
Topology Representing Network
for Sensor-Based Robot Motion Planning

Michael Zeller, Rajeev Sharma and Klaus Schulten

Beckman Institute for Advanced Science and Technology
University of Illinois at Urbana-Champaign

405 N. Mathews Avenue
Urbana, IL 61801

email: zeller@ks.uiuc.edu - rajeev@cs.uiuc.edu

Abstract

We present a framework for sensor-based motion planning of robotic manipulators using a topology
representing network (TRN). Exploiting the perfectly topology preserving features of the network, the
algorithm learns the representation of the Perceptual Control Manifold (PCM), a recently introduced
concept for motion planning. This concept allows sensors to be integrated into robot motion planning.
Besides a demonstration of the technical feasibility of motion planning through perfectly topology preserv-
ing maps the capabilities of this approach within an engineering framework, namely the implementation
on a pneumatically driven robot arm (SoftArm), are demonstrated.

1 Introduction

An important step toward autonomous robotics is developing ways to generate motion plans for achieving
certain goals while satisfying environmental constraints. Classical motion planning is defined on a configu-
ration space (C-space) which is assumed to be known, implying the complete knowledge of both the robot
kinematics as well as knowledge of the obstacles in the C-space [3]. Uncertainty, however, is prevalent which
makes some of these motion planning techniques quite inadequate for practical purposes. Sensors such as
cameras can help in overcoming these uncertainties. To best utilize the sensor feedback, a robot motion
plan should incorporate constraints from the sensor system as well as criteria for optimizing the quality of
the sensor feedback. Unfortunately, in most motion planning approaches, sensing is completely decoupled
from planning. In [8] we present a framework for motion planning that considers sensors as an integral part
of the definition of the motion goal. The approach is based on the concept of Perceptual Control Manifold
(PCM), defined on the product of the robot C-space and sensor space (e.g. a set of image features). The
PCM provides a flexible way of developing motion plans that exploit sensors effectively. However, there are
robotic systems, such as the pneumatic robot arm we use for our experiments, where the PCM cannot be
derived analytically, since the exact mathematical relationship between configuration space, sensor space and
control signals is not known (see section 3). Instead of using the analytical expressions for deriving the PCM
we therefore propose the use of a self-organizing neural network to learn the topology of this manifold. The
learnt representation can then be utilized for motion planning and control of the robot. Experiments on a
pneumatic robot system establish the feasibility of this framework for motion planning within an engineering
environment.

2 Topology Representing Networks for Motion Planning

Topology representing networks (TRN), as introduced by Martinetz and Schulten [4, 5], can be formulated
as a combination of a vector quantization scheme and a competitive Hebb rule. Although related to Self-

1



Organizing Feature Maps (SOFM) [2], a priori knowledge of the input dimensionality is not crucial and the
algorithm adjusts to the topological structure of a given input manifold M forming a perfectly topology
preserving mapping. A rigorous definition of the terms ‘neighborhood preserving mapping’ and ‘perfectly
topology preserving map’ based on Voronoi polyhedra and Delaunay triangulations is given in [5]. In the
following, we will outline the implemented algorithm, including the extension of the original sequence to
provide additional output weights wout

i which will be used to link a desired control action to a specific
sensory input.

Following the initialization of input weights win
i , output weights wout

i for all units i = 1 . . .N with random
numbers ∈ [0, 1] and resetting all connections to cij = 0 the learning cycle reads:

1. Read input vector u and determine current ranking order.

‖win
0 − u‖ ≤ ‖win

1 − u‖ ≤ . . . ≤ ‖win
N−1 − u‖ (1)

2. Update input weights win
i and output weights wout

i according to:

win
i (t + 1) = win

i (t) + γ(r, t) · (u − win
i (t)) (2)

wout
i (t + 1) = wout

i (t) + γ(r, t) · (u − wout
i (t)) (3)

with
γ(r, t) = ε(t) · e−ri/λ(t) (4)

for i = 1 . . .N , where ri is the current rank of neuron i as determined in step 1. ε(t) determines the
change in the synaptic weights and λ(t) represents a neighborhood function.

