GPU TECHNOLOGY CONFERENCE

Klaus Schulten

Department of Physics and Theoretical and Computational Biophysics Group University of Illinois at Urbana-Champaign

GTC, San Jose Convention Center, CA | Sept. 20–23, 2010

GPU and the Computational Microscope

Investigation of drug (Tamiflu) resistance of the "swine" flu virus demanded **fast response!**

Accuracy • Speed-up • Unprecedented Scale

Computational Microscope Views at Atomic Resolution...

GPU Solution 1: Time-Averaged Electrostatics

- Thousands of trajectory frames
- 1.5 hour job reduced to 3 min
- GPU Speedup: 25.5x
- Per-node power consumption on NCSA GPU cluster:
 - CPUs-only: 448 Watt-hours
 - CPUs+GPUs: 43 Watt-hours
- Power efficiency gain: 10x

Science 2: How Nature Harvests Sun Light

95% of the energy in the biosphere comes from this energy source

GPU Solution 2: Multilevel Summation Method for Electrostatics on the GPU

Multilevel summation method has linear time complexity well suited for GPUs; more flexible than other methods

Science 3: How Proteins are Made from Genetic Blueprint

- Ribosome Decodes genetic information from mRNA
- Important target of many antibiotics
- Static structures of crystal forms led to 2009 Nobel Prize
- But one needs structures of ribosomes in action!

new protein

Science 3: How Proteins Are Made from Genetic Blueprint

GPU Solution 3: Molecular Dynamics Simulations

GPUs reduced time for simulation from two months to two weeks!

Science 4: Nanopore Sensors

GPU Solution 4: Computing Radial Distribution Functions

- 4.7 million atoms
- 4-core Intel X5550 CPU: 15 hours
- 4 NVIDIA C2050 GPUs: 10 minutes
- Fermi GPUs ~3x faster than GT200 GPUs: larger on-chip shared memory

Science 5: Quantum Chemistry Visualization

- Chemistry is the result of atoms sharing electrons
- Electrons occupy "clouds" in the space around atoms
- Calculations for visualizing these "clouds" are costly: tens to hundreds of seconds on CPUs – non-interactive
- GPUs enable the dynamics of electronic structures to be animated interactively for the first time

Taxol: Cancer Drug

VMD enables interactive display of QM simulations, e.g. Terachem, GAMESS

Science 5: Quantum Chemistry Visualization

quickly as you see this movie! CPUs: One working day! day Simulation: Terachem Interactive Visualization: VMD Courtesy T. Martinez, Stanford minute

Rendering of electron "clouds" achieved on GPUs as

GPU Solution 5: Computing C₆₀ Molecular Orbitals

Science 6: Protein Folding

- Protein **misfolding** responsible for diseases:
 - -Alzheimer's
 - -Parkinson's
 - -Huntington
 - -Mad cow
 - -Type II diabetes

Observe folding process in unprecedented detail

Science 6: Protein Folding

- Some simulations still fail to fold proteins due to inaccurate modeling of interatomic forces!
- Protein folding demands more accurate model which leads to more expensive computation

WW domain 3 months on 329 CPUs

GPU Solution 6: Computing More Accurate Simulation Models

- Atomic polarizability increases computation by 2x...
- ...but, the additional computations are perfectly suited to the GPU!
- For now, NAMD calculates atomic polarizability on CPUs only...soon we will also use GPUs

Atomic polarizability of water, highly accurately simulated through additional particles (shown in green)

Genetic activity of E. coli bacteria

O --

Calculation	FX5600			2
	Time	%	Performance [†]	
	(ms)			
Load lattice block	5.2	20	13 GB/s	
Random number generation [‡]	7.0	27	48 GOPS	
Particle movement decision	7.7	29	109 GOPS	
Particle propagation	3.6	13	94 GOPS	
Store lattice block	2.9	11	23 GB/s	
Total	26.4	100		
	GTX280			
Load lattice block	2.2	16	30 GB/s	
Random number generation [‡]	3.8	28	88 GOPS	
Particle movement decision	4.4	33	191 GOPS	2
Particle propagation	1.6	12	209 GOPS	
Store lattice block	1.5	11	44 GB/s	
Total	13.5	100		

mRNA • LacY

Zan Luthey-Schulten and Elijah Roberts

Since our technique is a native GPU algorithm, no optimized CPU version exists by which to measure its performance..

0 min

2010 Workshop on GPU Computing for Molecular Modeling

- Spread the benefits of GPU computing to solve new problems in molecular modeling
- Intensive 2-day workshop after 1-week GPU workshop at NCSA
- Participants present their work and exchange ideas and GPU solutions

Three of our GPU Heroes

Our GPU Biomedical Science Computing Goals:

- More accurate simulations
- Speed-up: simulations now take minutes instead of weeks
- Make previously unreachable scales accessible

Acknowledgements

- Theoretical and Computational Biophysics Group, University of Illinois at Urbana-Champaign
- Wen-mei Hwu and the IMPACT group at University of Illinois at Urbana-Champaign
- L. Kale and the Center for Parallel Computing at University of Illinois at Urbana-Champaign
- NVIDIA CUDA Center of Excellence, University of Illinois at Urbana-Champaign
- Ben Levine, Axel Kohlmeyer at Temple
 University
- NCSA Innovative Systems Lab
- The CUDA team at NVIDIA
- Zan Luthey-Schulten and Elija Roberts (E. coli whole cell simulations)
- NIH support: P41-RR05969

GPU TECHNOLOGY CONFERENCE

Thank You

