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Pairs of radical ions generated in polar solvents by photoinduced electron transfer either recombine within
a few nanoseconds or separate. The (geminate) recombination process is governed by a hyperfine-coupling-
induced coherent motion of the unpaired electron spins which can be modulated by weak external
magnetic fields. The process which also generates the well-known CIDNP and CIDEP effects is described
theoretically by a stochastic Liouville equation comprising for realistic systems a large set of coupled
diffusion equations. For the integration of these equations a finite-difference algorithm with space and
time discretization is developed. By comparison with exact solutions of the Liouville equation for model
systems, it is demonstrated that an approximate Liouville equation which entails only two coupled
diffusion equations for singlet and triplet radical pairs, respectively, suffices. to predict the geminate
recombination yields accurately. The approximate Liouville equation is-employed then to study on the
basis of known hyperfine coupling constants, second-order recombination rate constants, diffusion
coefficients, and dielectric constants, the solvent, temperature, coricentration, and magnetic field
dependence of the geminate (singlet and triplet) recombination yields for the system pyrene~N,N-
dimethylaniline. The effect of deuteration upon the recombination yield and its magnetic field dependence
is also studied. Furthermore, the influence of an exchange mteracnon acting at small separations of the
radicals is mvestlgated for a model system.

can be rationalized in terms of well-known solvent—sol-
ute properties, viz., diffusion constants, dielectric
constants, second-order recombination rate constants,
and hyperfine coupling constants.

I. INTRODUCTION

Most chemical reactions proceed in liquid media and
are strongly influenced by their solvent environment.
To gain detailed information on reactions in solvents it
is desirable to observe primary reaction encounters -
which encompass the reaction or final separation of a
reactant pair after a multitude of binary collisions.

Let us first summarize the éx;;énmenkal findings
which provide the basis for our theoretical study. Radi-
cal ion pairs (e.g., 2Py +2DMA®) can be generated in

- In the case of radical reactions, information about the
encounter process can be conveyed by a coherent motion
of the unpaired electron spins. This motion is induced
by the hyperfine coupling between electron and nuclear
spins and serves as an internal clock measuring the
duration of the encounter as well as the reaction prob-
abilities. The spin motion namely leaves its trace on
the NMR signals of the nuclear spins of the pro;lucts
(CIDNP effect) and on the ESR signals of the electron
spins of the escaped radicals (CIDEP effect).! Unfor-
tunately, the NMR and ESR spectra are averaged over
times much longer than the duration of single radical
pair encounters and hence yield only limited informa-
tion.

" Recently, we succeeded to observe by means of nano-
second spectroscopy a magnetic field modulation on the
initial (~ 10 ns) recombination yields of radical ion pairs
which were generated through photoinduced electron
transfer.®*® Although such observations appear to be
more limited in their range of applicability than the
CIDNP and CIDEP measurements they convey the most
direct information on radical processes in liquids. In
order to unveil this information a quantitative theory of
the radical recombination process which links the gen-
eration, diffusion, spin motion, and recombination of
the radical ion pairs will be given in this paper. We
shall show that the observed solvent effects on the re-
combination yields and their magnetic field dependence
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polar solvents via photoinduced electron transfer be-
tween suitable acceptor (!Py) and donor (!DMA) mole-
cules (Py-=pyrene, DMA = N,N-dimethylaniline).* The
radical ion pairs recombine to the ground state and, if
energetically possible, to the triplet state of one of the
neutral molecules.?” Time-resolved experiments® % 5-7
show that the recombination takes place on two differ-
ent time scales: either the original pairs recombine di-

. rectly within a few nanoseconds by an “intrapair” or

“geminate” process, or the pairs diffuse apart and re-
combine with members of other pairs in an “interpair”
or “homogeneous” process. The latter reaction for
typical radical ion pair concentrations takes place over
the time range of some microseconds. The interpair
encounters occur with a random spin alignment, i.e.,
75% are in a triplet and 25% in a singlet electron spin
state initially. Thus, the observation of triplet product
formation in the slow homogeneous phase of the reaction
is readily explained. However, triplet products are
also observed in the fast geminate phase of the recom-
bination process.®**" Since the radical ion pairs are
generated from singlet precursors, their unpaired elec-
tron spins are aligned in a singlet state ‘initially. .Con-
sequently, there must exist a mechanism by which the
electron spin multiplicity is changed within a few nano-
seconds,

As suggested by Groff ef al.® and Brocklehurst,? the
hyperfine coupling between the unpaired electron spins
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and the nuclear spins should be able to induce the fast
spin multiplicity change of the electron spin state dur-
ing the geminate phase of the recombination process.
Since the hyperfine coupling is extremely weak (~ 1076
eV), this mechanism is expected to be only effective in
“solvent-shared” radical ion pairs, in which the singlet
and triplet electron spin states are degenerate. The de-~
generacy between the S, T, and T, states is lifted, how-

ever, if an external magnetic field is applied to the sys- .

