
BTRC for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

1

Analysis and Visualization
 Algorithms in VMD

David Hardy
http://www.ks.uiuc.edu/Research/~dhardy/
NAIS: State-of-the-Art Algorithms for Molecular Dynamics
(Presenting the work of John Stone.)

BTRC for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

2

VMD – “Visual Molecular Dynamics”
•  Visualization and analysis of molecular dynamics simulations,

sequence data, volumetric data, quantum chemistry simulations,
particle systems, …

•  User extensible with scripting and plugins
•  http://www.ks.uiuc.edu/Research/vmd/

BTRC for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

3
GPU Accelerated Trajectory Analysis

and Visualization in VMD

GPU-Accelerated Feature GPU
Speedup

Molecular orbital display 120x

Radial distribution function 92x

Electrostatic field calculation 44x

Molecular surface display 40x
Ion placement 26x
MDFF density map synthesis 26x
Implicit ligand sampling 25x
Root mean squared fluctuation 25x
Radius of gyration 21x
Close contact determination 20x
Dipole moment calculation 15x

BTRC for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

4
VMD for Demanding Analysis Tasks

Parallel VMD Analysis w/ MPI
•  Analyze trajectory frames,

structures, or sequences in
parallel on clusters and
supercomputers:
–  Compute time-averaged electrostatic

fields, MDFF quality-of-fit, etc.
–  Parallel rendering, movie making

•  Addresses computing
requirements beyond desktop

•  User-defined parallel reduction
operations, data types

•  Dynamic load balancing:
–  Tested with up to 15,360 CPU cores

•  Supports GPU-accelerated
clusters and supercomputers

VMD

VMD

VMD

Sequence/Structure Data,
Trajectory Frames, etc…

Gathered Results

Data-Parallel
Analysis in

VMD

BTRC for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

5

Time-Averaged Electrostatics Analysis
on Energy-Efficient GPU Cluster

•  1.5 hour job (CPUs) reduced to
3 min (CPUs+GPU)

•  Electrostatics of thousands of
trajectory frames averaged

•  Per-node power consumption on
NCSA “AC” GPU cluster:
–  CPUs-only: 299 watts
–  CPUs+GPUs: 742 watts

•  GPU Speedup: 25.5x
•  Power efficiency gain: 10.5x

Quantifying the Impact of GPUs on Performance and Energy
Efficiency in HPC Clusters. J. Enos, C. Steffen, J. Fullop, M.

Showerman, G. Shi, K. Esler, V. Kindratenko, J. Stone, J. Phillips.
The Work in Progress in Green Computing, pp. 317-324, 2010.

BTRC for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

6

Time-Averaged Electrostatics Analysis on
NCSA Blue Waters Early Science System

NCSA Blue Waters Node Type Seconds per
trajectory frame for
one compute node

Cray XE6 Compute Node:
32 CPU cores (2xAMD 6200 CPUs)

9.33

Cray XK6 GPU-accelerated Compute Node:
16 CPU cores + NVIDIA X2090 (Fermi) GPU

2.25

Speedup for GPU XK6 nodes vs. CPU XE6 nodes GPU nodes are
4.15x faster overall

Preliminary performance for VMD time-averaged
electrostatics w/ Multilevel Summation Method running

Blue Waters Early Science System

BTRC for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

7

Visualizing Molecular Orbitals
•  Visualization of MOs aids in

understanding the chemistry
of molecular system

•  Display of MOs can require
tens to hundreds of seconds
on multi-core CPUs, even
with hand-coded SSE

•  GPUs enable MOs to be
computed and displayed in a
fraction of a second,
fully interactively

BTRC for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

8

Padding optimizes global
memory performance,
guaranteeing coalesced
global memory accesses

Grid of thread blocks

Small 8x8 thread
blocks afford large
per-thread register
count, shared
memory

MO 3-D lattice

decomposes into 2-D
slices (CUDA grids)

… 0,0 0,1

1,1

… …

…

…

Threads
producing
results that are
discarded

Each thread
computes
one MO
lattice point.

