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MD Simulations 

VMD – “Visual Molecular Dynamics” 

Whole Cell Simulation 

• Visualization and analysis of: 

– molecular dynamics simulations 

– particle systems and whole cells 

– cryoEM densities, volumetric data 

– quantum chemistry calculations 

– sequence information 

• User extensible w/ scripting and 
plugins 

• http://www.ks.uiuc.edu/Research/vmd/ 

CryoEM, Cellular 

Tomography Quantum Chemistry Sequence Data 
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Goal: A Computational Microscope 
Study the molecular machines in living cells 

Ribosome: target for antibiotics Poliovirus 
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VMD Interoperability Serves Many Communities 

• VMD 1.9.1 user statistics:  

– 100,000 unique registered users from all over the world 

• Uniquely interoperable with a broad range of tools: AMBER, CHARMM, CPMD, 

DL_POLY, GAMESS, GROMACS, HOOMD, LAMMPS, NAMD, and many more … 

• Supports key data types, file formats, and databases, e.g. electron microscopy, 

quantum chemistry, MD trajectories, sequence alignments, super resolution light 

microscopy 

• Incorporates tools for simulation preparation, visualization, and analysis 
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CUDA GPU-Accelerated Trajectory Analysis 

and Visualization in VMD 
VMD GPU-Accelerated Feature or       

GPU Kernel 

Exemplary speedup vs. 

contemporary 4-core CPU 

Molecular orbital display 30x 

Radial distribution function 23x 

Molecular surface display 15x 

Electrostatic field calculation 11x 

Ray tracing w/ shadows,  AO lighting 7x 

cryoEM cross correlation quality-of-fit 7x 

Ion placement 6x 

MDFF density map synthesis  6x 

Implicit ligand sampling 6x 

Root mean squared fluctuation 6x 

Radius of gyration 5x 

Close contact determination 5x 

Dipole moment calculation 4x 
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• Visualization of MOs aids in understanding the chemistry 
of molecular system 

• MO spatial distribution is correlated with probability 
density for an electron(s) 

• Animation of (classical mechanics) molecular dynamics 
trajectories provides insight into simulation results 

– To do the same for QM or QM/MM simulations MOs must be 
computed at 10 FPS or more 

– Large GPU speedups (up to 30x vs. 4-core CPU) over 
existing tools makes this possible! 

• Run-time code generation (JIT) and compilation via 
CUDA 7.0 NVRTC enable further optimizations and the 
highest performance to date: 1.8x faster than 
previous best result 

High Performance Computation and Interactive Display of Molecular Orbitals on GPUs and Multi-

core CPUs.  J. E. Stone, J. Saam, D. Hardy, K. Vandivort, W. Hwu, K. Schulten,   2nd Workshop on 

General-Purpose Computation on Graphics Processing Units (GPGPU-2), ACM International Conference 

Proceeding Series, volume 383, pp. 9-18, 2009. 

C60 

Molecular Orbitals w/ NVRTC JIT 
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Padding optimizes global memory 

performance, guaranteeing coalesced 

global memory accesses Grid of thread blocks 

Small 8x8 thread blocks afford large  

per-thread register count, shared memory 

              

MO 3-D lattice decomposes 

into 2-D slices (CUDA grids) 

… 0,0 0,1 

1,1 

… … 

… 

… 

Threads 
producing 
results that are 
discarded 

Each thread 

computes one 

MO lattice point. 

