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‘Abstract

A new method for the simulation of macromolecules is proposed.
The method is derived from classical Newtonian Dynamics by the sub-
stitution of random variables for atomic velocities. It combines fea-
tures of both Newtonian Dynamics and Monte-Carlo simulation and
reproduces the time scale of motion correctly. The resulting dynam-
ics is equivalent to solving the Langevin equation of an overdamped
system, obeys the Einstein relation and corresponds to a canonical en-
semble description. We argue that the probability distribution for the
positions of atoms is reproduced better than by Newtonian dynain-
ics, due to a neglect of quantum effects in the latter. The stochastic
nature of the proposed algorithm allows numerical restrictions on the
length of integration intervals to be relaxed and simulation times to
be extended beyond those of the Verlet algorithm for Newtonian Dy-
namics. The method underestimates, however, cross correlations of
atomic velocities that give rise to concerted inertial motions of groups
of atoms.



1 Introduction?

Structural and dynamical properties of biological macromolecules like pro-
teins and DNA, consisting of several thousand atoms and more, have been

subject to intense study both experimentally and theoretically[l, 2, 3, 4, 5].

While experiments such as NMR-relaxation, fluorescence depolarisation and

biochemical kinetics can furnish data over a wide range of relevant time scales,

theoretical descriptions based on computer simulations have been confined

to time scales shorter than a few nanoseconds, i.e. time scales which are not

directly relevant for biomolecular functions. In this situation any method

is most welcome that can reduce computational effort spent on molecular

dynamics and, thereby, increase the accessible time scale of simulation.

Traditionally, two classes of methods have been employed to explore the
configurational space and phase space of a molecule or of an ensemble of
molecules: Monte-Carlo simulation[6, 7] and classical Newtonian Dynamics[8,
9]. Both methods treat a molecule as a system of particles interacting ac-
cording to a heuristic potential function describing chemical bonds and non-
bonding interactions(10, 11, 12, 13].

The method of Monte-Carlo simulation places emphasis on finding the
probability distribution of states in the space of possible conformations. A
new configuration of the molecule is chosen by randomly modifying the pre-
vious configuration and is then accepted or rejected according to the value
of the potential. The potential gradient is not taken into account and does
not have to be calculated. This method represents a canonical ensemble,
because total energy is not conserved and temperature enters as a given pa-
rameter. Dynamical processes, especially large scale motions, are at best
poorly described by standard Monte-Carlo methods.

The method of Newtonian dynamics, on the other hand, solves the clas-
sical equations of motion for a system of interacting atoms. The calculated
trajectory provides a detailed picture of the dynamics of a macromolecule,
making use of the potential gradient and correctly describing inertial effects.
In it’s pure form, this method represents a microcanonical ensetnble, since
Newton’s equation conserves total energy; the temperature defined through
the kinetic energy, i.e. %NkT = FElin, fluctuates. Several extensions of the
method to describe a canonical ensemble have been suggested. One is rescal-
ing of velocities during simulation to keep the temperature constant. Another
1s introducing random external forces and friction to simulate a heat bath[14].
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More elaborate schemes have been proposed that use various synthetic (i.e.
not existing in nature) Hamiltonians that are designed to ensure the main-
tenance of thermodynamic constraints on systems. They can be proven to
yield the correct canonical ensemble while at the same time retaining the
deterministic character of the simulation(15, 16, 17).

Such deterministic Newtonian dynamics methods neglect quantum ef-
fects. This generally leads to an overestimate of thermal motion in the real
system. As the following analysis will show, erroneous results have to be ex-
pected for calculations concerned with heat capacity and energy dissipation
due to the occurrence of high frequency vibrational modes in the simulation
that cannot be excited above the ground state in the real system.