tem. For (Zeeman) energy splittings of the order of
the hyperfine coupling energy the S, T — T,, transition
probabilities will be reduced and will vanish in the pres-
ence of large fields (X 200 G). Thus a lowering of the
geminate triplet recombination yield is to be expected
when a magnetic field is applied. As a magnetic field
effect should not arise for the homogeneous recombina-
tion (see Ref. 2 and Sec. VI of this paper) or for inter-
system crossing in a possible intermediate charge
transfer complex (in which the singlet and triplet states
are not degenerate) preceding the ion pair formation,
the magnetic field effect separates out the geminate ve-
‘combination process.

We recently succeeded in observing such a magnetic
field modulation of the triplet recombination yield for
the system pyrene-3, 5-dimethoxy-N, N-dimethylaniline
(Py-DMDMA) in methanol.? A time-resolved experi-
ment proved that the magnetic field effect builds up dur-
ing the geminate phase of the recombination process.
Furthermore, the magnetic field dependence of the ob-
served triplet recombination yield was found to be in ex-

cellent agreement with the predictions of a theoretical -

model based on the hyperfine mechanism. In this mod-
el the separation and recombination of the radical ion
pairs were described by a simple first-order kinetic
reaction scheme. - A rather similar model has recently
been published by Michel-Beyerle ef al.® We would like
to note, however, that such a kinetic model gives un-
reasonable triplet yields in the case of different singlet
and triplet recombination rate constants, a shortcoming
which has already been demonstrated and corrected in
Ref, 2.

Clearly, a realistic treatment of the geminate recom-
bination process has to take into account the relative
diffusion of the radical ion pair described by a pair dis-
tribution function. For this purpose a numerical calcu-
lation of the radical ion pair distribution function was
“carried out, and on the basis of a simple two-proton
radical ion pair model system, the qualitative features
of the geminate recombination process could be ex-
plained in terms of solvent properties,'' The recombi-
nation was assumed to be spin independent, i.e., to oc-
cur with equal probability for singlet and triplet pairs.
However, as we will show below, this assumption is not

justified in general. In order to obtain guantitative pre-

dictions about the radical ion pair diffusion and recom-
bination and to render possible a direct comparison be-
tween experiment and theory we will in this paper extend
the theory of the hyperfine-induced geminate recombina-
tion to realistic systems. We choose as an example the
’Py*+2DMA! radical ion pair which also has been the
subject of experimental investigations.® This will be
done here unaffected by the criticism of Michel-Beyerle
et al.,'® who advocated an oversimplified first-order ki~
netic treatment of the geminate process dispensing from -
any quantitative analysis of experimental observations.

For a quantitative description of the hyperfine-induc.ed

-geminate triplet formation it is of cardinal importance

to account correctly for the time evolution of the sin-
glet-triplet. transition probability which in the case of
the ?Py* + °DMA? system is due to the hyperfine coupling
of the two unpaired electrons to 22 nuclear spins. The
geminate recombination yields depend also crucially on
the reaction probabilities of the radical ion pair in the
singlet and triplet states. We will show that these prob-
abilities can be determined from observed second-order
(homogeneous) recombination rate constants. It turns

_out that the singlet and triplet recombination prob-

abilities are rather different, This leads to a coupling
between the solvent-governed diffusion and the spin mo-
tion and recombination, i.e., the radical ion pairs have
to be described by a large set of coupled diffusion equa-
tions.

In Sec. II we introduce the stochastic Liouville equa-

- tion accounting for the radical ion pair diffusion, spin

motion, and recombination. In Sec. II we present a
numerical algorithm to evaluate the time evolution of
the electron spin states of radical pairs in which the
electrons are coupled to a large number of nuclear
spins. In Sec. IV we furnish numerical (finite-differ-
ence) methods for the solution of the stochastic Liouville
equation and supply tests for their accuracy. InSec. V
we investigate the effect of the exchange interaction in
the contact région of the radical pairs. In Sec. VI we
provide the connection between the geminate recombina-
tion rate constants and the observed second-order
(homogeneous) recombination rate constants. Finally,
in Sec. VI we apply the theory to the system 2Py*
+2DMA? and investigate the effects of the solvent, tem-
perature, magnetic field, concentration, and deutera-
tion on the geminate recombination yields,

1. THE STOCHASTIC LIOUVILLE EQUATION FOR
RECOMBINING RADICAL PAIRS

The generation, diffusion, spin motion, and recom-

. bination of radical pairs is described by the density ma-

trix p(», f), which is the solution of the stochastic Liou- »
ville equation '

;a; plr, )= R(?) %:ﬁ—? Q+1r)plrt) - %[H,p(n z‘)A]- = 3s(N{ks[Q@s, o, DL, + kr[Qz 0(7, D]} = Erecl PO (7, 1) ,
(2.1a)
p(r,0)=0, (2. 1b)
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where [A,B],=ABx BA. This equation implies the radi-

cal ion pair generation and recombination to be indepen-
dent of the relative orientation of the radicals and p(7, #)
to be spherically symmetric. The d1agona1 elements
4nr p,,(r, t)dr represent the concentration of pairs in -
the volume element 4772 dr in some electron~nuclear -
spin state |4) at time £, The total concentration of pairs
is (p(t)) =4n [ 72 Trp(r, t) dr, where TrA=3,4,,.

