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Abstract

The Perceptual Control Manifold is o recently in-
troduced concept that extends the notion of the robot
configuration space to include sensor feedback for robot
motion planning. In this paper, we propose a frame-
work for sensor-based robot motion planning using
the Topology Representing Network algorithm to de-
velop a learned representation of the Perceptual Con-
trol Manifold. The topology preserving features of the
neural network lend themselves to yield, after learn-
ing, a diffusion-based path planning strateqy for flex-
ible obstacle avoidance. Simulations on path control
and flexible obstacle avoidance demonstrate the feasi-
bility of this approach for motion planning and illus-
trate the potential for further robotic applications.

1 Introduction

Autonomous robotics requires the ability to gen-
erate motion plans that achieve specified goals while
satisfying environmental constraints. Classical motion
planning is generally defined in terms of a configura-
tion space or C-space [2]. In most motion planning
approaches, the C-space is assumed to be known, im-
plying a complete knowledge of both robot kinematics
and obstacles. To address this issue, a framework for
motion planning that considers sensors as an integral
part of the definition of the motion goal was proposed
in Refs. [7]. The approach is based on the concept
of a Perceptual Control Manifold (PCM), defined on
the product of the robot C-space and sensor space.
The PCM provides a flexible way of developing mo-
tion plans that exploit sensors effectively. The config-
uration space framework can be extended to include
sensor space constraints such as visibility, motion per-
ceptibility and sensor singularity. The expected result
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of PCM-based motion planning is a path which is not
only collision-free but also more efficient to control,
i.e., optimizes the sensor feedback.

In many practical robotic systems the PCM cannot
be derived analytically, since the exact mathematical
relationship between configuration space, sensor space
and control signals is not known [12]. Even if the PCM
is known analytically, motion planning may require
the tedious and error-prone process of calibration of
both the kinematic and imaging parameters of the sys-
tem [9]. Instead of using the analytical expressions for
deriving the PCM we propose, therefore, the use of a
self-organizing neural network to learn the topology
of this manifold. Once the PCM is learned, it can be
used as a basis for sensor-based motion planning and
control.

2 Perceptual Control Manifold

The problem of motion planning of an articulated
robot is usually defined in terms of the configuration
space, C (or C-space), which consists of a set of pa-
rameters corresponding to the joint variables of the
robot manipulator. C is an n-dimensional manifold [2]
for an n-degrees of freedom robot manipulator, i.e.,
C=0Q1 xQy%x...0, CR" where g; € Q; is a joint
parameter (see Figure 1). The obstacles and other mo-
tion planning constraints are usually defined in terms
of C, followed by the application of an optimization
criterium that yields a motion plan.

In vision-based control, the robot configuration is
related to a set of measurements which provide a feed-
back about the Cartesian position of the end-effector
using the images from one or more video cameras. We
assume that this feedback is defined in terms of mea-
surable image parameters that we call image features,
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Figure 1: Schematic diagram of a 3-degree of freedom
manipulator, and the mapping to the image feature
space.

s; (see Figure 1). Before planning the vision-based
motion, a set of m image features must be chosen.
Discussion of the issues related to feature selection
for visual servo-control applications can be found in
Refs. [1, 8, 11]. The mapping from the set of positions
and orientations of the robot tool to the corresponding
image features can be computed using the projective
geometry of the camera. Since the Cartesian position
of the end-effector, in turn, can be considered to be a
mapping from the configuration space of the robot, we
can also define image features with a mapping from C.
Thus, an image feature can be defined as a function
s; which maps robot configurations to image feature
values, s; : C — S;. The set of all possible variations
of the image features is termed image feature space,
S =8 x5 x...85,,. Arobot trajectory in configura-
tion space will yvield a trajectory in the image feature
sSpace.

