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Analysis and Visualization 
 Algorithms in VMD 

David Hardy 
http://www.ks.uiuc.edu/Research/~dhardy/ 
NAIS: State-of-the-Art Algorithms for Molecular Dynamics 
(Presenting the work of John Stone.) 
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VMD – “Visual Molecular Dynamics” 
•  Visualization and analysis of molecular dynamics simulations, 

sequence data, volumetric data, quantum chemistry simulations, 
particle systems, … 

•  User extensible with scripting and plugins 
•  http://www.ks.uiuc.edu/Research/vmd/ 
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GPU Accelerated Trajectory Analysis 

and Visualization in VMD 

GPU-Accelerated Feature GPU 
Speedup 

Molecular orbital display 120x 

Radial distribution function 92x 

Electrostatic field calculation 44x 

Molecular surface display 40x 
Ion placement 26x 
MDFF density map synthesis  26x 
Implicit ligand sampling 25x 
Root mean squared fluctuation 25x 
Radius of gyration 21x 
Close contact determination 20x 
Dipole moment calculation 15x 
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VMD for Demanding Analysis Tasks 

Parallel VMD Analysis w/ MPI 
•  Analyze trajectory frames, 

structures, or sequences in 
parallel on clusters and 
supercomputers: 
–  Compute time-averaged electrostatic 

fields, MDFF quality-of-fit, etc. 
–  Parallel rendering, movie making 

•  Addresses computing 
requirements beyond desktop 

•  User-defined parallel reduction 
operations, data types 

•  Dynamic load balancing: 
–  Tested with up to 15,360 CPU cores 

•  Supports GPU-accelerated 
clusters and supercomputers 

VMD 

VMD 

VMD 

Sequence/Structure Data,  
Trajectory Frames, etc… 

Gathered Results 

Data-Parallel 
Analysis in 

VMD 
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Time-Averaged Electrostatics Analysis 
on Energy-Efficient GPU Cluster 

•  1.5 hour job (CPUs) reduced to 
3 min (CPUs+GPU) 

•  Electrostatics of thousands of 
trajectory frames averaged  

•  Per-node power consumption on 
NCSA “AC” GPU cluster: 
–  CPUs-only: 299 watts 
–  CPUs+GPUs: 742 watts 

•  GPU Speedup: 25.5x 
•  Power efficiency gain: 10.5x 

Quantifying the Impact of GPUs on Performance and Energy 
Efficiency in HPC Clusters. J. Enos, C. Steffen, J. Fullop, M. 

Showerman, G. Shi, K. Esler, V. Kindratenko, J. Stone, J. Phillips.  
The Work in Progress in Green Computing,  pp. 317-324, 2010. 
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Time-Averaged Electrostatics Analysis on 
NCSA Blue Waters Early Science System 

NCSA Blue Waters Node Type Seconds per 
trajectory frame for 
one compute node 

Cray XE6 Compute Node: 
32 CPU cores (2xAMD 6200 CPUs) 

9.33 

Cray XK6 GPU-accelerated Compute Node: 
16 CPU cores + NVIDIA X2090 (Fermi) GPU 

2.25 

Speedup for GPU XK6 nodes vs. CPU XE6 nodes GPU nodes are 
4.15x faster overall 

Preliminary performance for VMD time-averaged 
electrostatics w/ Multilevel Summation Method running 

Blue Waters Early Science System 
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Visualizing Molecular Orbitals 
•  Visualization of MOs aids in 

understanding the chemistry 
of molecular system 

•  Display of MOs can require 
tens to hundreds of seconds 
on multi-core CPUs, even 
with hand-coded SSE 

•  GPUs enable MOs to be 
computed and displayed in a 
fraction of a second,         
fully interactively 
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Padding optimizes global 
memory performance, 
guaranteeing coalesced 
global memory accesses 

Grid of thread blocks 

Small 8x8 thread 
blocks afford large  
per-thread register 
count, shared 
memory 

              
MO 3-D lattice 

decomposes into 2-D 
slices (CUDA grids) 

… 0,0 0,1 

1,1 

… … 

… 

… 

Threads 
producing 
results that are 
discarded 

Each thread 
computes 
one MO 
lattice point. 