The first term on the rhs of Eq. (2.1) describes the
generation of the radical pairs which are assumed to be
formed at the distance »=7, in the smglet electron spin
state with equal probability for all Z nuclear spin states
(Z=Trqs).

The rate of formation R(¢#) is defined to yield the to-
tal concentration of pairs generated,
f R(f)dt=cy. (2.2)
0
The second term of Eq. (2.1) describes the relative

diffusion of the radical pair., I(7) is the Smoluchowski
operator

U7)= D{l a:zr B~ [—;rzF(r)];BF.'(r)a%}, (2-3)

where 8=1/kT, and D=D, +D, is the sum of the diffu-
sion coefficients of the two radicals. F(#) is the radial
force acting between the radicals, e.g., F(»)=0 for neu-
tral molecules (free diffusion) or F(r)= ~e2/er? for a
radical ion pair 2A%+2D*, where ¢ is taken to be the
macroscopic diélectric cdnstant of the medium. - This
description for the force field between radical ions holds
strictly only at large distances and low ion concentra-
. tions. A more accurate representation of the force
field between diffusing ions would need to include dy-
namic eifects and a » dependence of the microscopic di-
electric constant describing the solvent-screened Cou-
lomb field over molecular distances.

The third term of Eq. (2.1) describes the electron-
nuclear spin motion of the radical pair governed by the
_ Hamiltonian

H(7)= ; a8y L+ Z a8, I,
7

- +uB: [2181+28,]-T (1) [5+28,-8,]. (2.4)

The first and second terms in Eq, (2. 4) represe/nt the
hyperfine interaction between the unpaired electron
spins 8, and S, and the nuclear spins I, I,. The third
(electron Zeeman) term accounts for the interaction be-
tween the electron spins and the applied magnetic field,
and in the last term enters the exchange interaction

J (7) between the unpaired electron spins [singlet—trip-
" let splitting 2J(»)]. In the Hamiltonian we have ne-

glected the smaller Zeeman terms and also all aniso-
tropic terms as the radicals are assumed to be freely
rotating in the solvent.

The fourth and fifth terms of Eq. (2. 1) describe the
geminate recombination to the singlet and triplet states,
respectively. It is assumed that within the reaction do-
main s(7) the singlet and triplet radical ion pairs under-

go first-order recombination reactions with rate con-
stants s(r)ks and s(r)kr, respectively. Qs and Qr are
the projection operators onto the manifold of singlet and
triplet radical pair states. The reaction domain s(»)
will be normalized as [;;(»/7,)%s(#)dr=1. This nor-

* malization ensures that for a constant distribution of

radical pairs a variation of s(#) does not lead to a vari-
ation of the reaction yield,

The last term of Eq. (2. 1) represents the homoge-
neous recombination of the radical ion pairs. k., is the

" bimolecular recombination rate constant, which will be

discussed in detail in Sec, VI.

The density matrix p(7, f) can be factored into a scalar
function ¢(#), describing the depletion of the radical con-
centration through the homogeneous recombination,
times a matrix p(7, #) déscribing the time evolutxon of an
isolated radical pa,1r

p(f, t) = C(t)P(?’, t) » (2- 5)
é(t) == krec C(t) z(P(t» ) (2- 63)
c0)=¢, , (2.6b)

6(7-7’1) 1 Qs + Unplr, t)—--— [H(7), p(7, ).

2 o, - R 2272
~25(N{ks[Qs, plr, 0.+ Kr[Qr:P(”s L.},

' (2.7

In this séparation we éssume [co=c(D)] R(t) ~ (0, which 1s

justified since c(t)u ¢p during the short time of pair
generation, Equatlon (2. 6) has the solution

c(t)=c°(1+kmcoj; (p(r))dr)v .

In order to solve Eq. (2.7) one may define p(7, #)
through the time convolution of R(#) with a function
P(r, 1)

(2.8)

‘ .
plr, 8= fo R(7)P(r,t=T1)dT , (2.9)

-where P(7, t) describes an isolated radical pair gener-

ated at the instance #=0;
9 . i
5 P )=UnP(r, 1) -—ﬁz- [H(7), P(r, D)].