The Perceptual Control Manifold or PCM is defined
as the manifold defined on the product space C X S, or
CS-space. We know that an n-dimensional configura-
tion space C maps to an m-dimensional feature space
S. Therefore, this mapping can be defined in terms
of the vector-valued function f : C — & and results in
an n-dimensional manifold embedded in an (n + m)-
dimensional space. A given robot configuration maps
to exactly one point on the PCM. The corresponding
image features are not necessarily unique for a given
position, but the additional representation of the joint
establishes the uniqueness property needed for motion
planning and control. Since the PCM represents both
the control parameter and the sensor parameter, an
appropriate control law can be defined on it [7].

A robot task can be defined as a problem of tra-
jectory planning on the PCM from the initial position
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of the manipulator to some goal position. This mo-
tion planning requires the system to satisfy constraints
presented by robot kinematics, the control system and
the visual tracking mechanism. The use of the PCM
makes the sensor constraints easier to express com-
pared to a potentially awkward C-space representa-
tion. An example of such a constraint are image fea-
ture singularities [6].

With a complete knowledge of the robot kinematics
and camera parameters, it would be possible to model
the PCM analytically and carry out the motion plan-
ning on this space. However, such an analytical model
would be hard to derive under incomplete information,
especially for a robot like the pneumatically controlled
SoftArm that we used for our experiments in [12]. For
an industrial robot like the PUMA, described in Sec-
tion 4, the kinematic model can be determined, but it
is tedious to calibrate the camera setup especially if
the cameras are frequently moved. This motivates us
to acquire the PCM through a learning procedure and
to subsequently use the learned space for sensor-based
motion planning.

3 Topology Representing Networks for
Motion Planning

The topology representing network [4] (TRN) al-
gorithm which we will briefly outline in the following
offers a flexible way to develop a discrete representa-
tion of a data structure including neighborhood re-
lationships. TRN is a combination of neural gas and
competitive Hebbian learning. While the neural gas 3]
part, a soft-competitive learning algorithm, distrib-
utes the input weights according to the input proba-
bility distribution, a competitive Hebb-rule preserves
the topology by introducing neighborhood relations
using a winner-take-all principle. Knowledge of the
input dimensionality is not crucial and the algorithm
automatically adjusts to the topology of the input
manifold. Even when the input manifold is a sub-
manifold of a high-dimensional input space and may
either be unknown or its topology may not be simple
enough for prespecifying a correspondingly structured
graph, the TRN will construct a perfectly topology
preserving mapping. Therefore, the TRN algorithm
presents a good choice for learning the characteristics
of the PCM. During the training, the network adjusts
to the structure of the PCM and forms a topology pre-
serving representation of the manifold. In addition,
the learned topology can then be exploited for sen-
sor based path planning. Details of the implemented
TRN algorithm are described in Ref. [13].



3.1 Diffusion-Based Path Planning

Based on the topology preserving map of the PCM,
we generate a path from an initial position to a given
target, e.g., to guide an end effector of a robot manipu-
lator in the presence of obstacles within the workspace.
For this purpose we use a diffusion-based path finding
algorithm on the discrete network lattice in which the
target neuron 4, is the source of a diffusing substance.
The goal is to find a linked chain 4y,1,. » on the graph
leading from the current position ip = 7. of the end
effector to the target position i, = ;. The complete
diffusion algorithm is derived in [12].

After the concentration f;(t) of the diffusing sub-
stance has been calculated for the network topology,
a path leading from 4. to i; can be found by starting
at the current node i, and choosing as the next step
always the neighbor with maximal f;(¢). Since the
network graph is finite, the algorithm is guaranteed
to terminate yielding a proper path ¢¢ 19, n—1,¢. The
path is short in the sense that it takes a route that
maximizes the increase of f;(¢) at each step.

Other graph search algorithms and global optimiza-
tion strategies can be applied to the learned represen-
tation of PCM as well. However, these will be compu-
tationally expensive, especially when complex obsta-
cles are taken into account [2].