Threads 
producing 
results that 
are used 1,0 

…  
GPU 2 
GPU 1 
GPU 0 

Lattice can be 
computed using 
multiple GPUs 

MO GPU Parallel Decomposition 
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VMD MO GPU Kernel Snippet: 
Loading Tiles Into Shared Memory On-Demand  

[… outer loop over atoms …] 
      if ((prim_counter + (maxprim<<1)) >= SHAREDSIZE) { 
        prim_counter += sblock_prim_counter; 
        sblock_prim_counter = prim_counter & MEMCOAMASK; 
        s_basis_array[sidx          ] = basis_array[sblock_prim_counter + sidx          ]; 
        s_basis_array[sidx +   64] = basis_array[sblock_prim_counter + sidx +  64]; 
        s_basis_array[sidx + 128] = basis_array[sblock_prim_counter + sidx + 128]; 
        s_basis_array[sidx + 192] = basis_array[sblock_prim_counter + sidx + 192]; 
        prim_counter -= sblock_prim_counter; 
        __syncthreads(); 
      }  
      for (prim=0; prim < maxprim;  prim++) { 
        float exponent         = s_basis_array[prim_counter       ]; 
        float contract_coeff = s_basis_array[prim_counter + 1]; 
        contracted_gto += contract_coeff * __expf(-exponent*dist2); 
        prim_counter += 2; 
      } 
[… continue on to angular momenta loop …] 

Shared memory tiles: 

• Tiles are checked 
and loaded, if 
necessary, 
immediately prior to 
entering key 
arithmetic loops 

• Adds additional 
control overhead to 
loops, even with 
optimized 
implementation 
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VMD MO GPU Kernel Snippet: 
Fermi kernel based on L1 cache  

[… outer loop over atoms …] 
  // loop over the shells belonging to this atom (or basis function)  
  for (shell=0; shell < maxshell; shell++) { 
    float contracted_gto = 0.0f;  
    int maxprim   = shellinfo[(shell_counter<<4)      ]; 
    int shell_type = shellinfo[(shell_counter<<4) + 1]; 
    for (prim=0; prim < maxprim; prim++) { 
      float exponent         = basis_array[prim_counter      ]; 
      float contract_coeff = basis_array[prim_counter + 1]; 
      contracted_gto += contract_coeff * __expf(-exponent*dist2);  
      prim_counter += 2; 
   }  
   [… continue on to angular momenta loop …] 

L1 cache: 

• Simplifies code! 

• Reduces control 
overhead 

• Gracefully handles 
arbitrary-sized 
problems 

• Matches performance 
of constant memory 
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VMD Single-GPU Molecular Orbital  
Performance Results for C60 

Kernel Cores/GPUs Runtime (s) Speedup 
Xeon 5550 ICC-SSE 1 30.64 1.0 

Xeon 5550 ICC-SSE 8 4.13 7.4 
CUDA shared mem 1 0.37 83 

CUDA L1-cache (16KB) 1 0.27 113 

CUDA const-cache 1 0.26 117 

CUDA const-cache, zero-copy 1 0.25 122 

Intel X5550 CPU, GeForce GTX 480 GPU 

Fermi GPUs have caches: may outperform hand-coded 
shared memory kernels. Zero-copy memory transfers 
improve overlap of computation and host-GPU I/Os. 
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VMD Multi-GPU Molecular Orbital  
Performance Results for C60 

Kernel Cores/GPUs Runtime (s) Speedup 
Intel X5550-SSE 1 30.64 1.0 

Intel X5550-SSE 8 4.13 7.4 
GeForce GTX 480 1 0.255 120 

GeForce GTX 480 2 0.136 225 

GeForce GTX 480 3 0.098 312 

GeForce GTX 480 4 0.081 378 

Intel X5550 CPU, 4x GeForce GTX 480 GPUs, 

Uses persistent thread pool to avoid GPU init overhead, 
dynamic scheduler distributes work to GPUs 
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Molecular Orbital Computation and Display Process 

Read QM simulation log file, trajectory 

Compute 3-D grid of MO wavefunction amplitudes 
Most performance-demanding step, run on GPU… 

Extract isosurface mesh from 3-D MO grid  

Apply user coloring/texturing  
and render the resulting surface  

Preprocess MO coefficient data 
eliminate duplicates, sort by type, etc… 

For current frame and MO index,  
retrieve MO wavefunction coefficients   

One-time 
initialization 

For each trj frame, for   
each MO shown 

Initialize Pool of GPU  
Worker Threads 
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Multi-GPU Load Balance 
•  Many early CUDA codes 

assumed all GPUs were identical  
•  Host machines may contain a 

diversity of GPUs of varying 
capability (discrete, IGP, etc) 

•  Different GPU on-chip and global 
memory capacities may need 
different problem “tile” sizes 

•  Static decomposition works 
poorly for non-uniform workload, 
or diverse GPUs 

GPU 1 
14 SMs 

GPU N 
30 SMs 

…
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Multi-GPU Dynamic Work Distribution 
// Each GPU worker thread loops over 
// subset 2-D planes in a 3-D cube… 
while (!threadpool_next_tile(&parms, 

tilesize, &tile){ 
  // Process one plane of work… 
  // Launch one CUDA kernel for each 
  //   loop iteration taken… 
  // Shared iterator automatically  
  //   balances load on GPUs 
} 

GPU 1 GPU N 
…

Dynamic work 
distribution 
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Example Multi-GPU Latencies Relevant to 
Interactive Sci-Viz, Script-Driven Analyses 