The energy of a molecular bond is '

Ey(r) = ky(r — 15)%; ky & 400 kealmol™' A2 (1)

‘which, for a bond between two carbon atoms, results in a transition energy
of the first excited state
2k
hw="h E~o.1ev. (2)

This value is much larger than the thermal energy per degree of freedom
at room temperature (kgT = 0.025eV). Therefore, such bond vibrations are
confined to the quantum mechanical ground state and contribute little to heat
capacity, i. e. exchange little energy with the other degrees of freedom of a
macromolecule. Also, the probability density of bond lengths is Gaussian, in
contrast to the 1/ cos2-distribution that a classical simulation yields. Since
many vibrational modes in a biological macromolecule have frequencies w
such that hw > kpT the above line of reasoning implies that Newtonian
Dynamics cannot be considered as the single benchmark method against
which all other molecular dynamics methods liave to be measured. '

In this article we want to present a new method for molecular dynamics
simulation, the method of Uncorrelated Stochastic Dynamics and its variant,
Correlated Stochastic Dynamics, in an effort to avoid the unnecessary exact
computation of high frequency motions while retaining more of the dynamics
than is possible when using Monte-Carlo methods. Like Newtonian Dynam-
ics, however, the method proposed in this paper will not be able to describe
the correct heat capacity of macromolecules. For this purpose a genuinely
quantum mechanical method would have to be devised.



The method of Stochastic Dynamics does not conserve energy, i.e. it does
not describe the atoms of a macromolecule as a microcanonical ensemble,
but rather introduces random forces corresponding to a fixed temperature.
Total energy then fluctuates around an equilibrium value determined by this
temperature. The method, hence, describes the atoms of a macromolecule
as a canonical ensemble and as such should be satisfactory for large macro-
molecules such as proteins.

In this first study we will formulate Stochastic Dynamics in close analogy
to the widely used Newtonian Dynamics algorithm in that we express the
equations of motion in terms of Cartesian coordinates and velocities, rather
than in terms of internal and external coordinates and velocities. A Carte-
sian description allows one to incorporate the Stochastic Dynamics algorithm
into conventional molecular dynamics programs. However, such an approach
does not permit an obvious extension of the Stochastic Dynamics method
which is to focus the description of macromolecules to a subset of degrees
of freedom considered as a canonical ensemble. These degrees of freedom
would be treated ezplicitly while the remaining implicit degrees of freedom
would be accounted for by the application of heuristic thermal noise. Such
a separation of explicit and implicit degrees of freedom will be qualitatively
different if it involves only motions of such high frequency that due to quan-
tum effects thermal excitation cannot be expected (see the discussion above)
or if it also involves degrees of freedom which behave essentially classically.
In the former case one would not expect exchange of thermal energy, i.e.
the presence of quantum mechanical implicit degrees of freedom should not
induce noise acting on the explicit degrees of freedom. Rather, these degrees
of freedom should be described according to a suggestion by Nelson (18].
The separation of classical degrees of freedom could yield an increase of the
integration step size proportional to the ratio between the highest frequen-
cies of the implicit and of the explicit degrees of freedom. In principle, one
may separate out all degrees of freedom of a protein except the slowest oncs
like dihedral angles and group rotations, and only integrate these degrees of
freedom explicitly. However, since the implicit degrees of freedom in such a
case exchange thermal energy with the explicit degrees of freedom one needs
to account for the implicit degrees of freedom in terms of a heuristic thermal .
noise. Such a description requires preliminary studies on the effect of time
scale separation and we consider the present investigation a first step in this
direction.



In Section 2 of this paper we will introduce the method of Uncorrelated
Stochastic Dynamics. The method replaces the deterministic atomic veloci-
ties in a difference equation derived from the Newtonian equations of motion
by random variables. In Section 3 we will then modify this approach by in-
cluding a time correlation of these random variables which accounts for the
finite relaxation time of the velocity auto-correlation function. The size of the
integration time step will be considered in Section 4. We will demonstrate the
potential of our method for large reductions in computing time. In Section
5 calculations on the protein bovine pancreatic trypsin inhibitor (BPTI)[19)]

are presented, which were carried out using the moleculau clyncmncs program
MD developed by us[20].

2 Uncorrelated Stochastic Dynamics

Like other snnulatlon methods, the Stochastic Dynamics methods suggested
in this paper are based on a difference equation which describes how a system
alters its state during a time step of length At. To derive this difference
equation we first define the displacement Ax; of an atom ¢,4 = 1,2,...,N
during a time mterval At as '

. At
1
AX; = Xi(t + At) - X,’(t) = dr pi(t + T)‘ (3)

| Expanding the momentum p; and applying Newtons equation of motion
. 0
pi = -V;U(x) = “&fU(Xl,X2,---,XN) (4)

we obtain the discretized equation -

1 1 - o
Ax; = —pi(t)At -~ —V; t)] At* + O(AL? 5
X = —pi(t)A = T ViU [x(t] A + O(AF) (5)
where U(x) = U(x1,X2,...,Xy) is the potential function of the systen.
Omitting terms of the order At and substituting
Xi(t + At) — x;(t - At ‘ |
pPi=my il ) ( ) (6)
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leads to the well known propagation equatioil of the Verlet method
At?
Xi(t + At) o= QX,‘(t) - Xi(t - At) + —'nTVlU [X(t)] , (7)

which is a second order predictor-corrector algorithm[11] for numerical inte-
gration of the classical equations of motion.

