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Multilevel Summation Method
• Fast algorithm for N-body electrostatics

• Calculates sum of smoothed pairwise potentials interpolated 
from a hierarchal nesting of grids

• Advantages over PME (particle-mesh Ewald) and/or FMM (fast 
multipole method):

- Algorithm has linear time complexity

- Allows non-periodic or periodic boundaries

- Produces continuous forces for dynamics (advantage over FMM)

- Avoids 3D FFTs for better parallel scaling (advantage over PME)

- Permits polynomial splittings (no erfc() evaluation, as used by PME)

- Spatial separation allows use of multiple time steps

- Extends to other types of pairwise interactions (e.g., dispersion forces)

R. Skeel, I. Tezcan, D. Hardy.  J. Comp. Chem. 23:673-684, 2002.
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MSM Main Ideas 
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• Split the 1/r potential into a short-range cutoff part plus smoothed parts that 
are successively more slowly varying.  All but the top level potential are cut off.

• Smoothed potentials are interpolated from successively coarser grids.

• Finest grid spacing h and smallest cutoff distance a are doubled at each 
successive level. 
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Separation
Separation of length scales:
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Requirements for smoothing function:
ga(r) = 1/r for r ≥ a, short-range part vanishes beyond cutoff

ga(
√

x2 + y2 + z2) and derivatives are slowly varying everywhere

ga has sufficient continuity
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Approximation
Approximate smooth part on 3D grid with spacing h:

ga(r, r
′) ≈

∑

m

φh,m(r) ga(rh,m, r′) interpolate source

≈
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φh,n(r
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)

interpolate destination

=
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φh,m(r) ga(rh,m, rh,n)φh,n(r
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Nodal basis function φh,m:
continuously differentiable

local support

φh,m(r) 1D view

rh,m
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Hierarchy
Recursively apply separation and approximation using
hierarchy of grids.

Separate smooth part: ga(r) =
(

ga(r)−g2a(r)
)

+g2a(r)

ga(r)− g2a(r) vanishes for r ≥ 2a

g2a is more slowly varying than ga

Approximate g2a on 3D grid of spacing 2h:

g2a(rh,m, rh,n) ≈
∑

i

∑

j

φ2h,i(rh,m) g2a(r2h,i, r2h,j)φ2h,j(rh,n)

Double cutoff and grid spacing at each new grid level.
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Matrix Formulation
U =
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Separation: G = Ĝ+ G̃

G̃ij = ga(‖rj − ri‖), Ĝij =







‖rj − ri‖−1 − ga(‖rj − ri‖), for i #= j,

−ga(‖rj − ri‖), otherwise,

Approximation: G̃ ≈ I∗hGhI
h
∗

(Gh)mn = ga(‖rh,n − rh,m‖), (I∗h)im = φh,m(ri), Ih∗ = (I∗h)
T

Hierarchy: G ≈ Ĝ+ I∗h

(

ĜhI
h
∗ + Ih2h(G2hI

2h
h Ih∗ )

)
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Multilevel Algorithm
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Computational work requires O(N) operations.
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Application of MSM in VMD to Photosynthesis
Investigations of the chromatophore, a photosynthetic organelle

Full chromatophore model will permit structural, chemical and 
kinetic investigations at a structural systems biology level

Electrostatic field of chromatophore model
from multilevel summation method:

computed with 3 GPUs (G80) in ~90 seconds, 
46x faster than single CPU core in 1 hr, 10 min

Electrostatics needed to build full 
structural model, place ions, study 

macroscopic properties

Partial model:    
~10M atoms

Lig
ht
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More Applications of MSM in VMD
Investigations of Satellite Tobacco Mosaic Virus (STMV) and “swine” flu virus

Investigation of drug (Tamiflu) resistance of the 
“swine” flu virus demanded fast response!
Calculating electrostatics for 20,000 trajectory 

frames, 27.8 hour job reduced to 1.1 hours
(Linux workstation with Quadro 5800)

Time averaged potential maps:
calculating electrostatics for

thousands of trajectory frames,
1.5 hour job reduced to 3 minutes

(NCSA “AC” cluster)
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MSM Potentials on the GPU

Computational steps CPU (s) w/ GPU (s) Speedup

Short-range cutoff 480.07 14.87 32.3

Long-range anterpolation 0.18

restriction 0.16

lattice cutoff 49.47 1.36 36.4

prolongation 0.17

interpolation 3.47

Total 533.52 20.21 26.4

Performance profile for 0.5 Å map of potential for  1.5 M atoms.
Hardware platform is Intel QX6700 CPU and NVIDIA GTX 280.