(4 Tesla C2050 GPUs, Intel Xeon 5550) 

      6.3us     CUDA empty kernel (immediate return) 
      9.0us     Sleeping barrier primitive (non-spinning 
                    barrier that uses POSIX condition variables to prevent 
                    idle CPU consumption while workers wait at the barrier) 
    14.8us      pool wake, host fctn exec, sleep cycle (no CUDA) 
    30.6us      pool wake,     1x(tile fetch, simple CUDA kernel launch), sleep 
1817.0us      pool wake, 100x(tile fetch, simple CUDA kernel launch), sleep 
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Multi-GPU Dynamic Scheduling Performance 
with Heterogeneous GPUs 

Kernel Cores/GPUs Runtime (s) Speedup 
Intel X5550-SSE 1 30.64 1.0 

Quadro 5800 1 0.384 79 

Tesla C2050 1 0.325 94 

GeForce GTX 480 1 0.255 120 
GeForce GTX 480 + 
Tesla C2050 + 
Quadro 5800 

3 0.114 268 
(91% of ideal perf) 

Dynamic load balancing enables mixture of GPU 
generations, SM counts, and clock rates to perform well. 



BTRC for Macromolecular Modeling and Bioinformatics 
http://www.ks.uiuc.edu/ 

Beckman Institute, UIUC 

18 

Multi-GPU Runtime  
Error/Exception Handling 

•  Competition for resources 
from other applications can 
cause runtime failures, e.g. 
GPU out of memory half way 
through an algorithm 

•  Handle exceptions, e.g. 
convergence failure, NaN 
result, insufficient compute 
capability/features 

•  Handle and/or reschedule 
failed tiles of work 

GPU 1 
SM 1.1 
128MB 

GPU N 
SM 2.0 

3072MB 
…

Original 
Workload 

Retry Stack 
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Radial Distribution Functions 
•  RDFs describes how 

atom density varies 
with distance 

•  Can be compared with 
experiments 

•  Shape indicates phase  
of matter: sharp peaks 
appear for solids, 
smoother for liquids 

•  Quadratic time 
complexity O(N2) 

Solid 

Liquid 
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Computing RDFs 
•  Compute distances for all pairs of atoms between 

two groups of atoms A and B 
•  A and B may be the same, or different 
•  Use nearest image convention for periodic systems 
•  Each pair distance is inserted into a histogram 
•  Histogram is normalized one of several ways 

depending on use, but usually according to the 
volume of the spherical shells associated with 
each histogram bin 
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Multi-GPU RDF Performance 
•  4 NVIDIA GTX480 

GPUs 30 to 92x faster 
than 4-core Intel X5550 
CPU 

•  Fermi GPUs ~3x faster 
than GT200 GPUs: 
larger on-chip shared 
memory 

Solid 

Liquid 
Fast Analysis of Molecular Dynamics Trajectories 

with Graphics Processing Units –                        
Radial Distribution Functions.  B. Levine, J. Stone, 

and A. Kohlmeyer. 2010. (submitted) 
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•  Displays continuum of structural detail: 
–  All-atom models 
–  Coarse-grained models 
–  Cellular scale models 
–  Multi-scale models: All-atom + CG,  Brownian + Whole Cell 
–  Smoothly variable between full detail, and reduced resolution 

representations of very large complexes 

•  Uses multi-core CPUs and GPU acceleration to enable 
smooth real-time animation of MD trajectories  

•  Linear-time algorithm, scales to hundreds of millions 
of particles, as limited by memory capacity 

Molecular Surface Display: 
“QuickSurf” Representation 

Fast Visualization of Gaussian Density Surfaces for Molecular 
Dynamics and Particle System Trajectories.   

M. Krone, J. Stone, T. Ertl, K. Schulten. EuroVis 2012.  (Submitted) 
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Recurring Algorithm Design Principles (1) 
•  Extensive use of on-chip shared memory and 

constant memory to further amplify memory 
bandwidth 

•  Pre-processing and sorting of operands to organize 
computation for peak efficiency on the GPU, 
particularly for best use of L1 cache and shared mem 

•  Tiled/blocked data structures in GPU global memory 
for peak bandwidth utilization 

•  Use of CPU to “regularize” the work done by the 
GPU, handle exceptions & unusual work units 

•  Asynchronous operation of CPU/GPU enabling 
overlapping of computation and I/O on both ends 
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Recurring Algorithm Design Principles (2) 

•  Take advantage of special features of the 
GPU memory systems  
– Broadcasts, wide loads/stores (float4, double2), 

texture interpolation, write combining, etc. 
•  Avoid doing complex array indexing 

arithmetic within the GPU threads, pre-
compute as much as possible outside of the 
GPU kernel so the GPU is doing what it’s 
best at: floating point arithmetic 


