
NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

Using GPU Computing to
Accelerate Molecular
Modeling Applications

David J. Hardy
Theoretical and Computational Biophysics Group

Beckman Institute for Advanced Science and Technology
University of Illinois at Urbana-Champaign

http://www.ks.uiuc.edu/Research/gpu/

CECAM Workshop, “Algorithmic re-engineering...”
Lugano, Switzerland, October 2, 2009

http://www.ks.uiuc.edu/Research/gpu/
http://www.ks.uiuc.edu/Research/gpu/

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

Outline

• Overview of GPU computing

- NVIDIA CUDA programming model

• GPU acceleration of NAMD and VMD

• Case study: GPU acceleration of multilevel
summation of electrostatic potentials

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

Why GPU Computing?

• Cost effective, commodity devices

• Massively parallel hardware with hundreds of processing units
offering substantial floating point performance over CPUs

• Fully programmable processors that support standard integer
and floating point types

• Programming toolkits allow software to be written in dialects
of C/C++ and integrated into legacy software

• GPU algorithms are generally multicore friendly due to data
locality and data-parallel work decomposition

• We need more processing power, but CPU core speeds aren’t
getting faster! We must exploit GPU/multicore technologies!

Over a million
sold per week!

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

What speedups can GPUs achieve?

• Single GPU speedups of 10x to 30x over one CPU
core are common

• Best speedups of 100x or more attained for codes
dominated by floating point arithmetic, especially for
native GPU machine instructions, e.g. expf(), rsqrtf()

• Legacy codes employing “shallow” efforts at GPU
acceleration might not exhibit these peak speedups
due to Amdahl’s Law

• GPU programming toolkits require the programmer to
balance architectural tradeoffs for best performance

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

Comparison of CPU and GPU
Hardware Architecture

CPU: Cache heavy,
focused on individual
thread performance

GPU: ALU heavy,
massively parallel,

throughput oriented

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

NVIDIA GPU Architecture

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

Instruction Fetch/Dispatch

Instruction L1 Data L1

Texture Processor
 Cluster

SM Shared Memory

Streaming Processor Array

Streaming Multiprocessor

Te
xt

ur
e

U
ni

t

Streaming
Processor

ADD, SUB
MAD, Etc…

 Special
Function Unit

SIN, EXP,
RSQRT, Etc…

TPC TPC TPC TPC TPC TPC TPC TPC TPC TPC

SM

SM

Constant Cache

R
ea

d-
on

ly
,

8k
B

 s
pa

tia
l c

ac
he

,
1/

2/
3-

D
 in

te
rp

ol
at

io
n

64kB, read-only

FP64 Unit

FP64 Unit (double precision)

NVIDIA
GT200

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

GPU Peak Single-precision Performance:
Exponential Trend

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

GPU Peak Memory Bandwidth:
Linear Trend

GT200

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

GPU Future Performance Trends

• We expect the ratio between floating point performance
and memory bandwidth will continue to increase

• Algorithms with linear time complexity O(N) will be
increasingly memory bound

• Implications for GPU algorithm design:

- Use shared memory and constant memory caches to amplify
the effective GPU memory bandwidth

- We can benefit from tradeoffs that increase computational
density while either decreasing memory access or increasing
parallel scheduling (e.g. don’t use Newton’s 3rd Law to evaluate
particle-particle interactions)

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

NVIDIA CUDA Overview
• Hardware and software architecture for GPU

computing, foundation for building higher level
programming libraries and toolkits

• CUDA released in 2007:

- Data-parallel programming model

- Work is decomposed into grids of blocks containing
warps of threads, multiplexed onto massively parallel
GPU hardware

- Light-weight, low level of abstraction, exposes many
GPU architecture features to enable development of
high performance GPU kernels

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

CUDA Threads, Blocks, Grids
• GPUs use hardware multithreading to hide latency and

achieve high ALU utilization

• For high performance, a GPU must be saturated with
concurrent work: at least 10,000 threads

• A grid of hundreds of thread blocks is scheduled onto a
large array of SIMT cores

• Each core executes several thread blocks of 64–512 threads
each, switching among them to hide latencies for slow
memory accesses, etc.