Threads 
producing 
results that 
are used 

1,0 

…  

GPU 2 

GPU 1 

GPU 0 

Lattice computed 

using multiple GPUs 

MO GPU Parallel Decomposition 
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MO Kernel for One Grid Point  (Naive C) 

Loop over atoms 

Loop over shells 

Loop over primitives: 

largest component of 

runtime, due to expf() 

Loop over angular 

momenta 

(unrolled in real code) 

…  

for (at=0; at<numatoms; at++) { 

    int prim_counter = atom_basis[at]; 

    calc_distances_to_atom(&atompos[at], &xdist, &ydist, &zdist, &dist2, &xdiv); 

    for (contracted_gto=0.0f, shell=0; shell < num_shells_per_atom[at]; shell++) { 

        int shell_type = shell_symmetry[shell_counter]; 

        for (prim=0; prim < num_prim_per_shell[shell_counter];  prim++) { 

            float exponent         = basis_array[prim_counter       ]; 

            float contract_coeff = basis_array[prim_counter + 1]; 

            contracted_gto += contract_coeff * expf(-exponent*dist2); 

            prim_counter += 2; 

        } 

        for (tmpshell=0.0f, j=0, zdp=1.0f; j<=shell_type; j++, zdp*=zdist) { 

           int imax = shell_type - j;  

           for (i=0, ydp=1.0f, xdp=pow(xdist, imax); i<=imax; i++, ydp*=ydist, xdp*=xdiv) 

              tmpshell += wave_f[ifunc++] * xdp * ydp * zdp; 

        } 

        value += tmpshell * contracted_gto; 

        shell_counter++; 

   }  

} ….. 
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MO Kernel Structure, Opportunity for NRTC JIT… 
Data-driven execution, but representative loop trip counts in (…) 

Loop over atoms (1 to ~200) {                   

Loop over electron shells for this atom type (1 to ~6) { 

Loop over primitive functions for this shell type (1 to ~6) { 

 

                                                                                                } 

Loop over angular momenta for this shell type (1 to ~15) {} 

} 

} 

Small loop trip counts result in significant loop overhead.  Runtime kernel 

generation and NVRTC JIT compilation can achieve in a large (1.8x!) speed 

boost via loop unrolling, constant folding, elimination of array accesses, … 
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Molecular Orbital Computation and Display Process 
Runtime Kernel Generation, NVRTC Just-In-Time (JIT) Compilation 

Read QM simulation log file, trajectory 

Compute 3-D grid of MO wavefunction amplitudes 

using basis set-specific CUDA kernel 

Extract isosurface mesh from 3-D MO grid  

Render the resulting surface  

Preprocess MO coefficient data 

eliminate duplicates, sort by type, etc… 

For current frame and MO index,  

retrieve MO wavefunction coefficients   

One-time 

initialization 

Generate/compile basis set-specific CUDA kernel 

For each trj frame, 

for each MO shown 

Initialize Pool of GPU  

Worker Threads 
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   contracted_gto = 1.832937 * expf(-7.868272*dist2); 

  contracted_gto += 1.405380 * expf(-1.881289*dist2); 

  contracted_gto += 0.701383 * expf(-0.544249*dist2); 

    for (shell=0; shell < maxshell; shell++)  { 

      float contracted_gto = 0.0f; 

 

      // Loop over the Gaussian primitives of CGTO 

      int maxprim = const_num_prim_per_shell[shell_counter]; 

      int shell_type = const_shell_symmetry[shell_counter]; 

      for (prim=0; prim < maxprim;  prim++) { 

        float exponent          = const_basis_array[prim_counter      ]; 

        float contract_coeff = const_basis_array[prim_counter + 1]; 

        contracted_gto += contract_coeff  * expf(-exponent*dist2); 

        prim_counter += 2; 

      } 

General loop-based 

data-dependent  MO 

CUDA kernel 

Runtime-generated 

data-specific MO 

CUDA kernel compiled 

via CUDA 7.0    

NVRTC JIT… 

1.8x Faster 
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   contracted_gto = 1.832937 * expf(-7.868272*dist2); 

    contracted_gto += 1.405380 * expf(-1.881289*dist2); 

    contracted_gto += 0.701383 * expf(-0.544249*dist2); 