3. Update the connection c01 between the units currently ranked 0 and 1. If c01 = 0 then set c01 = 1 and
the age of the connection t01 = 0; if c01 > 0 refresh the connection age.

4. Increase the age of all connections c0j to t0j = t0j + 1 for all units j with c0j > 0. Remove connections
c0j which exceed a given lifetime t0j > T (t). Continue with step 1.

Both ε(t) and λ(t) as well as T (t) are a function of time and depend on the current learning step t in the
same manner1.

After the topology preserving map of the input manifold M, which in our case is equivalent to the PCM,
has been established, a locally optimized path can be determined by minimizing the Euclidean distance dE

from the current position to a given target. The motion plan can be generated as follows:

1. Read current position ucurrent and target position utarget

2. Find best matching neurons win
current and win

target

3. Move from current unit win
current to a neighboring unit i with ccurrent,i > 0 that satisfies

dE(win
i ,win

target) = min{dE(win
i ,win

target)} (5)

4. If win
current = win

target then stop, otherwise continue with step 1.

In the presence of obstacles within the workspace, step 3 has to check if a move will result in a collision and
avoid it. Finally, if the motion plan meets a given goal, movement can be initiated using the corresponding
output values wout

i of the map to generate the sequence of commands necessary to navigate the robot from
start to target. Other global optimization strategies can be applied to the learnt representation of PCM as
well. However, these will be computationally expensive especially when complex obstacles are taken into
account. A promising algorithm which we plan to explore in this regard is described in [6].

As means of demonstrating the practical capabilities within an engineering framework for motion planning
and control, the following section will describe the implementation of the presented neural algorithm on a
pneumatic robot arm.

1ε(t) = εi(εf /εi)t/tmax λ(t) = λi(λf /λi)t/tmax T (t) = Ti(Tf /Ti)t/tmax

with εi = 0.3, εf = 0.05, λi = 0.2N , λf = 0.01, Ti = 0.1N , Tf = 2N

2



start

target

Figure 1: (left) SoftArm robot system and network structure in the workspace as seen by the camera.
The learning has been accomplished and the network represents the topology of the PCM. (right) Visual
components of the mapping and a motion plan (grey units) generated in configuration (encoder) space after
start and target have been defined in vision space.

3 Motion Planning for the SoftArm Robotic System

The SoftArm is a pneumatically driven robotic manipulator, modeled after the human arm. It exhibits
the essential mechanical characteristics of skeletal muscle systems employing agonist-antagonist pairs of
rubbertuators which are mounted on opposite sides of rotating joints. Pressure difference drives the joints,
average pressure controls the force (complience) with which the motion is executed. This latter feature
allows operation at low average pressures and, thereby, allows one to carry out a complient motion of
the arm. This makes such robots suitable for operation in a fragile environment, in particular, allows direct
contact with human operators. The price to be paid for this design is that the response of the arm to pressure
signals (p̄1, p̄2, . . . , p̄N )T and (∆p1, ∆p2, . . . , ∆pN )T cannot be described by a priori mathematical equations,
but rater must be acquired heuristically. Furthermore, one expects that the response characteristics change
during the life time of the arm through wear, after replacement of parts and, in particular, through hysteretic
effects. In consequence, accurate positioning of the SoftArm presents a challenging problem and can only
be achieved by an adaptive control mechanism. For a more detailed introduction to the mechanics of the
SoftArm see [1].

In addition to the previous work on topology representing networks (TRN) in robotics [9, 1], where neigh-
borhood preservation has been used to average over the output of several adjacent units in order to achieve
a more accurate positioning, in the present study we focus on exploiting the topology to generate a motion
plan from a current position to a given target in a 2-dimensional plane satisfying several contstraints. These
contstraints can include obstacles defined in C-space, obstacles given through vision space and limitations
of the camera feedback [7].