• 32-thread warps are executed in lock-step (e.g. in SIMD-like
fashion)

• Conditionals are serialized over the if and else branches

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

Mapping CUDA Abstractions onto GPU

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

Texture Processor
 Cluster

SM

Streaming Processor Array

Streaming Multiprocessor

Te
xt

ur
e

U
ni

t

TPC TPC TPC TPC TPC TPC TPC TPC TPC TPC

SM

SM

NVIDIA
GT200

Grid of thread blocks

Multiple thread blocks,
many warps of threads

Individual threads

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

GPU Memory Accessible in CUDA

• Mapped host memory: up to 4GB, ~5.7GB/sec bandwidth
(PCIe), accessible by multiple GPUs

• Global memory: up to 4GB, high latency (~600 clock cycles),
140GB/sec bandwidth, accessible by all threads; also supports
slow atomic operations

• Texture memory: read-only, cached, and interpolated/filtered
access to global memory

• Constant memory: 64KB, read-only, cached, fast/low-latency
if data elements are accessed in unison by peer threads

• Shared memory: 16KB, low-latency, accessible among threads
in the same block, fast if accessed without bank conflicts

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

An Approach to Writing CUDA Kernels

• Find an algorithm that exposes substantial parallelism,
thousands of independent threads

• Identify appropriate GPU memory subsystems for storage of
data used by kernel

• Are there tradeoffs that can be made to exchange
computation for more parallelism?

- Although counterintuitive, this strategy has resulted in past success

- “Brute force” methods that expose significant parallelism do
surprisingly well on current GPUs

• Analyze the real-world use case for the problem and
optimize the kernel for problem size and characteristics that
will be heavily used

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

NAMD — “Nanoscale Molecular Dynamics”

• CHARMM, AMBER, OPLS, force fields

• Efficient PME full electrostatics

• Conjugate gradient minimization

• Temperature and pressure controls

• Steered molecular dynamics (many methods)

• Interactive molecular dynamics (with VMD)

• Locally enhanced sampling

• Alchemical free energy perturbation

• User extensible in Tcl for forces and algorithms

• All features run in parallel and scale to millions of atoms!

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

Molecular Mechanics Force Field

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

NAMD Hybrid Decomposition

• Spatially decompose
data and communication

• Separate but related
work decomposition

• “Compute objects”
facilitate iterative,
measurement-based
load balancing system

Kalé et al., J. Comp. Phys. 151:283-312, 1999.

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

NAMD Overlapping Execution

Offload to GPU
847 objects 100,000

Example
Configuration

Objects are assigned to processors and queued as data arrives.

108

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

Overlapping GPU and CPU
with Communication

Remote Force Local ForceGPU

CPU

Other Nodes/Processes

LocalRemote

x

f f

f

f

Local
x

x

Update

One Timestep

x

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

Nonbonded Forces with CUDA
• Decompose work into pairs of patches, identical to NAMD structure

• Each thread block is assigned to a pair of patches (replacing a nonbonded
compute object).

16kB Shared Memory
Patch A Coordinates & Parameters

32kB Registers
Patch B Coords, Params, & Forces

Texture Unit
Force Table
Interpolation

Constants
Exclusions

8kB cache
8kB cache

32-way SIMD Multiprocessor
32-256 multiplexed threads

768 MB Main Memory, no cache, 300+ cycle latency

Force computation on single multiprocessor (GeForce 8800 GTX has 16)

Stone, et al., J. Comp. Chem. 28:2618-2640, 2007

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

New NCSA “8+2” Lincoln Cluster

• CPU: 2 Intel E5410 Quad-Core 2.33 GHz

• GPU: 2 NVIDIA C1060

- Actually S1070 shared by two nodes

• How to share a GPU among 4 CPU cores?

- Send all GPU work to one process?

- Coordinate via messages to avoid conflict?

- Or just hope for the best?

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

NCSA Lincoln Cluster Performance
(8 cores and 2 GPUs per node)

0

0.400

0.800

1.200

1.600

4 8 16 32 64 128

CPU (8ppn)
CPU (4ppn)
CPU (2ppn)
GPU (8ppn)
GPU (4ppn)
GPU (2ppn)
CPU (2ppn)
CPU (4ppn)
CPU (8ppn)
GPU (2ppn)
GPU (4ppn)
GPU (8ppn)

2 GPUs = 24 cores
4 GPUs

8 GPUs

16 GPUs

CPU cores

STMV s/step

8 GPUs =
96 CPU cores

~5.6
~2.8

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

VMD — “Visual Molecular Dynamics”

• Visualization and analysis of molecular dynamics
simulations, sequence data, volumetric data, quantum
chemistry simulations, particle systems, ...

