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NAMD and VMD: 

The Computational Microscope 

Ribosome: synthesizes proteins from 
genetic information, target for antibiotics 

Silicon nanopore: bionanodevice for 
sequencing DNA efficiently 

•  Study the molecular machines in living cells 
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Electrons in 
Vibrating Buckyball 

Cellular Tomography, 
 Cryo-electron Microscopy 

Poliovirus 

Ribosome Sequences 

VMD – “Visual Molecular Dynamics” 

Whole Cell Simulations 

•  Visualization and analysis of: 
–  molecular dynamics simulations 
–  quantum chemistry calculations 
–  particle systems and whole cells 
–  sequence data 
–  volumetric data 

•  User extensible w/ scripting and plugins 
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VMD Interoperability – 
Linked to Today’s Key Research Areas 

•  Unique in its interoperability with a broad 
range of modeling tools: AMBER, 
CHARMM, CPMD, DL_POLY, GAMESS, 
GROMACS, HOOMD, LAMMPS, NAMD, 
and many more … 

•  Supports key data types, file formats, and 
databases, e.g. electron microscopy, quantum 
chemistry, MD trajectories, sequence 
alignments, super resolution light microscopy 

•  Incorporates tools for simulation preparation, 
visualization, and analysis 
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51,000 Users, 2900 Citations 

Blue Waters Target Application 

2002 Gordon Bell Award 

Illinois Petascale Computing Facility 

PSC Lemieux ATP synthase Computational Biophysics Summer School 

GPU Acceleration 

NCSA Lincoln NVIDIA Tesla 
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Larger machines 
enable larger 

simulations 
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NAMD features are chosen for scalability 
•  CHARMM, AMBER, OPLS force fields 
•  Multiple time stepping 
•  Hydrogen bond constraints 
•  Efficient PME full electrostatics 
•  Conjugate-gradient minimization 
•  Temperature and pressure controls 
•  Steered molecular dynamics (many methods) 
•  Interactive molecular dynamics (with VMD) 
•  Locally enhanced sampling 
•  Alchemical free energy perturbation 
•  Adaptive biasing force potential of mean force 
•  User-extendable in Tcl for forces and algorithms 
•  All features run in parallel and scale to millions of atoms! 
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NAMD 2.9 Release 
•  Public beta released March 19, final version in May 
•  Capabilities: 

–  New scalable replica-exchange implementation 
–  QM/MM interface to OpenAtom plane-wave QM code 
–  Knowledge-based Go potentials to drive folding and assembly 
–  Multilevel Summation Method electrostatics (serial prototype) 

•  Performance: 
–  Cray XE6/XK6 native multi-threaded network layer 
–  Communication optimizations for wider multicore nodes 
–  GPU acceleration of energy minimization 
–  GPU-oriented shared-memory optimizations 
–  GPU Generalized Born (OBC) implicit solvent 
–  Faster grid force calculation for MDFF maps 

Enables 
Desktop 
MDFF 
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NAMD 2.9 Desktop MDFF 

Implicit Solvent 
1 GPU      (20X) 

Implicit Solvent 
8 cores       (6X) 

Explicit Solvent 
8 cores       (1X) 

Fast: 2 ns/day 

Faster: 12 ns/day 

Fastest: 40 ns/day 

Initial 
Structure 
PDB 2EZM 

Fitted 
Structure 

Simulated EM Map 
from PDB 3EZM 

Cyanovirin-N 
1,500 atoms 
1 Å final RMSD 

with GPU-Accelerated Implicit Solvent 
 and CPU-Optimized Cryo-EM Forces 
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NAMD 2.9 Scalable Replica Exchange 

•  Easier to use and more efficient: 
–  Eliminates complex, machine-specific launch scripts 
–  Scalable pair-wise communication between replicas 
–  Fast communication via high-speed network 

•  Basis for many enhanced sampling methods: 
–  Parallel tempering (temperature exchange) 
–  Umbrella sampling for free-energy calculations 
–  Hamiltonian exchange (alchemical or conformational) 
–  Finite Temperature String method 
–  Nudged elastic band 