    // P_SHELL 

    tmpshell = const_wave_f[ifunc++] * xdist; 

    tmpshell += const_wave_f[ifunc++] * ydist; 

    tmpshell += const_wave_f[ifunc++] * zdist; 

    value += tmpshell * contracted_gto; 

 

    contracted_gto = 0.187618 * expf(-0.168714*dist2); 

    // S_SHELL 

    value += const_wave_f[ifunc++] * contracted_gto; 

 

    contracted_gto = 0.217969 * expf(-0.168714*dist2); 

    // P_SHELL 

    tmpshell = const_wave_f[ifunc++] * xdist; 

    tmpshell += const_wave_f[ifunc++] * ydist; 

    tmpshell += const_wave_f[ifunc++] * zdist; 

    value += tmpshell * contracted_gto; 

 

    contracted_gto = 3.858403 * expf(-0.800000*dist2); 

    // D_SHELL 

    tmpshell = const_wave_f[ifunc++] * xdist2; 

    tmpshell += const_wave_f[ifunc++] * ydist2; 

    tmpshell += const_wave_f[ifunc++] * zdist2; 

    tmpshell += const_wave_f[ifunc++] * xdist * ydist; 

    tmpshell += const_wave_f[ifunc++] * xdist * zdist; 

    tmpshell += const_wave_f[ifunc++] * ydist * zdist; 

    value += tmpshell * contracted_gto; 

    for (shell=0; shell < maxshell; shell++)  { 

      float contracted_gto = 0.0f; 

 

      // Loop over the Gaussian primitives of CGTO 

      int maxprim = const_num_prim_per_shell[shell_counter]; 

      int shell_type = const_shell_symmetry[shell_counter]; 

      for (prim=0; prim < maxprim;  prim++) { 

        float exponent          = const_basis_array[prim_counter      ]; 

        float contract_coeff = const_basis_array[prim_counter + 1]; 

        contracted_gto += contract_coeff  * expf(-exponent*dist2); 

        prim_counter += 2; 

      } 

 

      float tmpshell=0; 

      switch (shell_type) { 

        case S_SHELL: 

          value += const_wave_f[ifunc++] * contracted_gto; 

          break; 

[…..] 

        case D_SHELL: 

          tmpshell += const_wave_f[ifunc++] * xdist2; 

          tmpshell += const_wave_f[ifunc++] * ydist2; 

          tmpshell += const_wave_f[ifunc++] * zdist2; 

          tmpshell += const_wave_f[ifunc++] * xdist * ydist; 

          tmpshell += const_wave_f[ifunc++] * xdist * zdist; 

          tmpshell += const_wave_f[ifunc++] * ydist * zdist; 

          value += tmpshell * contracted_gto; 

          break; 

General loop-based 

data-dependent  MO 

CUDA kernel 

Runtime-generated 

data-specific MO 

CUDA kernel compiled 

via CUDA 7.0    

NVRTC JIT… 

1.8x Faster 
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NAMD and VMD Use GPUs and Petascale Computing to Meet 

Computational Biology’s Insatiable Demand for Processing Power 
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NAMD Titan XK7 Performance August 2013 

HIV-1 Trajectory:       

~1.2 TB/day         

@ 4096 XK7 

nodes 

NAMD XK7 vs. XE6 

GPU Speedup: 2x-4x 
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VMD Petascale Visualization and Analysis 
• Analyze/visualize large trajectories too large to 

transfer off-site: 

– User-defined parallel analysis operations, data types 

– Parallel rendering, movie making 

• Supports GPU-accelerated Cray XK7 nodes for both 

visualization and analysis: 

– GPU accelerated trajectory analysis w/ CUDA 

– OpenGL and GPU ray tracing for visualization and 

movie rendering 

• Parallel I/O rates up to 275 GB/sec on 8192 Cray 

XE6 nodes – can read in 231 TB in 15 minutes! 