In the Uncorrelated Stochastic Dynamics method proposed in this paper
the momenta p; in (5) are replaced by a Gaussian random process &(t).
Accordingly, the displacements are

- 1 .
AX,‘ = Af, — %—V,Uﬁtz (8)

In this expression, the mean square of the Gaussian random variable Ag;
representing atomic velocities is related to thermal kinetic energy by

oy _ 35T 2
m;

(9)

According to (8), atomic displacements consist of two terms, one of which
is random, whereas the other is determined by the gradient of the potential
function. This observation motivates a comparison of the difference equation
(8) to a corresponding Langevin equation which is similarly divided into
stochastic and deterministic terms. .

The Langevin equation for an overdamped system is[21]

x; = &(t) — 7. V.U(x), (10)
where 5-; (¢) is a random process (Gaussian white noise) defined by

_ Gy =0 1)

(&i(t);(t')) = 6Didi;0(t —t')
and +; is a mobility constant. The factor 6 is due to the fact that the f; are
three-dimensional vectors. The diffusion constants D; and vi are related by
the well-known' Einstein relation [21]

D; = v;kgT, (12)
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a special case of the fluctuation-dissipation theorem, which ascertains that
the system described by (10) reaches thermal equilibrium described by a
Boltzman distribution p(x) = exp(—U(x)/kgT). The displacement resulting
from (10) after a time interval At is

AX,' = Aé; - 7,~ViUAt (13)
where A is a random variable defined by
t+At
aé= [ aré(r). (14)
t
The mean-square random displacement can be calculated from (14) and (11)
as | 1+t
(A& = [ drdr'(E(né(r) = 6Diat. (15)

t
Comparison of (8) and (13) shows that the Uncorrelated Stochastic Dynamics
method is equivalent to integration of the Langevin equation (10) if the
mobility constant +; is chosen to be

1
g QmiA | (16)
- Comparison of (9), (15) and (16) shows that the Einstein relation (12) is
satisfied for the Uncorrelated Stochastic Dynamics method.

3 Correlated Stochastic Dynamics

By substituting a random variable for particle momenta, time correlations
- caused by inertia are completely lost. In order to compensate for the one-
particle part of these correlations we extended the method of Stochastic
Dynamics to account for velocity auto-correlation. However, for the sake of
computational feasibility we do not include cross-correlation of velocities of
different atoms.

In such a description, displacements Aé; at different times arc not in-
dependent, instead, they are generated according to an Ornsteiu-Ulleubeck
process(22]

A& (t + At) = (1 — k)AE(t) + AT, (17)
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This process implies, that the value of AE,(t+At) contains a fraction (1 k) of
the last random displacement A£;(t). A#; represents uncorrelated Gaussian
white noise as described by (11). The parameter k¥ can be chosen to repro-
duce the observed decay of the velocity auto-correlation funiction (%;(t)-;(0))
of atom :. This decay indicates how long an atom is likely to move along its
original direction before being diverted by interacting with other atoms. Such

1.00
—  t9=1.5ps
S —  ty=3ps
g o050}
=
3
0.00 [

0.00 0.02 0.05 0.07 0.10 0.12
time [ps]

Figure 1: Velocity auto-correlation function C,(t) resulting from a Newtonian .

