR5)

- L1 (64 KB, together with shared memory) and L2 (768 KB) caches

- 512 cores

- Improved double precision performance (single to double ratio 1:2)

- Improved floating point accuracy

- Faster thread context switching (factor of 10)

- Concurrent kernel execution

- Second DMA engine to overlap two memory transfers

- Extended C++ support (e.g. virtual functions, exception handling)

- 40 nm process technology with 3 billion transistors

- Similar power consumption to current models

(from HPCwire, “NVIDIA Takes GPU Computing to the Next Level,” Setemper 29, 2009)