Parallel VMD currently available on:  

ORNL Titan, NCSA Blue Waters, Indiana Big Red II, 

CSCS Piz Daint, and similar systems 

 

NCSA Blue Waters Hybrid Cray XE6 / XK7 

22,640 XE6 dual-Opteron CPU nodes 

4,224 XK7 nodes w/ Telsa K20X GPUs 
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Molecular Dynamics Flexible Fitting (MDFF) 

X-ray crystallography Electron microscopy 

APS at Argonne FEI microscope 

Flexible fitting of atomic structures into electron microscopy maps using molecular dynamics.  
L. Trabuco, E. Villa, K. Mitra, J. Frank, and K. Schulten.  Structure, 16:673-683, 2008. 

MDFF 

ORNL Titan 

Acetyl - CoA Synthase 
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An external potential derived from the 

EM map is defined on a grid as 

Two terms are added to the MD potential 

A mass-weighted force is then applied to each atom 

Molecular Dynamics Flexible Fitting - Theory 
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Structural Route to the all-atom HIV-1 Capsid 

Zhao et al. , Nature 497: 643-646 (2013) 

High res. EM of hexameric tubule, tomography of capsid, 

all-atom model of capsid by MDFF w/ NAMD & VMD, 

NSF/NCSA Blue Waters computer at Illinois 

Pornillos et al. , Cell 2009, Nature 2011 

Crystal structures of separated hexamer and pentamer 

Ganser et al. Science, 1999 

1st TEM (1999) 1st tomography (2003) 

Briggs et al. EMBO J, 2003 

Briggs et al. Structure, 2006 

cryo-ET (2006) 

Byeon et al., Cell 2009 Li et al., Nature, 2000 

hexameric tubule 
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Evaluating Quality-of-Fit for Structures Solved by 

Hybrid Fitting Methods 

Compute Pearson 

correlation to evaluate the 

fit of a reference cryo-EM 

density map with a 

simulated density map 

produced from an           

all-atom structure. 
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GPUs Can Reduce MDFF Trajectory Analysis 

Runtimes from Hours to Minutes 

GPUs enable laptops and 

desktop workstations to 

handle tasks that would have 

previously required a cluster, 

or a very long wait… 

 

GPU-accelerated petascale 

supercomputers enable 

analyses that were previously 

impractical, allowing detailed 

study of very large structures 

such as viruses GPU-accelerated MDFF Cross Correlation Timeline 

Regions with poor fit               Regions with good fit 
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MDFF Density Map Algorithm 
• Build spatial acceleration data 

structures, optimize data for 

GPU 

• Compute 3-D density map: 

 

 

• Truncated Gaussian and 

spatial acceleration grid 

ensure linear time-complexity 

 

 

 

3-D density map lattice point 

and the neighboring spatial 

acceleration cells it references 
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Padding optimizes global 

memory performance, 

guaranteeing coalesced global 

memory accesses 

Grid of thread blocks 

Small 8x8x2 CUDA thread blocks afford large  

per-thread register count, shared memory 

              

3-D density map decomposes into 3-D grid 

of 8x8x8 tiles containing CC partial sums 

and local CC values 

… 0,0 0,1 

1,1 

… … 

… 

… 

Inactive threads, 
region of 
discarded output 

Each thread computes 

4 z-axis density map 

lattice points and 

associated CC partial 

sums 

Threads 
producing 
results that are 
used 

1,0 

Fusion of density and CC 

calculations into a single 

CUDA kernel!!! 