Threads
producing
results that
are used 1,0

…
GPU 2
GPU 1
GPU 0

Lattice can be
computed using
multiple GPUs

MO GPU Parallel Decomposition

BTRC for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

9

VMD MO GPU Kernel Snippet:
Loading Tiles Into Shared Memory On-Demand

[… outer loop over atoms …]
 if ((prim_counter + (maxprim<<1)) >= SHAREDSIZE) {
 prim_counter += sblock_prim_counter;
 sblock_prim_counter = prim_counter & MEMCOAMASK;
 s_basis_array[sidx] = basis_array[sblock_prim_counter + sidx];
 s_basis_array[sidx + 64] = basis_array[sblock_prim_counter + sidx + 64];
 s_basis_array[sidx + 128] = basis_array[sblock_prim_counter + sidx + 128];
 s_basis_array[sidx + 192] = basis_array[sblock_prim_counter + sidx + 192];
 prim_counter -= sblock_prim_counter;
 __syncthreads();
 }
 for (prim=0; prim < maxprim; prim++) {
 float exponent = s_basis_array[prim_counter];
 float contract_coeff = s_basis_array[prim_counter + 1];
 contracted_gto += contract_coeff * __expf(-exponent*dist2);
 prim_counter += 2;
 }
[… continue on to angular momenta loop …]

Shared memory tiles:

• Tiles are checked
and loaded, if
necessary,
immediately prior to
entering key
arithmetic loops

• Adds additional
control overhead to
loops, even with
optimized
implementation

BTRC for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

10

VMD MO GPU Kernel Snippet:
Fermi kernel based on L1 cache

[… outer loop over atoms …]
 // loop over the shells belonging to this atom (or basis function)
 for (shell=0; shell < maxshell; shell++) {
 float contracted_gto = 0.0f;
 int maxprim = shellinfo[(shell_counter<<4)];
 int shell_type = shellinfo[(shell_counter<<4) + 1];
 for (prim=0; prim < maxprim; prim++) {
 float exponent = basis_array[prim_counter];
 float contract_coeff = basis_array[prim_counter + 1];
 contracted_gto += contract_coeff * __expf(-exponent*dist2);
 prim_counter += 2;
 }
 [… continue on to angular momenta loop …]

L1 cache:

• Simplifies code!

• Reduces control
overhead

• Gracefully handles
arbitrary-sized
problems

• Matches performance
of constant memory

BTRC for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

11

VMD Single-GPU Molecular Orbital
Performance Results for C60

Kernel Cores/GPUs Runtime (s) Speedup
Xeon 5550 ICC-SSE 1 30.64 1.0

Xeon 5550 ICC-SSE 8 4.13 7.4
CUDA shared mem 1 0.37 83

CUDA L1-cache (16KB) 1 0.27 113

CUDA const-cache 1 0.26 117

CUDA const-cache, zero-copy 1 0.25 122

Intel X5550 CPU, GeForce GTX 480 GPU

Fermi GPUs have caches: may outperform hand-coded
shared memory kernels. Zero-copy memory transfers
improve overlap of computation and host-GPU I/Os.

BTRC for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

12

VMD Multi-GPU Molecular Orbital
Performance Results for C60

Kernel Cores/GPUs Runtime (s) Speedup
Intel X5550-SSE 1 30.64 1.0

Intel X5550-SSE 8 4.13 7.4
GeForce GTX 480 1 0.255 120

GeForce GTX 480 2 0.136 225

GeForce GTX 480 3 0.098 312

GeForce GTX 480 4 0.081 378

Intel X5550 CPU, 4x GeForce GTX 480 GPUs,

Uses persistent thread pool to avoid GPU init overhead,
dynamic scheduler distributes work to GPUs

BTRC for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

13

Molecular Orbital Computation and Display Process

Read QM simulation log file, trajectory

Compute 3-D grid of MO wavefunction amplitudes
Most performance-demanding step, run on GPU…

Extract isosurface mesh from 3-D MO grid

Apply user coloring/texturing
and render the resulting surface

Preprocess MO coefficient data
eliminate duplicates, sort by type, etc…

For current frame and MO index,
retrieve MO wavefunction coefficients

One-time
initialization

For each trj frame, for
each MO shown

Initialize Pool of GPU
Worker Threads

BTRC for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

14

Multi-GPU Load Balance
•  Many early CUDA codes

assumed all GPUs were identical
•  Host machines may contain a

diversity of GPUs of varying
capability (discrete, IGP, etc)

•  Different GPU on-chip and global
memory capacities may need
different problem “tile” sizes

•  Static decomposition works
poorly for non-uniform workload,
or diverse GPUs

GPU 1
14 SMs

GPU N
30 SMs

…

BTRC for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

15

Multi-GPU Dynamic Work Distribution
// Each GPU worker thread loops over
// subset 2-D planes in a 3-D cube…
while (!threadpool_next_tile(&parms,

tilesize, &tile){
 // Process one plane of work…
 // Launch one CUDA kernel for each
 // loop iteration taken…
 // Shared iterator automatically
 // balances load on GPUs
}