Dynamics simulation of BPTI. C,(t) defined in (18) has been calculated for two
different values of ¢, taking the average (...) over a time T = 0.1ps. As one can
see a relaxation time of 7 = 5 fs describes the initial decay of C,(t). Oscillations,
due to the finite number of degrees of freedom(23], are not accounted for by the
stochastic model (17).

velocity autocorrelation functions have been determined in earlier molecular
dynamics simulations by Brooks et al. [14] and by Nadler et al. [5] for differ-
ent proteins. The decay times estimated from our simulation are somewhat



smaller than those in [14] (10-20 fs) which in turn are smaller than those
calculated in [3].
Figure 1
represents the normalized velocity auto-correlation function
Co(t) = i (Bi(to) Bi(to +1)) — (%)?
N (5:%) = (5;)?
averaged over all atoms of the protein bovine pancreatic trypsin inhibitor
(BPTI). The function was computed from a conventional molecular dynam-
ics simulation using a time average # fo - dt for the mean (---). For this
approximation to be valid, we have to assume that the system is approxi-
mately ergodic and near equilibrium. To test this assumption, we evaluated
C(t) for two different times ¢o. The results shown in Fig. 1 demonstrate that
C,(t) is essentially independent of ¢,.
The velocity correlation function for the correlated stochastic process
described by (17) in the limit of small At is
i

Cut) =€~ (19)

where the parameter k is related to 7 through

(18)

1-k=e%, (20)
In our calculations we assumed a value of 5 fs for the decay time 7 which
accounts for the decay of the observed velocity correlation function shown
in Fig. 1. We will refer to the simulation method based on (8) and (17) as
. Correlated Stochastic Dynamics.

For the sake of simplicity we have assumed identical decay times 7 for (Lll
atomic velocities. However, the Correlated Stochastic Dynamics is compu-
tationally feasible also With a choice of individual decay times for atoms.

‘The amplitude of the random variable A7; in (17) can be determined by
calculating the mean square of both sides of (17), recognizing that Af;(t) is
independent of AE; (t), which only depends on A#; from previous time steps.
This yields -

(A&7 = (1 - B(AE?) + (A7), (21)
from which the desired mean square value can be derived with the help of
(9), ie.
3kBT

m;

(AT2) = k(2 = k)(AE2) = k(2 - k) =2= Ar2, (22)



If one chooses the random variables A; as a Gaussian process with mean
square amplitude (22) the Correlated Stochastic Dynamics method yields the

proper thermal equilibrium and, hence, indeed describes a canonical ensem-
ble.

4 The Discretisation Time Sfep

The computing time required for a molecular dynamics simulation is deter-
mined by the integration time step At. This time step is dictated by the
fastest motion in the molecule, usually stretch vibrations with periods in the
femtosecond range. Figure 2 shows the numerical fluctuations of the total

300.00
' 3.0fs
250.00 [sthntian fithe
200.00
>
20
§ 150.00 [ 2.0 fs
() N A e A A AV I A At A AN
100.00 1.0 fs
50.00 0.5 fs
OOO 1 ) L ! i )

50.00 100.00 150.00 200.00 250.00
time steps

Figure 2: Total energy during Newtonian Dynamics simulation of BPTI using
several different time steps At. Energy units are arbitrary. The curves for different
At are offset to allow easy comparison of the fluctuations. Because the law of
energy conservation holds under Newtonian Dynamics simulation, the fluctuations
seen are numerical errors due to the finite size of At.
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energy (potential and kinetic) during our molecular dynamics simulation of
BPTI. The fluctuations depend sensitively on the time step At. When At
becomes comparable to the 10 fs period of C—H bond stretch vibrations nu-
merical errors lead to a violation of energy conservation. Stochastic Dynamics
is inherently less sensitive to numerical inaccuracies regarding high frequency
vibrations. This makes it possible to use longer time steps At. In order to
determine an upper bound to the time step we investigated the behaviour of
potential energy when the coordinates are shifted by a displacement of all
atomic coordinates Az;. For this purpose the equilibrated structure of BPTI
was changed by a displacement

A'fl = -\

(23)

where the norm ||...]| is defined as

[EATE «’Z l-ul2 | (24)
i=1

The potential energies arising after such displacement E..(&; + AT,
Evaw(Ti + AZ;), Eg(T; + AZ;) describing Coulomb, van der Waals, bond
angle forces, respectively, and the total potential energy E,q(F; + AT;) were
calculated for different displacement lengths A. The results are shown in
Fig. 3. For small A, the potential surface is approximately linear, which
means that all energy values decrease with increasing A. This is the region
where discrete integration is almost exact. The value of A for one step of the
Verlet integration method (5) and (7)

A= Zae (25)
m;
with a time step of At = 0.5fs is A = 0.0075A. This value, indicated in
Fig. 3, has been calculated by evaluating (25) explicitly during the simulation
and corresponds very well to an estimate derived from (25) assuming an
equilibrium mean velocity for each atom, i.e.

| & 3ksT -
(R ||-.Z = . (26)

my = m;
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Figure 3: Potential energy plotted against the displacement of atoms in the
direction of the negative potential gradient —V;U/. In the immediate vicinity
of the point where the gradient has been calculated, potential energy naturally
"decreases. However, due to the complex curvature of the energy landscape at
a certain distance energy again increases, indicating the maximum displacement
that can be tolerated during one simulation step.