•  Great power and flexibility: 

–  Enables petascale simulations of modestly sized systems 
–  Leverages features of Collective Variables module 
–  Tcl scripts can be highly customized and extended 

Released in 
NAMD 2.9 

Enabled for 
Roux group 



13 NAMD 2.9 QM/MM Calculations 

OpenAtom (100 atoms, 70Ry, on 1K cores):  120 ms / step 
NAMD:  (50,000 atoms on 512 cores):           2.5 ms / step 

Harrison & Schulten, Quantum and classical dynamics of ATP hydrolysis in solvent. Submitted 

Car-Parrinello MD (OpenAtom) and NAMD in one software 
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 Parallel Electrostatic Embedding 

Permits 1000+ atom QM regions 

Synchronous load-balancing of QM and 
MD maximizes processor utilization 

Method combining OpenAtom and NAMD 

Parallel Car-Parrinello MD 
DOE and NSF Funded 10 yrs 
Martyna/Kale Collaboration 

OpenAtom 
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NAMD impact is broad and deep 
•  Comprehensive, industrial-quality software 

–  Integrated with VMD for simulation setup and analysis 
–  Portable extensibility through Tcl scripts (also used in VMD) 
–  Consistent user experience from laptop to supercomputer 

•  Large user base – 51,000 users 
–  9,100 (18%) are NIH-funded; many in other countries 
–  14,100 have downloaded more than one version 

•  Leading-edge simulations 
–  “most-used software” on NICS Cray XT5 (largest NSF machine) 
–  “by far the most used MD package” at TACC (2nd and 3rd largest) 
–  NCSA Blue Waters early science projects and acceptance test 
–  Argonne Blue Gene/Q early science project 
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Outside researchers choose NAMD and succeed 

Corringer, et al., Nature, 2011 

•  M. Koeksal, et al., Taxadiene synthase structure and evolution of modular architecture in terpene biosynthesis. (2011) 
•  C.-C. Su, et al., Crystal structure of the CusBA heavy-metal efflux complex of Escherichia coli. (2011) 
•  D. Slade, et al., The structure and catalytic mechanism of a poly(ADP-ribose) glycohydrolase. (2011) 
•  F. Rose, et al., Mechanism of copper(II)-induced misfolding of Parkinson’s disease protein. (2011) 
•  L. G. Cuello, et al., Structural basis for the coupling between activation and inactivation gates in K(+) channels. (2010) 
•  S. Dang, et al.,, Structure of a fucose transporter in an outward-open conformation. (2010) 
•  F. Long, et al., Crystal structures of the CusA efflux pump suggest methionine-mediated metal transport. (2010) 
•  R. H. P. Law, et al., The structural basis for membrane binding and pore formation by lymphocyte perforin. (2010) 
•  P. Dalhaimer and T. D. Pollard, Molecular Dynamics Simulations of Arp2/3 Complex Activation. (2010) 
•  J. A. Tainer, et al., Recognition of the Ring-Opened State of Proliferating Cell Nuclear Antigen by Replication Factor C Promotes 

Eukaryotic Clamp-Loading. (2010) 
•  D. Krepkiy, et al.,, Structure and hydration of membranes embedded with voltage-sensing domains. (2009) 
•  N. Yeung, et al.,, Rational design of a structural and functional nitric oxide reductase. (2009) 
•  Z. Xia, et al., Recognition Mechanism of siRNA by Viral p19 Suppressor of RNA Silencing: A Molecular Dynamics Study. (2009) 

Recent NAMD Simulations in Nature Bare actin Cofilactin 

Voth, et al., PNAS, 2010   

180K-atom 30 ns study of anesthetic binding to 
bacterial ligand-gated ion channel provided 
“complementary interpretations…that could not 
have been deduced from the static structure alone.” 

500K-atom 500 ns investigation of effect 
of actin depolymerization factor/cofilin on 
mechanical properties and conformational 
dynamics of actin filament. 