• User extensible with scripting and plugins

• http://www.ks.uiuc.edu/Research/vmd/

http://www.ks.uiuc.edu/Research/vmd/
http://www.ks.uiuc.edu/Research/vmd/

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

Range of VMD Usage Scenarios

• Users run VMD on a diverse range of hardware:
laptops, desktops, clusters, and supercomputers

• Typically used as a desktop application for
interactive 3D molecular graphics and analysis

• Can also be run in pure text mode for numerically
intensive analysis tasks, batch mode movie
rendering, etc.

• GPU acceleration provides an opportunity to
make some slow, or batch, calculations capable
of being run interactively, or on-demand...

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

CUDA Acceleration in VMD

Molecular orbital
calculation and display:
factor of 120x faster

Imaging of gas migration
 pathways in proteins with

implicit ligand sampling:

factor of 20x to 30x faster

Electrostatic field
calculation, ion placement:

factor of 20x to 44x faster

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

Electrostatic Potential Maps
• Electrostatic potentials

evaluated on 3D lattice:

• Applications include:

- Ion placement for
structure building

- Time-averaged potentials
for simulation

- Visualization and analysis

Isoleucine tRNA synthetase

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

Direct Coulomb Summation

• Each lattice point accumulates electrostatic
potential contribution from all atoms:
 potential[j] += charge[i] / rij

atom[i]

rij: distance
from lattice[j]

to atom[i]
Lattice point j

being evaluated

(naïve approach)

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

Direct Coulomb Summation on GPU

Global Memory

Texture Texture Texture Texture Texture TextureTexture

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

GPUConstant Memory

Host

Atomic
Coordinates

Charges

Threads compute
up to 8 potentials,

skipping by half-warps

Thread blocks:
64-256 threads

Grid of thread blocks

Lattice padding

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

Direct Coulomb Summation Performance

Accelerating molecular modeling applications with graphics processors.
J. Stone, J. Phillips, P. Freddolino, D. Hardy, L. Trabuco, K. Schulten.

J. Comp. Chem., 28:2618-2640, 2007.

GPU
underutilized

GPU fully utilized,
~40x faster than CPU

Lower
is better

Cold start GPU
initialization time:

~110ms

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

Using Multiple GPUs for
Direct Coulomb Summation

GPU 1 GPU N…

NCSA GPU Cluster
http://www.ncsa.uiuc.edu/Projects/GPUcluster/

Evals/sec TFLOPS Speedup*

4-GPU (2 Quadroplex)
Opteron node at NCSA

157 billion 1.16 176

4-GPU GTX 280
(GT200)

241 billion 1.78 271

*Speedups relative to Intel QX6700 CPU core w/ SSE

http://www.ncsa.uiuc.edu/Projects/GPUcluster/
http://www.ncsa.uiuc.edu/Projects/GPUcluster/

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

Photobiology of Vision and Photosynthesis
Investigations of the chromatophore, a photosynthetic organelle

Full chromatophore model will permit structural, chemical and
kinetic investigations at a structural systems biology level

Electrostatic field of chromatophore model
from multilevel summation method:

computed with 3 GPUs (G80) in ~90 seconds,
46x faster than single CPU core

Electrostatics needed to build full
structural model, place ions, study

macroscopic properties

Partial model:
~10M atoms

Light

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

Multilevel Summation Method
• Approximates full electrostatic potential

• Calculates sum of smoothed pairwise potentials
interpolated from a hierarchy of lattices

• Advantages over PME (particle-mesh Ewald) and/or FMM
(fast multipole method):

- Algorithm has linear time complexity

- Permits non-periodic and periodic boundaries

- Produces continuous forces for dynamics (advantage over FMM)

- Avoids 3D FFTs for better parallel scaling (advantage over PME)

- Spatial separation allows use of multiple time steps

- Can be extended to other types of pairwise interactions

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

Multilevel Summation Main Ideas

=

+

+

atoms

h-lattice

2h-lattice

Split the 1/r potential Interpolate the smoothed potentials

a 2a

.