—és(r){K;g[Qs, Pz, t)] ++ KT[QT: (7, t)] 0} ’ (2. 10a)
P(7,0)=Q5(r - ) /(41ricyZ) . (2.10b)

The Liouville equation (2, 10) couples the diffusive mo-
tion, the recombination process, and the electron—nu-
clear spin motion of a radical pair. It cannot be simpli-
fied further except in the case of zero exchange inter-
action and identical singlet and triplet recombination
rate constants «s and k;, respectively.@sFor this case
one may factor the solution of Eg. (2. 10),

P(r,t)=d(r», )P*(?) , (2.11)

where d(7, #) is the scalar pair distribution function
satisfying the diffusion equation (kg =Kz =«)
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2 d(r, = (U = ks(N]d(r, 1), (2. 12a)

d(7,0)=8(r - r) Aa172c)) , (2. 12b)

and where PY%¢) represents the electron—nuclear spin-
density matrix of the radical pair wh1ch is the solution
of the Liouville equation

PO(#)= —% [H,PY%D)]. (2. 132)
with the initial condition
PY0)=Qs/Z . (2. 13b)

p %(#)=Tr[QsP%¢)] is the probability to find a radical
pair'in the singlet electron spin state at time £, disre-
garding the depletion of radicals through recombination
which is accounted for in Eq. (2.12a). p}(#)=1-p%?
gives the probablhty of finding the pair in a triplet
state,

The rates of recombination to singlet and triplet prod-
ucts are

ﬁs,,-(t)=:cp§,r(t) J anrts(r)dlr,t)dr , (2.14)
n

i.e., they are proportional to the number of radical
pairs in the reaction domain defined through s(7) and to
the probability p%(#)[ p%(#)] to find the pair in a singlet
[triplet] electron spin state at the instance of recom-
bination.. In Ref. 11 the exact solution of the Liouville
equation (2. 13) for the electron-nuclear spin motion of
a very simple radical pair system was given along with

_a finite~-difference evaluation of the pair distribution
function d(r,¢). In Sec. I of this paper we will furnish
the numerical solution of (2.13) for real radical pair
systems with a large number of nuclear spms coupled
to the unpaired electron spins.

For the case of unequal singlet and triplet recombina-
tion rate constants kg and kr, respectively, the separa-
tion of the diffusive motion and the spin motion of the

_radical pairs is not possible. The stochastic Liouville
equation (2. 10a) then comprises a large set of coupled
diffusion equations for each element of the density ma-
trix P;.(r, f), the indices #,j corresponding to electron-
nuclear spin states. In the following we assume a ba-
sis in which the two unpaired electron spins are coupled
to singlet and triplet states:

Singlet: |S,N)=2""%(|ap,N)~|Ba,N)),
Triplet: | Ty, NY=2"%(] ap, N)+ | B, NY) ,
| Ty, Ny=|aa,N).,
| 7., N)=|88,N) ,

where | 0,0,, N) denotes an electron—nuclear spin state
with electron spin 6,(0,) on radical 1(2) and nuclear
spin state | N). For a numerical solution of (2. 10) one
may separate the real and imaginary parts Ry;

=Re[P, {7, )] and S;;=Im[P; (7, t)] to obtain the coupled
equat1ons

'8_t R‘j=';-i'( E (H{kshj"’ H,,S,,‘)+ [H“('V) —'H”(T)]S‘j)
h#i, §

+[Hn) = U ()= U, {N]Ry,, (2. 15a)

9 1 K . :
— 5= -"'(Z Hy Ry - Z HyRy; + [H () ‘H;,(7’)]Rij)
at I AY>¥ ) '

+[UR) = U (7)) = U, {N]Si; . (2. 15b)

The » dependence of the diagonal elements H(r) of the
spin Hamiltonian is due to the exchange interaction

J (7). U;(#) are the elements of the diagonal matrix
1s(r) (ksQs+Kk7Qr), describing the recombination to sin-
glet and triplet products. The corresponding recombi~
nation rates are

ns, (8= Ks,z f 4nr? s('r); QY 7Ry (7 D dr . (2.15¢)
) i :

The number of electron—nuclear spin states |i) for the
radical pair systems studied experimeéntally®? is very
large. In general, the solution of (2. 15) is possible only
for radical pairs containing just a few nuclear spins ex-
cept at very high magnetic fields in which limit all nu-
clear spin states are independent. For a system con-
taining two 3 nuclear spins Eq. (2.15) will be solved for
arbitrary magnetic fields in Sec. IV. There Eq. (2. 15)
will be integrated also for high (B —«) magnetic fields

for the system 2Py* +2DMA.