At larger displacements the non-linear nature of the energy function takes
over and the total potential energy rises steeply with A. The upper bound for
the length of a time step is the point where the total potential energy rises
above the value at the starting point. Any attempt to integrate with such a
step size would lead to a divergence of the total potential energy. It can be
seen from Fig. 3, though, that a time step of ten times the size of the Verlet
time step would still be acceptable from this point of view. Tests with both
Correlated and Uncorrelated Stochastic Dynamics have shown that a stable
_ simulation can be achieved with a time step of 3 fs, which is six times longer
than step sizes required for the conventional Molecular Dynamics method.
This implies that the Stochastic Dynamics methods yteld a sixfold increase

12



in accessible simulation time over that accessible by Newtonian Dynamics.

5 Comparison of methods

The three types of dynamics simulations described above, Newtonian Dynam-
ics, Uncorrelated Stochastic Dynamics and Correlated Stochastic Dynamics,
were tested on the protein BPTI. The potential function employed for all
simulations is PARAM11.PRO of the CHARMM program for molecular dy-
namics[10]. The simulations were carried out by means of the molecular
dynamics program MD developed by us previously [20] in the C program-
ming language. This program is based on CHARMM [10] in that it is input
and output compatible with CHARMM, and in that it uses the same poten-
tial function. So far, the program has been implemented on a VAX/750, a
Convex C1, a Silicon Graphics workstation, a- NeXT Computer, a Motorola
88000 processor, a SUN/4, a CDC Cyber vector processor, a Cray 2 and a
Connection Machine CM2[24].

The initial structure of BPTI for the simulations was taken from the
Brookhaven Protein Data Bank[19]. This structure was minimized and equi-
librated using standard procedures to generate a relaxed starting configura-
tion used in all three simulations. The results reported here were extracted
from the trajectory during the simulation and stored for later analysis, the
full trajectories were not saved due to storage space limitations.

The calculation of 1 ps of Newtonian Dynamics took about 6.6 hours of
CPU-time on a Convex C1 using a time step of At = 0.5 fs as recommended
in [10]. For the Uncorrelated and Correlated Stochastic Dynamics methods,
due to the larger time step of At = 3 fs, the same period required only
1.1 hours of CPU-time. For the Correlated Stochastic Dynamics method, a
correlation time of 5 fs was assumed, in accordance with the relaxation time
of the velocity auto-correlation function in Fig. 1. /

5.1 Energies

The properties we like to compare first for the three simulations are the total
energy and various components of the potential enérgy. In Fig. 4 the poten- -
tial energy for bond angles, electrostatic forces, the van der Waals-energy and
the total energy (including kinetic energy) are compared for the three sim-
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ulation methods. In the Newtonian Dynamics simulation, the law of energy
conservation requires the total energy to be constant, which is borne out in
the Verlet simulation. In the Stochastic Dynamics simulations total energy
is not conserved due to the random forces; instead the system behaves as a
canonical ensemble with a fixed temperature of 300 K. If bond stretching and
angle bending are considered as independent harmonic degrees of freedom,
each contributing %kBT to the potential energy, the expected potential en-
ergies are of the order of 157 kcal/mol for bond stretching and 250 kcal /mol
for angle bending. These values were calculated from kT =~ 0.6 kcal/mol
and from the fact that the molecular structure of BPTI includes 582 bonds
and 834 angles. The actual potential energy values observed in the New-
tonian Dynamics simulation are larger, measuring about 250 kcal/mol and
300 kcal/mol, respectively. The excess energy can be attributed to distortion
of the molecule by van der Waals and electrostatic forces, which tend to in-
crease bond stretch and bending potential energies by induction of structural
stress. The comparison of Newtonian Dynamics simulation with both kinds
of Stochastic Dynamics simulation shows that the potential energy is smaller
when described by Uncorrelated Stochastic Dynamics and larger when de-
scribed by Correlated Stochastic Dynamics. We conclude that the correlation
introduced in (17), which does not depend on the potential function, tends
to drive the atoms up against potential barriers, thereby increasing the po-
tential energy. This effect is much less pronounced in Newtonian Dynamics,
in which case the correlation of velocities §i(¢)/m; and pi(t + At)/m; takes
the gradient of the potential function into account.