Bound Propofol Anesthetic 

2100 external citations since 2007 
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Challenges of New Hardware 

BUT the frequency has 
stopped increasing 
(since 2003 or so) 

 Transistors (1000s) 
 Clock Speed (MHz) 
 Power (W) 

Year 

The number of 
transistors on a chip 
keeps increasing 
(and will, for 10 years) 

Due to power limits co
un

t 
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Harnessing Future Hardware 
•  Challenge: a panoply of complex and powerful hardware 

–  Complex multicore chips, accelerators 

•  Solution: BTRC computer science expertise 
–  Parallel Programming Lab: leading research group in 

scalable parallel computing 

Intel MIC 
(TACC Stampede) 

Kepler GPU 
(Blue Waters) 

AMD Interlagos 
(Blue Waters) 
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Parallel Programming Lab 
University of Illinois at Urbana-Champaign 

Siebel Center for Computer Science 

http://charm.cs.illinois.edu/ 
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Parallel Objects, 
Adaptive Runtime System  

Libraries and Tools 

The enabling CS technology of parallel objects and intelligent 
Runtime systems has led to several collaborative applications in CSE 

Crack Propagation 

Space-time meshes 

Computational Cosmology 

Rocket Simulation 

Protein Folding 

Dendritic Growth 

Quantum Chemistry (QM/
MM) 

Develop abstractions in context of full-scale applications 

NAMD: Molecular Dynamics 

STM virus simulation 
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Computing research drives NAMD 

•  Parallel Programming Lab – directed by Prof Laxmikant Kale 
–  Charm++ is an Adaptive Parallel Runtime System 

•  Gordon Bell Prize 2002 
•  Three publications at Supercomputing 2011 
•  Four panels discussing the future necessity of our ideas 

•  20 years of co-design for NAMD performance, portability, and 
productivity, adaptivity 

•  Recent example: Implicit Solvent deployed in NAMD by 1 RA in 6 
months. 4x more scalable than similar codes 

•  Yesterday’s supercomputer is tomorrow’s desktop 
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NAMD 2.8 Highly Scalable Implicit Solvent Model 
NAMD Implicit Solvent is 4x more scalable than 
Traditional Implicit Solvent for all system sizes, 
implemented by one GRA in 6 months. 

traditional 

NAMD 

138,000 Atoms 
65M Interactions 

Tanner et al., J. Chem. Theory and Comp., 7:3635-3642, 2011 
Processors 
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27,600 Atoms 

29,500 Atoms 

2,016 Atoms 

2,412 Atoms 

149,000 Atoms 
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Cray Gemini Optimization 

•  The new Cray machine has a better network (called Gemini) 
•  MPI-based NAMD scaled poorly 
•  BTRC implemented direct port of Charm++ to Cray  

•  uGNI is the lowest level interface for the Cray Gemini network 
–  Removes MPI from NAMD call stack 

Gemini provides at least 2x increase 
in usable nodes for strong scaling 
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100M-atom simulation (PME every 4 steps) time step on Jaguar and Titan

Jaguar
Titan

100M Atoms on Titan vs Jaguar 

5x5x4 STMV grid 
PME every 4 steps 

New Optimizations 
Charm++ uGNI port 
Node-aware optimizations 
Priority messages in critical path 
Persistent FFT messages for PME 
Shared-memory parallelism for PME 
Paper to be submitted to SC12 
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1M Atom Virus on TitanDev GPU 
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PME every 4 steps 
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100M Atoms on TitanDev 
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Tsubame (Tokyo) Application of GPU Accelerated NAMD 

8400 
cores 

AFM image of flat chromatophore 
membrane (Scheuring 2009) 

20 million atom proteins + membrane 
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GPU Computing in NAMD and VMD 

•  NAMD algorithms to be discussed: 
–  Short-range non-bonded interactions 
–  Generalized Born Implicit Solvent 
–  Multilevel Summation Method 

•  VMD algorithms to be discussed: 
–  Electrostatic potential maps 
–  Visualizing molecular orbitals 
–  Radial distribution functions 
–  “QuickSurf” representation 