 

Spatial CC map and overall 

CC value computed in a 

single pass 

Single-Pass MDFF GPU Cross-Correlation 
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VMD GPU Cross Correlation Performance 

RHDV 

 

Mm-cpn 

open 

GroEL Aquaporin 

Resolution (Å) 6.5 8 4 3 

Atoms 702K 61K 54K 1.6K 

VMD-CUDA 

Quadro K6000 

0.458s 

34.6x 

0.06s 

25.7x 

0.034s 

36.8x 

0.007s 

55.7x 

VMD-CPU-SSE 

32-threads, 2x Xeon E5-2687W 

0.779s 

20.3x 

0.085s 

18.1x 

0.159s 

7.9x 

0.033s 

11.8x 

Chimera  

1-thread Xeon E5-2687W 

15.86s 

1.0x 

1.54s 

1.0x 

1.25s 

1.0x 

0.39s 

1.0x 

GPU-Accelerated Analysis and Visualization of Large Structures Solved by 

Molecular Dynamics Flexible Fitting.  J. E. Stone, R. McGreevy, B. Isralewitz, and 

K. Schulten.  Faraday Discussions 169:265-283, 2014. 



Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics 

Beckman Institute, University of Illinois at Urbana-Champaign - www.ks.uiuc.edu 

VMD RHDV Cross Correlation Timeline 

on Cray XK7 
RHDV 

Atoms 702K 

Traj. Frames 10,000 

Component 

Selections 

720 

Single-node XK7 

(projected) 

336 hours (14 days) 

128-node XK7 3.2 hours 

105x speedup 

2048-node XK7 19.5 minutes 

1035x speedup 

RHDV 

 Group-relative CC 

Timeline 

Calculation would take 5 years 

using original serial CC 

calculation on a workstation! 
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Visualization Goals, Challenges 

• Increased GPU acceleration for visualization of petascale 

molecular dynamics trajectories 

• Overcome GPU memory capacity limits, enable high 

quality visualization of >100M atom systems 

• Use GPU to accelerate not only interactive-rate 

visualizations, but also photorealistic ray tracing with 

artifact-free ambient occlusion lighting, etc. 

• Maintain ease-of-use, intimate link to VMD analytical 

features, atom selection language, etc. 
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VMD “QuickSurf” Representation, Ray Tracing 

All-atom HIV capsid simulations w/ up to 64M atoms on Blue Waters 
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• Displays continuum of structural detail: 

– All-atom, coarse-grained, cellular models 

– Smoothly variable detail controls 

• Linear-time algorithm, scales to millions of 

particles, as limited by memory capacity 

• Uses multi-core CPUs and GPU acceleration 

to enable smooth interactive animation of 

molecular dynamics trajectories w/ up to               

~1-2 million atoms 

• GPU acceleration yields 10x-15x speedup 

vs.  multi-core CPUs 

VMD “QuickSurf” Representation 

Fast Visualization of Gaussian Density Surfaces for Molecular 

Dynamics and Particle System Trajectories.                            

M. Krone, J. E. Stone, T. Ertl, K. Schulten.  EuroVis Short Papers, 

pp. 67-71, 2012 

Satellite Tobacco Mosaic Virus 
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VMD 1.9.2 QuickSurf Algorithm Improvements 
• 50%-66% memory use, 1.5x-2x speedup 

• Build spatial acceleration data structures, optimize 
data for GPU 

• Compute 3-D density map, 3-D color texture map 
with data-parallel “gather” algorithm: 

 

 

• Normalize, quantize, and compress density, 
color, surface normal data while in registers, 
before writing out to GPU global memory 

• Extract isosurface, maintaining 
quantized/compressed data representation 

• Centralized GPU memory management among 
all molecules+representations: enables graceful 
eviction of surface data for ray tracing, or other 
GPU-memory-capacity-constrained operations 

 

3-D density map lattice, 

spatial acceleration grid, 

and extracted surface 
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VMD GPU-Accelerated Ray Tracing Engine 

• Complementary to VMD OpenGL GLSL renderer that uses fast,         

low-cost, interactivity-oriented rendering techniques 

• Key ray tracing benefits:  