4 Motion Planning for the PUMA

In the following, we will present path planning sim-
ulations which were carried out with a general purpose
simulator for robot manipulator kinematics and visu-
alization. We also implemented and tested the frame-
work for learning the PCM concept on a pneumatic
robot arm [12] where accurate positioning presents
a challenging problem and can only be achieved by
adaptive control methods.

The simulator environment is intended for flexible
testing and implementation of neural network control
methods, e.g., to test the sensor-based motion plan-
ning approach described in this paper. Furthermore,
the simulator allows one to define arbitrary camera
positions and to visualize the robot motion in 3D.
The design of the robot simulator is based on parallel
distributed processing and socket-based interprocess
communication which allows the different modules of
the simulator to run in parallel on a network of work-
stations. Figure 2 outlines the simulator, together
with all its modules and communication paths. The
robot controller, in our case a TRN with the sub-
modules for vector quantization, competitive Hebbian
learning and diffusion-based path planning, supplies
the path plan and the corresponding control signals to
execute the plan. The actual robot simulator, on the
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Figure 2: PUMA robot simulator: The TRN repre-
sents the robot controller and communicates via UNIX
sockets with the PUMA kinematics module which han-
dles the data transfer to Geomview, for visualization
of the robot arm, and to the vision processing.
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right side of Figure 2, includes the kinematic model of
the PUMA, the Geomview package as graphical front-
end and vision processing subroutines for detecting
gripper and obstacles.

The kinematics we employ here is based on the
PUMA 562 industrial robotic manipulator, a 6-degree
of freedom robot arm with a two-fingered gripper. The
forward kinematics for the manipulator is calculated
by a PEARL program which also handles the com-
munication to and from the neural network controller
as well as the data transfer between Geomview and
the vision processing. Visualization of the robot arm
is based on Geomview [5], a public domain 3D visu-
alization software!. Although it is possible to query
Geomview for the position of the robot geometry in
‘world coordinates’, we chose to use the Geomview
camera frames as basis for vision processing. This em-
ulates the situation we encounter for an experimental
robotic setup where we would like to avoid any calibra-
tion tasks for the kinematic or vision parameters and
solely rely on sensor feedback to generate the motion
plan. Furthermore, the modular design of the simula-
tor allows the kinematics subsystem to be replaced by
a real robot.

4.1 Implementation

The PCM, as introduced in Section 2, is defined as
the product of C-space and sensor space S. Therefore,
two different types of information converge upon neu-
rons within the network. Visual input s = (s; ...s,)7
is derived from the Geomview cameras; vision process-
ing resolves the gripper location in each camera frame.
Joint position of the manipulator, denoted by q =
(q1-..q,)%, is generated by the network during the

!Geomview home page:
http://www.geom.umn.edu/software/geomview/



learning cycle and concatenated with s to the input
vector u = (q,s)7 for the TRN. Following a suitable
training period, the topology of the neural network re-
sembles the PCM. The current experiments focus on
obstacle collisions of the robot’s gripper only. Future
studies will extend the control to avoid obstacles with
the complete arm.

To visualize the network dynamics during the train-
ing cycle, Figure 3 shows the development of a two-
dimensional network. The 4D input vector for the
network is generated by concatenating the joint posi-
tions ¢; and ¢o with the gripper position (s, s9)7 in
one camera frame:

(1)

At the beginning, all neurons are initialized with ran-
dom numbers, in this case wi € [0, ..., 1]. During the
learning process the network is presented with random
gripper positions and the vector quantization scheme
gradually adapts the input probability distribution.
The competitive Hebb rule introduces connections be-
tween the units which resemble the topology of the in-
put manifold and, after a suitable training period, the
algorithm detects and represents the two-dimensional
PCM which can then be used to generate a path plan.

Figure 3 shows the network with n = 150 neurons
projected onto the camera plane in three stages. First,
we plot the initial distribution of the weight vectors at
t = 0 when no connections exist, yet. After ¢ = 25000
input vectors, generated by random movement of the
manipulator, the network has not yet captured well
the input manifold. Several connections are misplaced
and the distribution of the weights is not optimal. Fi-
nally, after a set of t = ¢,,,,, = 100000 training cycles,
the TRN covers the complete input space and matches
the PCM well.

