Future Direction with NAMD

http://www.ks.uiuc.edu/Research/~dhardy/

NAIS: State-of-the-Art Algorithms for Molecular Dynamics

Short-term Outlook

- Important for our software to support GPUs
 - GPU acceleration is being incorporated into new supercomputers
 - GPU-accelerated desktop workstations to replace cluster computing
 - Easier maintenance
 - Improved power consumption
- Both NAMD and GROMACS are in good shape for using GPU computing

Trends in Computing Hardware

- Computing hardware will continue to get "wider"
 Moore's Law is still in effect
- Core clock speeds have plateaued
- Memory hierarchies likely to get "deeper"
- Memory bandwidth not increasing at the same rate as compute cores and FLOP/s
- High performance software increasingly more difficult to develop

NAMD and Performance

- Could benefit from single core level performance improvements
 - SSE intrinsics within key computational kernels
- Could make better use of GPUs
- Asynchronous message-driven design is advantageous for large scale parallelization
 - Dynamic load balancing helps with hardware issues (e.g. system noise, recovery from failed nodes)

Molecular Dynamics Challenges

- Extending timescales of simulations
 - NAMD has high performance replica exchange, basis for other enhanced sampling methods
- Improving force fields
 - NAMD supports leading polarizable force field efforts (Drude, FlucQ)
 - Plans to support AMOEBA polarizable force field
- Better scaling methods
 - Multilevel summation method has promise