Accelerate  short-range cutoff  and  lattice cutoff  parts

Multilevel summation of electrostatic potentials using graphics processing units.  
D. Hardy, J. Stone, K. Schulten.  J. Parallel Computing, 35:164-177, 2009.
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Cutoff radius rij: distance 
from lattice[j] 

to atom[i]

Lattice point j 
being evaluated atom[i]

• Each lattice point accumulates electrostatic potential 
contribution from atoms within cutoff distance:

   if (rij < cutoff)
      potential[j] += (charge[i] / rij) * s(rij)

• Smoothing function s(r) is algorithm dependent

Short-range Cutoff Summation



NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

Short-range Cutoff Summation on GPU
• Atoms are spatially hashed into fixed-size bins

• CPU handles overflowed bins (GPU kernel can be aggressive)

• GPU thread block calculates corresponding region of potential map

• Bin/region neighbor checks costly; solved with universal lookup table

Global memory Constant memory

Offsets for bin 
neighborhood

Shared memory

atom bin

Potential 
map 
regions

Bins of atoms

Each thread block cooperatively loads atom 
bins from surrounding neighborhood into 
shared memory for evaluation:  GATHER

Lookup table 
encodes “logic” of 

spatial geometry 
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Spatial Sorting of Atoms Into Bins

• Sort atoms into bins by their 
coordinates

• Each bin is sized to guarantee 
GPU memory coalescing

• Each bin holds up to 8 atoms, 
containing 4 FP values 
(coords, charge)

• Each lattice point gathers 
potentials from atom bins 
within cutoff



NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

Using CPU to Improve GPU Performance

• GPU performs best when the work evenly divides 
into the number of threads / processing units

• Optimization strategy:

- Use the CPU to “regularize” the GPU workload

- Use fixed size bin data structures, with “empty” slots 
skipped or producing zeroed out results

- Handle exceptional or irregular work units on the CPU 
while the GPU processes the bulk of the work

- On average, the GPU is kept highly occupied to attain 
good fraction of peak performance
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Lattice Cutoff Summation
• Potential summed from grid point charges within cutoff

• Uniform spacing enables distance-based interactions to be 
precomputed as stencil of “weights”

• Weights at each level are identical up to scaling factor (!)

• Calculate as 3D convolution of weights

- stencil sizes range from 9x9x9 up to 23x23x23

Cutoff radius

Accumulate potential

Sphere of 
grid point 
charges
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Lattice Cutoff Summation on GPU
• Store weights in constant memory (padded up to next multiple of 4)

• Thread block calculates 4x4x4 region of potentials, stored contiguously for memory 
coalesced reads

• Pack all regions over all levels into 1D array (each level padded with zero-charge region)

• Store map of level array offsets in constant memory

• Kernel has thread block loop over surrounding regions of charge (load into shared memory)

• All grid levels are calculated concurrently, scaled by level factor (keeps GPU from 
running out of work at upper grid levels)

Shared memory

Global memory Constant memory

Grid 
potential 
regions

Each thread block cooperatively loads 
regions of grid charge into shared memory, 
multiply by weights from constant memory

Grid 
charge 
regions

Stencil of weights

Subset of grid 
charge regions
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Apply Weights Using Sliding Window

• Constant memory offers best performance when thread 
block collectively accesses the same location

• Read 8x8x8 grid charges (8 regions) into shared memory

• Window of size 4x4x4 maintains same relative distances 

• Slide window by 4 shifts along each dimension