The PCM is defined as the product of C-space and sensor space. Therefore, two different types of information
converge upon neurons within the network. Visual input r = (x1, x2)T is derived from a video camera; vision
preprocessing resolves the gripper location in the video frames. Angular position of the manipulator, denoted
by Θ = (θ1, θ2)T , is derived from the feedback of optical encoders mounted on each joint. Following a suitable
training period, the topology of the network resembles the PCM. In addition, the network provides the
nonlinear mapping between the position in work space u = (x1, x2, θ1, θ2)T and the corresponding pressure
commands p = (p1, p2)T to achieve this configuration.

A sample network is depicted in Figure 1 by plotting the visual components r of the 4-dimensional vectors
win

i . This network was trained with a dataset of 800 random moves within a subset of the workspace and
consists of 75 neural units. The left side shows the actual position in the robot’s workspace. On the right
side, we use the learnt representation to generate a motion plan from a start point to a given target. Both,

3



start and target, are only given in visual space r (as would be obstacles), the corresponding encoder readings
need not to be known. By selecting the best matching neurons for current position and target position in
vision space the resulting neurons also provide the values for the encoder readings. This is possible, because
r and Θ represent redundant information. The motion plan, shown in Figure 1 on the right hand side, finally
is generated exclusively in C-space to ensure a smooth motion in terms of joint angles.

Instead of learning a static topology including obstacles, one may initially present the complete workspace
during the training stage and map obstacles into the PCM after the representation of the workspace has been
accomplished. This approach is more suited for a robotic manipulator operating in a changing environment,
e.g. with obstacles placed at different locations within the workspace.

4 Conclusions

Learning the representation of the perceptual control manifold (PCM) provides a very general framework
for robot motion planning in which the sensing (in the form of video feedback) is factored automatically
into the planning process, leading to a flexible way of visually controlling a robot manipulator. The 2d
implementation on a pneumatically driven robot manipulator proves the technical feasibility of our method.
It can be generalized to control robotic systems with more degrees of freedom in a 3d environment. The
discretizing effect that results from the use of small numbers of neurons to map a high dimensional input
space can be alleviated by introducing interpolation strategies [1] which also improve fine motion control.

Acknowledgements: This work was supported by the Carver Charitable Trust.

References

[1] T. Hesselroth, K. Sarkar, P. van der Smagt, and K. Schulten. Neural network control of a pneumatic
robot arm. IEEE Transactions of System, Man and Cybernetics, 24(1):28–37, 1994.

[2] T. Kohonen. Analysis of a simple self-organizing process. Biol. Cybern., 44:135–140, 1982.

[3] J.C. Latombe. Robot motion planning. Kluwer Academic Publishers, Boston, 1991.

[4] T. Martinetz and K. Schulten. A ‘neural gas’ network learns topologies. In Proceedings of the International
Conference on Artificial Neural Networks, Helsinki, 1991. Elsevier Amsterdam, 1991.

[5] T. Martinetz and K. Schulten. Topology representing networks. Neural Networks, 7(3):507–522, 1994.

[6] H. Ritter and K. Schulten. Planning a dynamic trajectory via path finding in discretized phase space.
In Parallel Processing: Logic, Organization, and Technology, volume 253 of Lecture Notes in Computer
Science, pages 29–39. Springer, 1987.

[7] R. Sharma and S. Hutchinson. Optimizing hand/eye configuration for visual-servo systems. In Proc.
IEEE International Conference on Robotics and Automation, pages 172–177, May 1995.

[8] R. Sharma and H. Sutanto. Integrating configuration space and sensor space for vision-based robot
motion planning. IEEE Transactions on Robotics and Automation, 1996. (to appear).

[9] J.A. Walter and K. Schulten. Implementation of self-organizing neural networks for visuo-motor control
of an industrial robot. IEEE Transactions on Neural Networks, 4(1):86–95, 1993.

4