.

.
.
.
.

• Split the 1/r potential into a short-range cutoff part plus smoothed parts that
are successively more slowly varying. All but the top level potential are cut off.

• Smoothed potentials are interpolated from successively coarser lattices.

• Finest lattice spacing h and smallest cutoff distance a are doubled at each
successive level.

1/r

r0

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

Multilevel Summation Calculation
map

potential

exact
short-range
interactions

interpolated
long-range

interactions
+=

Computational Steps

short-range cutoff

interpolationanterpolation

h-lattice cutoff

2h-lattice cutoff

4h-lattice

restriction

restriction

prolongation

prolongationlong-range
parts

atom
charges

map
potentials

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

Multilevel Summation on the GPU

Computational steps CPU (s) w/ GPU (s) Speedup

Short-range cutoff 480.07 14.87 32.3

Long-range anterpolation 0.18

restriction 0.16

lattice cutoff 49.47 1.36 36.4

prolongation 0.17

interpolation 3.47

Total 533.52 20.21 26.4

Performance profile for 0.5 Å map of potential for 1.5 M atoms.
Hardware platform is Intel QX6700 CPU and NVIDIA GTX 280.

Accelerate short-range cutoff and lattice cutoff parts

Multilevel summation of electrostatic potentials using graphics processing units.
D. Hardy, J. Stone, K. Schulten. J. Parallel Computing, 35:164-177, 2009.

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

Cutoff radius rij: distance
from lattice[j]

to atom[i]

Lattice point j
being evaluated atom[i]

• Each lattice point accumulates electrostatic potential
contribution from atoms within cutoff distance:

 if (rij < cutoff)
 potential[j] += (charge[i] / rij) * s(rij)

• Smoothing function s(r) is algorithm dependent

Short-range Cutoff Summation

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

Cutoff Summation on the GPU
• Atoms are spatially hashed into fixed-size bins (8 deep, stored x/y/z/q)

• CPU handles overflowed bins, so GPU kernel can be aggressive
(choosing 4Å bin length works well in practice)

• GPU thread block calculates corresponding region of potential map

• Solve costly bin/region neighbor checks with lookup table of offsets

Global memory Constant memory

Offsets for bin
neighborhood

Shared memory

atom bin

Potential
map
regions

Bins of atoms

Each thread block cooperatively loads
atom bins from surrounding neighborhood
into shared memory for evaluation

Lookup table
encodes “logic” of

spatial geometry

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

Using CPU to Improve GPU Performance

• GPU performs best when the work evenly divides
into the number of threads / processing units

• Optimization strategy:

- Use the CPU to “regularize” the GPU workload

- Use fixed size bin data structures, with “empty” slots
skipped or producing zeroed out results

- Handle exceptional or irregular work units on the CPU
while the GPU processes the bulk of the work

- On average, the GPU is kept highly occupied to attain
good fraction of peak performance

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

Cutoff Summation Performance

GPU acceleration of cutoff pair potentials for molecular modeling applications.
C. Rodrigues, D. Hardy, J. Stone, K. Schulten, W. Hwu. Proceedings of the 2008

Conference On Computing Frontiers, pp. 273-282, 2008.

GPU cutoff with
CPU overlap:

17x-21x faster than
CPU core

If asynchronous
stream blocks due

to queue filling,
performance will

degrade from
peak…

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

Cutoff Summation Observations
• Use of CPU to handle overflowed bins is very

effective, overlaps well with GPU work

• Caveat when using streaming API to invoke GPU
kernel: avoid overfilling stream queue with work
so as not to trigger blocking behavior (improved
in current drivers)

• Increasing floating point precision with
compensated summation (all GPUs) or double-
precision (GT200 only) for potential accumulation
results in just ~10% performance penalty versus
pure single-precision arithmetic

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

Lattice Cutoff Summation
• Each lattice point accumulates electrostatic potential contribution from all

lattice point charges within cutoff distance

• Relative distances are the same between points on a uniform lattice,
multiplication by a precomputed stencil of “weights”

• Weights at each level are identical up to a scaling factor (due to choice of
splitting and doubling of lattice spacing and cutoff)