– Ambient occlusion lighting and hard shadows 

– High quality transparent surfaces  

– Depth of field focal blur and similar optical effects 

– Mirror reflection 

– Single-pass stereoscopic rendering 

– Special cameras: planetarium dome master format 
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Lighting Comparison, STMV Capsid 
Two lights, no 

shadows 

Two lights,              

hard shadows,           

1 shadow ray per light 

Ambient occlusion 

+ two lights,       

144 AO rays/hit 
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HIV-1 Parallel Movie Rendering 

on Blue Waters Cray XE6/XK7 

 Node Type 

and Count 

Script Load 

Time 

State Load 

Time 

Geometry + Ray 

Tracing 

Total 

Time 

256 XE6 CPUs 7 s 160 s 1,374 s 1,541 s 

512 XE6 CPUs 13 s 211 s 808 s 1,032 s 

  64 XK7 Tesla K20X GPUs 2 s 38 s 655 s 695 s 

128 XK7 Tesla K20X GPUs 4 s 74 s 331 s 410 s 

256 XK7 Tesla K20X GPUs 7 s 110 s 171 s 288 s 

HIV-1 “HD” 1920x1080 movie rendering:            
GPUs speed up geom+ray tracing by up to eight times 

VMD 

1.9.2 

GPU-Accelerated Molecular Visualization on Petascale Supercomputing Platforms, 

Stone et al. UltraVis'13: Eighth Workshop on Ultrascale Visualization Proceedings, 2013. 
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Photosynthetic Chromatophore of Purple Bacteria 

• Purple bacteria live in light-

starved conditions at the bottom 

of ponds, with ~1% sunlight 

• Chromatophore system 

– 100M atoms, 700 Å3 volume 

– Contains over 100 proteins, ~3,000 

bacteriochlorophylls for collection 

of photons 

– Energy conversion process 

synthesizes ATP, which fuels 

cells… 
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• Movie sums up ~40 

papers and 37 years of 

work by Schulten lab 

and collaborators 

• Driving NAMD and 

VMD software design:  

– Two decades of 

simulation, analysis, and 

visualization of individual 

chromatophore 

components  w/ 

NAMD+VMD 
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Role of Visualization 

• MD simulation, analysis, 

visualization provide 

researchers a so-called 

“Computational Microscope”  

• Visualization is heavily used at 

every step of structure building, 

simulation prep and run, 

analysis, and publication 

1998 VMD rendering of LH-I  

SGI Onyx2 InfiniteReality  w/ IRIS GL 
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VMD Chromatophore Rendering on Blue Waters 

• New representations, GPU-accelerated 

molecular surface calculations, memory-

efficient algorithms for huge complexes 

• VMD GPU-accelerated ray tracing 

engine w/ OptiX+CUDA+MPI+Pthreads 

• Each revision: 7,500 frames render on 

~96 Cray XK7 nodes in 290 node-hours, 

45GB of images prior to editing 

GPU-Accelerated Molecular Visualization on Petascale Supercomputing Platforms.                        

J. E. Stone, K. L. Vandivort, and K. Schulten. UltraVis’13, 2013. 

Visualization of Energy Conversion Processes in a Light Harvesting Organelle at Atomic Detail.     

M. Sener, et al. SC'14 Visualization and Data Analytics Showcase, 2014.                                                                                                         

***Winner of the SC'14 Visualization and Data Analytics Showcase 
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VMD 1.9.2 Interactive GPU Ray Tracing 

• Ray tracing heavily used for VMD 
publication-quality images/movies  

• High quality lighting, shadows, 
transparency, depth-of-field focal 
blur, etc. 