We will now derive an approximation to the Liouville
equation (2. 10) which renders possible a solution for
radical pair systems of realistic complexity. This ap-
proximation will neglect the exchange interaction J(r),
which is expected to be rapidly decreasing with in-
creasing pair separation. [The influence of J(r) on the
radical ion pair recombination process will be studied
in Sec. V.] As already discussed in Ref. 2, the effect
of different' recombination rate constants kg and « is to

* alter the electron-nuclear spin motion of the radical

pairs in the reaction domain. The overall influence of
this effect should be small for the spin motion of freely
diffusing radicals or radical ions 2A7+%D? in rather
polar solvents like acetonitrile or methanol but could
become important in the case of stronger Coulomb at-
traction in less polar solvents such as propanol. For a
radical pair initially in the singlet electron spin state
and nuclear spin state | N) the exact Liouville equation
is

a% Pyr, 1) =UnPy(r, 1) -%" (8, Py(r, D).

- %3(7){K3[QS9PN(T’ t)]+ + KT[QT: Pn('r: t)]o} , . )
(2.16a)

Hr—n) (2. 16b)

P 0)=
N(r, ) 47”,%00

|s,N)(s,N]| .

Neglecting the effect of kg # k7 on the spin motion of the
radical pair implies the factorization P,(, t)

= P3(#) Tr[P,(7, H)]. This may be introduced into the sec-
ond term of Eq. (2.16a), i.e., [H, Py, H].

= [H, P%(t)L TrP,(7, ), where P%(¢t) is the spin density
matrix of the pair without reaction as defined through
Eq. (2.13a) with the initial condition P?V(O) =|8,N)(S,Nl.
For the total densities py (7, 1) = Tr[QsPy(7, )] and
Purl7, ) =Tr[QrP(r, t)] of singlet and triplet pairs, re-
spectively, follow the coupled equations {p%s(?)

= Tr[QsPY(A]; Pyr(?)=Tr[Q,PH(A]}
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a%ﬁys(% =[Ur) - st(r)] Duslryt) |
(2.172)

E ’*‘é‘ll\ls(t) [PNS(T, t)"'pNT('r: t)] )
37 Prr 0= [0 = krs() )yl
+ 0% [P sy O+ par(r, D] . (2.170)

In a second step we average over all nuclear spin states
N and introduce the approximations [note p%(#)=(1/2)
Xign P s(t)] :

; P?vs(t) [puslr, ?) +PNT(7: t)]

o qu(t); [Pns("’, D+pyr(n, 0], (2.18a)
; b?vr(t) [PNS(T’ 7 +PN1(’Vs t)]
=~ p3(1) ? [Dws(rs D)+ prrlr, O] (2. 18b)

‘We then obtain for the mean concentration of singlet and
triplet pairs pg(7, 1)=(1/Z) Iy pus(r, t) and pp(r, 8)=(1/ 2)
X Sy byr(7, 1), respectively, the coupled equations

2 pslr D= [ = k55N pslr, )

+pUD [ps(r, D+ pr(r, D], (2. 192)
2 palr, 0= (1) = k(M e, 1)
+ PO [ps(ry )+ pr(r, D] (2. 19p)
For the case xs K these equations are exact. The re-

combination rates to the singlet and triplet products are

ns,r{) = Ks'Tf a72s(r)ps, (7, ) dr . (2.19¢)
71 . .

For simple radical pair systems with a small num-
ber of nuclear spins coupled to the unpaired electron
spins, p%(2) is a simple periodic function which vanishes
at £=0 and reaches the value zero again after a rela-
tively short time. In the case kg=kr the triplet prob-
ability po(7,#) and its time derivative p,(7, f) vanish
simultaneously, . However, in the case k5 > kg the trip-
let probability p,(r, ), as evaluated from Eq. (2.19),
reaches zero earlier than p%(#). At this instance px0)

- and, thus, p(7, ?) is still negative and therefore small
negative values for p.(7, #) can be obtained over short
time intervals. To avoid this defect of the approxima-
tion (2. 19) we set ps {7, ?) to zero if pg r(r,?) =0 and
ps £(#)<0 in the numerical treatment (see Sec. IV).
However, for radical pair systems which carry a large
number of nuclear spins coupled to the unpaired elec-
tron spins, as for instance pyrene—=DMA, the first zero
point of p(#) is reached only after times very long in
comparison with the geminate phase of the recombina-
tion processes and, hence, the defect discussed does
not occur for such systems,

In Sec. IV 2 numerical method for the solution of Egs.
(2.6), (2.15), and (2. 19) will be presented, and it will
be demonstrated that the singlet and triplet recombina-
tion yields

§7%, (0= [ g, z(r)ar (2. 20)

as determined from (2. 19) are in excellent agreement
with the results of the exact Liouville equation (2, 15).
The equation (2. 19) will serve in Sec. VII to study the
solvent and temperature effects on the geminate recom-
bination of the 2Py* + 2DMA® radical ion pair system.