GPU 1 GPU N
…

Dynamic work
distribution

BTRC for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

16

Example Multi-GPU Latencies Relevant to
Interactive Sci-Viz, Script-Driven Analyses

(4 Tesla C2050 GPUs, Intel Xeon 5550)

 6.3us CUDA empty kernel (immediate return)
 9.0us Sleeping barrier primitive (non-spinning
 barrier that uses POSIX condition variables to prevent
 idle CPU consumption while workers wait at the barrier)
 14.8us pool wake, host fctn exec, sleep cycle (no CUDA)
 30.6us pool wake, 1x(tile fetch, simple CUDA kernel launch), sleep
1817.0us pool wake, 100x(tile fetch, simple CUDA kernel launch), sleep

BTRC for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

17

Multi-GPU Dynamic Scheduling Performance
with Heterogeneous GPUs

Kernel Cores/GPUs Runtime (s) Speedup
Intel X5550-SSE 1 30.64 1.0

Quadro 5800 1 0.384 79

Tesla C2050 1 0.325 94

GeForce GTX 480 1 0.255 120
GeForce GTX 480 +
Tesla C2050 +
Quadro 5800

3 0.114 268
(91% of ideal perf)

Dynamic load balancing enables mixture of GPU
generations, SM counts, and clock rates to perform well.

BTRC for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

18

Multi-GPU Runtime
Error/Exception Handling

•  Competition for resources
from other applications can
cause runtime failures, e.g.
GPU out of memory half way
through an algorithm

•  Handle exceptions, e.g.
convergence failure, NaN
result, insufficient compute
capability/features

•  Handle and/or reschedule
failed tiles of work

GPU 1
SM 1.1
128MB

GPU N
SM 2.0

3072MB
…

Original
Workload

Retry Stack

BTRC for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

19

Radial Distribution Functions
•  RDFs describes how

atom density varies
with distance

•  Can be compared with
experiments

•  Shape indicates phase
of matter: sharp peaks
appear for solids,
smoother for liquids

•  Quadratic time
complexity O(N2)

Solid

Liquid

BTRC for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

20

Computing RDFs
•  Compute distances for all pairs of atoms between

two groups of atoms A and B
•  A and B may be the same, or different
•  Use nearest image convention for periodic systems
•  Each pair distance is inserted into a histogram
•  Histogram is normalized one of several ways

depending on use, but usually according to the
volume of the spherical shells associated with
each histogram bin

BTRC for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

21

Multi-GPU RDF Performance
•  4 NVIDIA GTX480

GPUs 30 to 92x faster
than 4-core Intel X5550
CPU

•  Fermi GPUs ~3x faster
than GT200 GPUs:
larger on-chip shared
memory

Solid

Liquid
Fast Analysis of Molecular Dynamics Trajectories

with Graphics Processing Units –
Radial Distribution Functions. B. Levine, J. Stone,

and A. Kohlmeyer. 2010. (submitted)

BTRC for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

22

•  Displays continuum of structural detail:
–  All-atom models
–  Coarse-grained models
–  Cellular scale models
–  Multi-scale models: All-atom + CG, Brownian + Whole Cell
–  Smoothly variable between full detail, and reduced resolution

representations of very large complexes

•  Uses multi-core CPUs and GPU acceleration to enable
smooth real-time animation of MD trajectories

•  Linear-time algorithm, scales to hundreds of millions
of particles, as limited by memory capacity

Molecular Surface Display:
“QuickSurf” Representation

Fast Visualization of Gaussian Density Surfaces for Molecular
Dynamics and Particle System Trajectories.

M. Krone, J. Stone, T. Ertl, K. Schulten. EuroVis 2012. (Submitted)

BTRC for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

23

Recurring Algorithm Design Principles (1)
•  Extensive use of on-chip shared memory and

constant memory to further amplify memory
bandwidth

•  Pre-processing and sorting of operands to organize
computation for peak efficiency on the GPU,
particularly for best use of L1 cache and shared mem

•  Tiled/blocked data structures in GPU global memory
for peak bandwidth utilization

•  Use of CPU to “regularize” the work done by the
GPU, handle exceptions & unusual work units

•  Asynchronous operation of CPU/GPU enabling
overlapping of computation and I/O on both ends

BTRC for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

24

Recurring Algorithm Design Principles (2)

•  Take advantage of special features of the
GPU memory systems
– Broadcasts, wide loads/stores (float4, double2),

texture interpolation, write combining, etc.
•  Avoid doing complex array indexing

arithmetic within the GPU threads, pre-
compute as much as possible outside of the
GPU kernel so the GPU is doing what it’s
best at: floating point arithmetic