5.2 Coordinate Drift

To evaluate the capability of the different simulation methods to sample
phase space, we calculated the overall coordinate drift, defined by

d(t) = [xi(t) = x(to)l] - (27)

d(t) is a measure of the diameter of the probability distribution in phase
space and, thus, indicates how large a region of phase space a method can
explore. The coordinate drift was calculated at every time step during the
simulations.. The result is shown in Fig. 5. The slope at the beginning of
the simulations is the same for all three methods, showing that the time
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scale is reproduced correctly. The probability distribution resulting from
the Uncorrelated and Correlated Stochastic Dynamics methods expands in
phase space much more slowly as compared to that resulting from Newtonian
Dynamics simulation. This can be understood by considering the expansion
of a free system, i.e. of a system of atoms without a potential function. The
corresponding coordinate drifts are also indicated in Fig. 5. In the case of the
Newtonian Dynamics simulation the free expansion is linear, i.e. the system
behaves like an ideal gas without container. The Uncorrelated Stochastic
Dynamics simulation of a free system is equivalent to a multi-dimensional
random walk and the expansion in phase space d(t) is proportional to /%.
The presence of a potential restricts the accessible phase space and, therehy,
diminishes the expansion of the probability distribution in all three cases.
This is demonstrated clearly in Fig. 5. The addition of time correlation to
Stochastic Dynamics has a significant effect: Correlated Stochastic Dynamics
leads to a faster expansion as compared to Uncorrelated Stochastic Dynamics,
the expansion being even faster than that of the free random walk.

5.3 Ring Rotation

To evaluate the effect of Stochastic Dynamics on collective motions of groups
of atoms, the rotation of rings of tyrosine and phenylalanin side chains of
BPTT has been monitored during the simulations. These rings are embedded
in the protein and are usually prevented by the surrounding protein matter
from rotating by more than a few degrees. However, they have been observed
experimentally to occasionally 'flip’, i.e. rotate by 180°. Such flips are ac-
tivated processes which are too rare to be reproduced directly in computer
simulations[25]. Nevertheless, the equilibrium motions of rings can be used
to test the accuracy of the description of such collective motions by simu-
lation techniques. Figure 6 shows the rotation angles of some of the rings
in BPTT as a function of time. Differences between the methods are appar-
ent. Large scale motions are nearly absent in the Uncorrelated Stochastic
Dynamics simulation. The introduction of a finite correlation time (5 ps)
leads to a significant increase of the ring angle fluctuations. As with the co-
ordinate drift, the results of Correlated Stochastic Dynamics simulations are
intermediate between those of Uncorrelated Stochastic Dynamics and those
of Newtonian Dynamics.
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6 Conclusion

We have presented above a molecular dynamics method which allows one to
describe motions of macromolecules as part of a canonical ensemble. The
method takes advantage of the fact that in macromolecules velocities are
correlated only on a very short time scale, typically a few femtoseconds, and
accordingly describes velocities by a stochastic model with the characteristics
of a Maxwell distribution and finite or vanishing correlation times. The
present study demonstrates the feasibility of such approach. In the following
we like to discuss modelling techniques, some already mentioned above, which
become available in the framework of Stochastic Molecular Dynamics.

The computational procedures involved in the Stochastic Dynamics al-
gorithm are very similar to those of the conventional Newtonian Dynamics
method. This opens up a class of further developments of the algorithm
identical to those suggested for Newtonian dynamics simulations. The most
notable development appears to be that the algorithm lends itself to imple-
mentation on various massive parallel computers, e.g. of the SIMD type [24]
or of the MIMD type [26]. A further improvement would involve new al-
gorithms for the computation of non-bonded forces, i.e. the Fast Multipole
Algorithm [27] or the distance class algorithm[28]; the latter algorithm can
be integrated in a straightforward way into the method of Stochastic Dy-
namics. Also established computational techniques such as the stochastic
boundary method [14], the optimization routines involving artificial forces
to match NMR and X-ray crystallographic data [29, 30], and the thermo-
dynamic perturbation method [31] can be readily connected with Stochastic
Dynamics. ~