• VMD now provides –interactive– 
ray tracing on laptops, desktops, 
and remote visual supercomputers 
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Scene Graph 

VMD TachyonL-OptiX Interactive               

Ray Tracing Engine 

RT Rendering Pass 

Seed RNGs 

TrBvh               

RT Acceleration 

Structure  

Accumulate RT samples 

Normalize+copy accum. buf 

Compute ave. FPS, 

 adjust RT samples per pass 
Output 

Framebuffer 

Accum. Buf 



Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics 

Beckman Institute, University of Illinois at Urbana-Champaign - www.ks.uiuc.edu 

VMD-Next: Coming Soon 

GPU Ray Tracing of  

HIV-1 Capsid Detail 

• Further integration of interactive ray tracing into VMD 

o Seamless interactive RT in main VMD display 

window 

o Support trajectory playback in interactive RT 

o Enable multi-node interactive RT on HPC systems 

 

• Improved movie making tools, off-screen OpenGL 

movie rendering, parallel movie rendering: 

o EGL for parallel graphics w/o X11 server 

o Built-in (basic) interactive remote visualization on 

HPC clusters and supercomputers 

 

• Improved structure building tools 

 

• Many new and updated user-contributed plugins:  
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GPU Computing Publications 
http://www.ks.uiuc.edu/Research/gpu/ 

• Visualization of Energy Conversion Processes in a Light Harvesting Organelle at Atomic 
Detail.  M. Sener, J. E. Stone, A. Barragan, A. Singharoy, I. Teo, K. L. Vandivort, B. Isralewitz, B. Liu, 
B. Goh, J. C. Phillips, L. F. Kourkoutis, C. N. Hunter, and K. Schulten.                                           
SC'14 Visualization and Data Analytics Showcase, 2014.                                                                                                         
***Winner of the SC'14 Visualization and Data Analytics Showcase 

• Runtime and Architecture Support for Efficient Data Exchange in Multi-Accelerator 
Applications. J. Cabezas, I. Gelado, J. E. Stone, N. Navarro, D. B. Kirk, and W. Hwu.       IEEE 
Transactions on Parallel and Distributed Systems, 2014. (In press) 

• Unlocking the Full Potential of the Cray XK7 Accelerator. M. D. Klein and J. E. Stone.     Cray 
Users Group, Lugano Switzerland, May 2014. 

• GPU-Accelerated Analysis and Visualization of Large Structures Solved by Molecular 
Dynamics Flexible Fitting. J. E. Stone, R. McGreevy, B. Isralewitz, and K. Schulten.      Faraday 
Discussions, 169:265-283, 2014. 

• Simulation of reaction diffusion processes over biologically relevant size and time scales 
using multi-GPU workstations. M. J. Hallock, J. E. Stone, E. Roberts, C. Fry, and Z. Luthey-
Schulten. Journal of Parallel Computing, 40:86-99, 2014. 
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GPU Computing Publications 
http://www.ks.uiuc.edu/Research/gpu/ 

• GPU-Accelerated Molecular Visualization on Petascale Supercomputing Platforms.                    
J. Stone, K. L. Vandivort, and K. Schulten. UltraVis'13: Proceedings of the 8th International Workshop 
on Ultrascale Visualization, pp. 6:1-6:8, 2013. 

• Early Experiences Scaling VMD Molecular Visualization and Analysis Jobs on Blue Waters.          
J. Stone, B. Isralewitz, and K. Schulten.  In proceedings, Extreme Scaling Workshop,  2013. 

• Lattice Microbes: High‐performance stochastic simulation method for the reaction‐diffusion 
master equation.  E. Roberts, J. Stone, and Z. Luthey‐Schulten. 
J. Computational Chemistry 34 (3), 245-255, 2013. 

• Fast Visualization of Gaussian Density Surfaces for Molecular Dynamics and Particle System 
Trajectories. M. Krone, J. Stone,  T. Ertl, and K. Schulten. EuroVis Short Papers, pp. 67-71, 2012. 

• Immersive Out-of-Core Visualization of Large-Size and Long-Timescale Molecular Dynamics 
Trajectories. J. Stone, K. L. Vandivort, and K. Schulten. G. Bebis et al. (Eds.): 7th International 
Symposium on Visual Computing (ISVC 2011), LNCS 6939, pp. 1-12, 2011. 