Il. HYPERFINE COUPLING INDUCED SINGLET
< TRIPLET TRANSITION PROBABILITIES OF
RADICAL PAIRS

We present now a numerical method for the evaluation
of the time-dependent triplet probability p%(#) for radi-
cal’ion pair systems with a large number of nuclear
spins. The method was already employed in Ref. 2 and
will be applied here to the system pyrene~N, N-di-
methylaniline, The triplet probability has been defined
in Sec. II to be p%(#) = Tr[QsP%#)], where P%(#) is the
electron—nuclear spin density matrix that satisfies the
Liouville equation (2. 13). The formal solution of (2. 13)

is
PY%%) =l exp (—i Ht) Q exp(—i Ht) (3.1)
z n s 73 ’ :

~ where H is the Hamiltonian defined in (2. 4) with the ex-

change interaction J(7)=0. This expression assumes
that initially (¢=0) all Z nuclear spin states are equally
populated in the singlet electron spin state. Expanding
the evolution operator exp{[- (i/7%)Ht] in terms of the
eigenstates 17) of the Hamiltonian H (HII)=E,|I)), one
der1ves for the singlet probability p°(t) the expression

U == Tr[Qs exp( Ht)Qs exp( ﬁ Ht)]

LS Qs+ 2 X costw A1l Qsl 2
Z9 Z 7

(3.2)
where
w=(E-E})/n.
By virtue of
22 lalesln|*=2- 3 ales| 0y (3.3)

follows from (3. 2)

A =1 -% 2 (1= coswr, | 1| s}

=1-2 Z[(l - cosw,,t)@:(zl S,N)(S,NlJ))z] .

(3.4)
If the radical ion pairs are initially formed in a friplet
state, the transition probability to the singlet state % s
3 of the transition probability p‘}(t) from the singlet to
the triplet state:

5. 5() “37 Tr[Qs exp (—% Ht) Qr exp(i—i: Ht)]
=% {1 —-15 Tr[Qs exp(— %Ht)Qs exp(%Ht)]}

(3.5)

or

P s(D=5[1-p%N].
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Since the exchange interaction between the radicals is
neglected, the eigenstates of the Hamiltonian can be ob-
tained as the direct product of the eigenstates of the two
spin Hamiltonians H, and H,,

(i)

Hy=ginBST+ 2 anlliSi+HSinasim] - (3.6)
of the separated radicals. S*and I* are the operators
measuring the z components of the electron and nuclear
spins, respectively, and S*, I* are the corresponding
shift operators. The summation in Eq. (3. 8) is re~
stricted to the nuclei %k at radical ;. The eigenvectors
of H,+ H, are first determined in the basis | 0,05, N)
= | yNy)| 0, N,), where o, denotes the electron spin di-
rection (« or B) and N, the nuclear spin configuration on
radical i. The eigenvectors in the coupled electron.
spin basis |S,N), | Ty, N), | Ty, N) and in the decoupled
electron spin basis | 6,0, N) are connected through

(8,N| 1) == (g, NI Dy - (Ba, NI

(T, N| 1) = (B, N| 1) + (B, NI 1))

(Ty, N|I)=(aa, N|1)
(T, N|1)=(88, N|1) . (3.7

It is obvious that the Hamiltonian H, of Eq. (3.6) is
block diagonal with respect to the total z component of
the electron—nuclear spin states. Further simplification
can be achieved by coupling together the spins of nuclei
with equal hyperfine constants on each radical into pseudo
spin states characterized by the quantum numbers J, M. '
For N equivalent nuclei (N > 2) coupled together, in gen-
eral more than one spin eigenfunction corresponds to a
given J, M state. In the case that all nuclei have spin
3, the number 7, of linearly independent spin functions
for each J, M is given by the formula'?

N N

EAN “\ N
5 J 5 J-1
If there are m sets of equivalent nuclei each possible
set of J values (Jy, Jy,. .., J,) gives rise to II7,; 7,
“identical blocks in the Hamiltonian. This lowers to a
large extent the number of the nuclear spin states to be
considered explicitly. Also the block dimensions which
determine crucially the numerical effort for the evalua-
tion of the sums in Eq. (3.4) are reduced considerably
if equivalent nuclei are coupled together. Nevertheless,
for real systems the summations in (3. 4) are over nu-
merous states and the evaluation of p% requires a great
computational effort. For instance, for the system py-
rene-DMA discussed below the total number of elec-
tron—-nuclear spin states to be taken into account is
1572 864. Only 46 600 of these states are not degen-
erate, In the decoupled basis |0y0;’ N) the Hamiltonian
decomposes into 4320 blocks, the largest with dimen-
sion 72, Because of additional symmetry in the Hamil-
tonian (conservation of total spin) the computation is
simplified for vanishing magnetic field B. The numer-
ical accuracy of the results has been tested for the high
field case (B~ =) by comparison with results obtained

(3; 8)

by means of the simple analytical expression (A3) de-
rived by Brocklehurst® (see Appendix). The absolute
accuracy was found to be better than 10,

In order to reduce the computational effort for the
evaluation of p%(#) and its time derivative p(f) for the
system pyrene-DMA, which has been studied experi-
mentally, we approximate the actual set of hyperfine
coupling constants of pyrene!® (in gauss)

4x(ay=2.13); 4x(ay=4.83); 2x(ay=1.04)
by the smaller set
4x(ag=2.3); 4x(ay=5.2).