Two obvious extensions specific for Stochastic Dynamics have been men-
tioned above. First, one can assign individual relaxation times for velocity
auto-correlation of atoms. More cumbersome, but possible, is an inclusion
of velocity cross-correlation for groups of n; atoms, e.g. atoms belonging to
amino acid side chains with rings. In this case the N uncoupled Egs. (17) arc
replaced by sets of n;(X; n; = N) coupled equations, the tensorial coupling
to be determined either from Newtonian dynamics or from a model of rigid
ring motion.

The most promising avenue for further development should stem from the
possibility to separate the degrees of freedom of a macromolecule into explicit
and implicit degrees, i.e. to focus the dynamics on the relevant (explicit) de-
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grees of freedom, viewing this subsystem as a canonical subensemble in the
whole macromolecule. For many important problems in macromolecular dy-
namics, e.g. the description of activated processes or of protein folding, the
relevant degrees of freedom are very slow and a separate description would
allow one to increase integration step sizes by orders of magnitude. Such a
possibility would necessitate, however, that the remaining implicit degrees
of freedom, which establish a heat bath for the explicit degrees of freedom,
are accounted for by a proper noise term. We suggest that systematic ex-
plorations be carried out to establish to what extent this avenue furnishes
proper descriptions. We have already commented above that the separation
of degrees of freedom which represent high frequency vibrations and, there-
fore, should be treated quantum mechanically would be particularly simple
since (i) these degrees of freedom exchange little energy with the classical
degrees of freedom, thus contributing little thermal noise, and since (ii) ac-
cording to the theory of Nelson(18] they can be described probabilistically.
A Nelson-type description would bypass velocities altogether and assign po-
sition values (bond distances and bond angles) according to the respective
ground state wave functions.

The development outlined hinges on the development of computational
techniques which appear to be long overdue in the field of molecular dy-
namics, namely, a formulation of equations of motion in terms of generalized
coordinates rather than Cartesian coordinates. Certainly this task is not sim-
ple. The Stochastic Dynamics method which only involves displacement and
force terms, but no inertial terms stemming from second order derivatives,
should provide a simpler avenue to such a description than the Newtonian
Dynamics method. Generalized coordinates may be chosen to he identical
to the so-called internal coordinates, i.e. bond lengths, bond angles, tor-
sions. However, even better results could be achieved if one would choose
local rotational and vibrational modes to represent degrees of freedowm corre-
sponding to group vibrational modes and group rotations. Such modes can
be obtained from vibrational analysis routines, e.g. those in [32, 33]. The
5ene1dhzed coordinate approach would require development of a new genera-
tion of dynamics programs, the birth of which hopefully will not be prevented

by inertial effects exerted by the vast codes of existing molecular dynamics
routines. .
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Figure 4: Energy contributions during molecular dynamics simulation using
the three different simulation methods discussed in the text. While Uncorrelated
Stochastic Dynamics simulation (middle) lowers the potential energy contributions
somewhat in comparison with a Newtonian Dynamics simulation (top), Correlated
Stochastic Dynamics (bottom) elevates the energy contributions significantly. The
latter effect is due to the fact that in Correlated Stochastic Dynmnics siimulations
the systei tends to retain it's movemnent even when encountering an energy barrier.
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Figure 5:  Overall coordinate drifts for the different types of dynamics simula-
tions described in the text. The Newtonian Dynamics simulation clearly shows
the most pronounced deviation from the starting configuration. The behavior of
the Correlated Stochastic Dynamics (bottom) is halfway between the Newtonian
Dynamics(top) and Uncorrelated Stochastic Dynamics (middle) cases. The light
curves show the coordinate drift for a free system, i.e. a system of completely
unbound atoms.
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Figure 6: Ring rotation angles for the amino acid side chains TYR 10, TYR 21,
PHE 4 and PHE 33 calculated during the three-different simulations discussed in
the text. The Newtonian Dynamics simulation (top) g‘ivés very high mobilitics,
whereas Uncorrelated Stochastic Dynamics (middle) effectively suppresses ring
movement. For Correlated Stochastic Dynamics ring fluctuations are restored to a
large degree , in spite of the small correlation time of 5ps assumed in our simulation.
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