• Fast Analysis of Molecular Dynamics Trajectories with Graphics Processing Units – Radial 
Distribution Functions.  B. Levine, J. Stone, and A. Kohlmeyer. J. Comp. Physics, 230(9):3556-
3569, 2011. 
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• Quantifying the Impact of GPUs on Performance and Energy Efficiency in HPC Clusters. 

J. Enos, C. Steffen, J. Fullop, M. Showerman, G. Shi, K. Esler, V. Kindratenko, J. Stone,           

J Phillips. International Conference on Green Computing, pp. 317-324, 2010. 

• GPU-accelerated molecular modeling coming of age.  J. Stone, D. Hardy, I. Ufimtsev,         

K. Schulten.  J. Molecular Graphics and Modeling, 29:116-125, 2010. 

• OpenCL: A Parallel Programming Standard for Heterogeneous Computing.                       

J. Stone, D. Gohara, G. Shi.  Computing in Science and Engineering, 12(3):66-73, 2010. 

• An Asymmetric Distributed Shared Memory Model for Heterogeneous Computing 

Systems.  I. Gelado, J. Stone, J. Cabezas, S. Patel, N. Navarro, W. Hwu.  ASPLOS ’10: 

Proceedings of the 15th International Conference on Architectural Support for Programming 

Languages and Operating Systems, pp. 347-358, 2010. 
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• GPU Clusters for High Performance Computing.  V. Kindratenko, J. Enos, G. Shi, M. 
Showerman, G. Arnold, J. Stone, J. Phillips, W. Hwu.  Workshop on Parallel Programming on 
Accelerator Clusters (PPAC), In Proceedings IEEE Cluster 2009, pp. 1-8, Aug. 2009. 

• Long time-scale simulations of in vivo diffusion using GPU hardware.  E. Roberts, J. 
Stone, L. Sepulveda, W. Hwu, Z. Luthey-Schulten. In IPDPS’09: Proceedings of the 2009 IEEE 
International Symposium on Parallel & Distributed Computing, pp. 1-8, 2009. 

• High Performance Computation and Interactive Display of Molecular Orbitals on GPUs 
and Multi-core CPUs.    J. Stone, J. Saam, D. Hardy, K. Vandivort, W. Hwu, K. Schulten, 2nd 
Workshop on General-Purpose Computation on Graphics Pricessing Units (GPGPU-2), ACM 
International Conference Proceeding Series, volume 383, pp. 9-18, 2009. 

• Probing Biomolecular Machines with Graphics Processors.  J. Phillips, J. Stone.  
Communications of the ACM, 52(10):34-41, 2009. 

• Multilevel summation of electrostatic potentials using graphics processing units. D. 
Hardy, J. Stone, K. Schulten. J. Parallel Computing, 35:164-177, 2009. 
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• Adapting a message-driven parallel application to GPU-accelerated clusters.                                      

J. Phillips, J. Stone, K. Schulten.  Proceedings of the 2008 ACM/IEEE Conference on 

Supercomputing, IEEE Press, 2008. 

• GPU acceleration of cutoff pair potentials for molecular modeling applications.                                

C. Rodrigues, D. Hardy, J. Stone, K. Schulten, and W. Hwu. Proceedings of the 2008 

Conference On Computing Frontiers, pp. 273-282, 2008. 

• GPU computing.  J. Owens, M. Houston, D. Luebke, S. Green, J. Stone, J. Phillips. 

Proceedings of the IEEE, 96:879-899, 2008. 

• Accelerating molecular modeling applications with graphics processors. J. Stone, J. 

Phillips, P. Freddolino, D. Hardy, L. Trabuco, K. Schulten. J. Comp. Chem., 28:2618-2640, 

2007. 

• Continuous fluorescence microphotolysis and correlation spectroscopy. A. Arkhipov, J. 

Hüve, M. Kahms, R. Peters, K. Schulten. Biophysical Journal, 93:4006-4017, 2007.  