This replacement leaves the total sum of the hyperfine
constants invariant. As is shown inthe Appendix for the
high field case, this invariance leaves essentially unal-
tered the fast initial rise of the triplet probability p%()
on which the recombination yield depends most crucially.

(3.9

Unfortunately, the hyperfine constants of DMA are not
known, We assume that they are close to those of N, N-
dimethyl-toluidine™ if one takes the coupling constants
of the para proton identical to those of the ortho pro-
tons. Again we replace the set of hyperfine coupling
constants thus obtained,

6x(acy, = 12. 22);
3x(ag="5.21);
by the smaller set
64(acn,=12.0); 1x(ay=12.0); 3x(ag=6.25), (3.10)

1x(ay=11.17);
2x(ay =1.36) ,

‘leaving the sum of coupling constants on the 2DMA!?

radical invariant.

Figure 1 presents the time evolution of the triplet
probability p%(#) of the system 2Py*+2DMA?® for various
magnetic field strengths. The radical pairs are initial-
ly all in the singlet electron spin state, i.e., p%(0)=0.

In Fig. 1 one can see that after a sharp rise during the
first 5 ns the triplet probability assumes roughly a con- |
stant value which depends on the field strength, At long
times and zero magnetic field approximately 70% of the
radical pairs are in a triplet state, For large fields the

g
o -

& 08 2pyt + 2DMA*"

> 106

= 0

5 06r 4067

o 806

3 =

o 04F 1

K

202}

(=

0 10 20 30 40 50

Time/ns :

FIG. 1. Time evolution of the hyperfine-induced triplet
probability p3¢) for the radical pair system *Py* +2DMA? for’
magnetic fields B=0, 10, 40, 80 G and B— «, The hyperfine
coupling constants are given in the text.
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'FIG. 2. Time evolution of the triplet probability pg.(t) for the
radical pair systems ?Py* + e* and %d-Py* + ¢* (see text) for
various field strengths. ———: 2d-Py* +¢*, B=0; —+—.—;
24-Py7 +e*, B —~oo,

T, triplet states are decoupled from the S, T, states
and only 50% of the radical pairs are found in the triplet
state at long times. The triplet probabilities in Fig. 1
provide the necessary information on the spin motion of °
the radical pairs which will be needed later on to solve
the stochastic Liouville equation for the hyperfine-in-
duced geminate recombination process,

In the case of large DMA concentration, the bimolecu-
lar electron exchange reaction'®

*DMA'+'DMA ~ 'DMA +2DMA®

‘may_become fast compared to the hyperfine induced spin
‘motion. The magnetic moments of the nuclei on the
DMA' radicals “seen” by the unpaired électron spin are
expected then to average to zero, and only the hyper-
fine coupling in the pyrene radical anion determines the
singlet—-triplet transition probability of the pair 2Py*
+2¢* (2¢* indicates a doublet electron “hole” hopping be-
tween donor molecules in the solution), The time evolu-
tion of the triplet probability for this system is pre-
sented in Fig. 2 for various field strengths, In these
calculations we have again employed the hyperfine cou-
pling constants (3.9). Due to the smaller hyperfine in-
teraction in this case the initial rise of the triplet prob-
ability is much slower than in Fig. 1. It is interesting
to note that the triplet probability curve for B=0 is be-
low the B—~« curve at times larger than 25 ns. How-
ever, already in the presence of very weak magnetic -
fields (B=5 G) the oscillation seen in the B=0 curve is

. dampened, and there is a considerable increase of the _
triplet probability with respect to the B=0 curve at
times £ >15 ns,

A lowering of the hyperfine-induced singlet - triplet
transition probability is predicted if the protons are sub-
stituted by deuterons. This effect is due to the smaller
magnetogyric ratio of the deuteron with respect to the
proton'® which results in a lowering of the hyperfine cou-

pling constants by a factor of 6.514, This effect is part-

ly compensated by the increase of the nuclear spin from
3 to 1, The time evolution of the triplet probability for
perdeuterated pyrene (2d-Py* +2¢") is indicated by the
dashed and dash—dotted curves in Fig, 2 for B=0 and

B»oo, respectively. The initial rise of the triplet prob~
ability of the perdeuterated system is observed to be
slower by a factor of about 4,