• Calculate as 3D convolution of sub-cube of lattice point charges with
enclosing cube of weights, size determined by cutoff a and grid spacing h

- Cube length is 2×⎡2a/h⎤−1; we use a=12Å and h=2Å for cube stencil size 23x23x23

Cutoff radius

Accumulate potential

Sphere of
lattice point

charges

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

Lattice Cutoff Summation on GPU
• Store stencil of weights in constant memory (padded up to next multiple of 4)

• Assign GPU thread block to calculate 4x4x4 region of lattice potentials, stored contiguously

• Regions stored in flattened array, each level padded with zero charge region, levels stored
contiguously, constant memory stores mapping of 3D region level sets into flattened array

• Load nearby regions of lattice point charges into shared memory (analogous to loading
atom bins for short-range cutoff)

• Evaluate all lattice levels concurrently, scaling by level factor (keeps GPU from running out
of work at upper lattice levels)

Shared memory

Global memory Constant memory

Lattice
potential
regions

Each thread block cooperatively loads
lattice charge regions into shared memory
for evaluation, multiply by weight stencil
from constant memory

Lattice
charge
regions

Stencil of weights

Subset of lattice
charge regions

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

Evaluation Using Sliding Window
• Every thread in block needs to simultaneously read and

use the same weight from constant memory

• Read into shared memory an 8x8x8 block (8 regions)
of lattice point charges

• Slide a window of size 4x4x4 by 4 shifts along each
dimension

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

Lessons Learned
• GPU algorithms need fine-grained parallelism and

sufficient work to fully utilize the hardware

• Efficient use of GPU multiple memory systems and
latency hiding is essential for good performance

• CPU can be used to “regularize” computation for GPU,
handling exceptional cases for overall better performance

• Overlapping CPU work with GPU can hide some
communication and unaccelerated computation

• Targeted use of double-precision floating point arithmetic
or compensated summation can improve overall
numerical precision at low cost to performance

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

Related Publications
• Multilevel summation of electrostatic potentials using graphics processing

units. D. Hardy, J. Stone, K. Schulten. J. Parallel Computing, 35:164-177, 2009.

• GPU acceleration of cutoff pair potentials for molecular modeling
applications. C. Rodrigues, D. Hardy, J. Stone, K. Schulten, W. Hwu.
Proceedings of the 2008 Conference On Computing Frontiers, pp. 273-282, 2008.

• Accelerating molecular modeling applications with graphics processors. J.
Stone, J. Phillips, P. Freddolino, D. Hardy, L. Trabuco, K. Schulten. J. Comp.
Chem., 28:2618-2640, 2007.

• Multilevel Summation for the Fast Evaluation of Forces for the Simulation
of Biomolecules. David J. Hardy. Ph.D. thesis, University of Illinois at
Urbana-Champaign, 2006.

• Multiple grid methods for classical molecular dynamics. R. Skeel, I. Tezcan,
D. Hardy. J. Comp. Chem., 23:673-684, 2002.

See GPU development at http://www.ks.uiuc.edu/Research/gpu/

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

Acknowledgments
• Prof. Klaus Schulten, John Stone, and Jim Phillips of the Theoretical

and Computational Biophysics Group at the Beckman Institute,
University of Illinois at Urbana-Champaign

• Prof. Wen-mei Hwu and Chris Rodrigues of the IMPACT group,
University of Illinois at Urbana-Champaign

• Prof. Robert Skeel, Purdue University

• NVIDIA Center of Excellence, University of Illinois at Urbana-
Champaign

• NCSA Innovative Systems Lab

• The CUDA team at NVIDIA

• NIH Grant P41-RR05969

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

Looking Forward to NVIDIA Fermi
• New architecture “Fermi” expected in 2010, features include:

- ECC memory (GDDR5)

- L1 (64 KB, together with shared memory) and L2 (768 KB) caches

- 512 cores

- Improved double precision performance (single to double ratio 1:2)

- Improved floating point accuracy

- Faster thread context switching (factor of 10)

- Concurrent kernel execution

- Second DMA engine to overlap two memory transfers

- Extended C++ support (e.g. virtual functions, exception handling)

- 40 nm process technology with 3 billion transistors

- Similar power consumption to current models

(from HPCwire, “NVIDIA Takes GPU Computing to the Next Level,” Setemper 29, 2009)