Given this learned representation of the PCM, we
can use the diffusion algorithm, presented in Sec-
tion 3.1, to generate a path plan from an initial gripper
location to a given target point. Start and desired tar-
get location as well as the obstacle are only known in
vision space while the path plan is generated by the
diffusion algorithm exclusively in CS-space to ensure
a smooth motion in terms of joint angles. As shown in
Figure 3, the robot arm moves from a starting position
on the left side of the obstacle to the right side while
avoiding the obstacle which can be placed anywhere
in the workspace of the robot arm. For static obsta-
cles, we have to run the diffusion process only once
and then follow the path. In case of moving obstacles,
it is necessary to calculate an updated path at every
step.

u=(q,s) = ((I17Q2751732)T
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Figure 3: Development of the topology representing
network during the training projected onto the cam-
era plane. (top left) The initial distribution of neurons
as initialized at t = 0. (top right) Intermediate form
of the network after ¢ = 25000 training moves. (bot-
tom left) The final network at ¢ = ¢4, = 100000; the
latter network resembles well the input manifold. (bot-
tom right) Path plan around the obstacle as generated
by the diffusion process.

Instead of learning a static topology including ob-
stacles, we initially present the complete workspace
during the training stage and dynamically map ob-
stacles into the PCM after the representation of the
workspace has been accomplished. This approach is
more suited for a robotic manipulator operating in a
changing environment, e.g., with obstacles placed at
different locations within the workspace.

In Figure 4 we plot sample frames from a 3D path,
generated by the diffusion process. Here, a network
of N = 700 neurons has been trained with a data set
of 30000 sample moves using three joints of the robot
arm and the feedback from two cameras. Therefore,
the input vector for the TRN consists of

(2)

One obstacle is placed in the work space, mapped
onto the learned representation of the PCOM and all
connections to neurons which would result in a colli-
sion of the gripper with the obstacle are eliminated.

u = (q,S) - (QI792a93;51,32>337$4)T



The diffusion algorithm then generates the path and
executes it by moving the arm along the planned tra-
jectory. The vision feedback can also be used to cor-
rect deviations from the desired path and interpolation
techniques can be introduced to further enhance the
path resolution {10].

Furthermore, we can impose certain constraints on
the PCM before generating the path plan with the
diffusion algorithm. In Figure 5, we apply a visual
constraint by forcing the gripper to be be visible in
both camera planes at all times. Therefore, this leads
to a different path plan than the trajectory in Figure 4.
Other constraints which can be included are kinematic
constraints, e.g., limiting the position of one joint to
a certain interval.

5 Conclusion

The presented simulations on path control and flex-
ible obstacle avoidance demonstrate the feasibility of
our approach for motion planning and illustrate the
potential for further robotic applications. Learning
the PCM with a topology representing neural net-
work introduces a general framework for robot path
planning in which sensing, e.g., in the form of camera
feedback, is automatically factored into the planning
process. The motion plans, thus developed, can ex-
ploit properties of the sensed data and can also be
linked to appropriately designed vision-based control
laws. As our experiments demonstrate, this method
can be used to control robotic systems with multi-
ple degrees of freedom in a 3D environment based on
sensor data. The proposed path planning algorithm
utilizes the topology preserving features of the neural
network to dynamically map obstacles into the PCM
and to establish a motion plan which prevents colli-
sions of the gripper with detected obstacles.
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Figure 4: 3D path, generated by the diffusion process
algorithm, as seen by camera 1 (left frames) and cam-
era 2 (right frames). The gripper is sometimes only
visible in one camera while being covered by the ob-
stacle in the other camera frame.
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Figure 5: 8D path with visibility constraint: Camera 1
(right frames) and camera 2 (left frames) for the path.
The gripper is visible in both cameras at all times.