The number of nuclear spin states is much larger in
perdeuterated radicals (3* instead of 2" for N nuclei).
Therefore we could not evaluate the triplet probability
of the system 2d-Py*+ 2d-DMA’ at low field strengths.
For high fields, however, the analytical expression of
Brocklehurst® can be applied. In Fig. 3 the triplet
probabilities p%(#) for the systems 2Py*+2DMA? and
24-Py* +%d-DMA® (all protons substituted by deuterons)
are compared. In this case, the isotope effect is much
less pronounced than in Fig. 2. This is due to the large
hyperfine coupling constant of the nitrogen atom on
’DMA® which remains unaltered upon deuteration. The
predominant coupling of the N atom also brings about
the oscillations of the triplet probability of the perdeu-
terated pair. At zero magnetic field the oscillatory be-
havior should be even more pronounced, as has been
discussed recently by Brocklehurst. ®

IV. FINITE-DIFFERENCE APPROXIMATION FOR
THE SOLUTION OF THE LIOUVILLE EQUATION-
TEST OF THE APPROXIMATE LIOQUVILLE EQUATION"

. (2.19)

As discussed in Sec, II for the case kg=«,, the sto-.
chastic Liouville equation for the geminate processes of
an isolated radical pair (2. 10) can be separated into the |
diffusion equation (2. 12) and a Liouville equation for the
spin motion of the radicals (2, 13). In order to integrate

- the diffusion equation (2. 12) a finite-difference method

has been introduced!!’!? which assumes a discretization
%4y @=1,2,..., N of the radial coordinate », The con-
tinuous pair distribution function d(7, #) is then repre-
sented by a vector d(#) with components ’

d*(f)=d(r,,?) (4.1)
and the diffusion operator I(7) [Eq. (2. 3)] is replaced by
a tridiagonal matrix L with elements!! (2< a<N-1,
hy=74~ ru)

2 2
L*®= —D( 2, B r“‘*lF(”gn) = 7o F (ry.1) ) (4. 2a)
haha-l ra(ha + hm-l') : ’
1.0

Srost

>

= 2 - 2 +

= o6l d-Py~ + 2d-DMA!

5 06 P4 v

[~} / o

.n ”a

e / Tee--m T

04 - .

& / 2Py + 2pMA

[ 7

r /

2 02t Y :
= /

/
7z N Fl 1 1 o
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. . Time / ns
FIG. 3. Time evolution of the triplet probability p}(#) for the
systems Py7 +2DMA? and 2d-Py* +27-DMA? (all protons sub-~
stituted by deuterons) for high magnetic fields (B — =),
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aca_p (T 2 _ o Flr) ) v
L D( Vo holhy+hgey) T + hgr ) (4. 2b)
wa=1_ rg-l 2 F(’Va) )
£ D( Vo horllg+hgey) +B Tig + g )’ (4. 2¢)
-, (4.24)
Vi
v, 14
12_ 12 g2z _ 22
£ Vi L Vi L=, (4.2e)
FAL _Zﬂ;l. LYV 4.20)
N
- Ve o Ve o weawet
§ 2 1N=_._..1!;1.LN 1N-1 _ Al_Ng Lh-eN-t 4. 2¢)

where V, are the discrete volume elements:

2078 (hy+hyey) 2 asN-1
Vy=9 2173 a=1
2;‘7”%")1-1 a=N,

F(r,) is the force acting between the radicals at dis-
tance 7,, e.g., a Coulomb force F(r,)=—~e?/er%. The
diffusion equation is then approximated by the differ-
ential-difference equation

d(t)=(L-0)d® , (4.3)

where the diagonal matrix U accounts for the radical
recombination

U*® =gs(r,) . (4. 4)

The matrix elements (4.2d)-(4. Zg)yfollow from the par-’

ticle conservation requirement in the case k=
i.e.,

Zj: (Z ViL‘”)d,= 0.

0’ 11.1?

Since this equation must hold for any arbitrary disiribu-
tion d, each term must vanish:

> viL=0.
i

This is fulfilled for the matrix L as defined above.

The formal solution of (4. 3) is

d(#) = exp[(L - U)#]d(0) , (4.5)
which had been evaluated in Ref. 11 by an eigenvector
expansion (Method 1).

Here, we will integrate (4. 3) by also discretizing the
time £ (%, B=1,2,...) employing the Crank-Nicholson
implicit integration scheme'® (At;=1,,, = £;)

d(ty,,) = A(ts) + 3 AL(L = U [d(£) + dlts)] (4.6)
and solving for d(f,,,). As (L -U) is a tridiagonal ma-
trix, -Eq. (4.6) can be solved efficiently by means of a
recursion method. !*® We will refer to this solution of
the diffusion equation as Method 2. Once the pair dis-
tribution function has been determined, the geminate re-
combination yields can be evaluated according to Egs.
(2. 14) and (2. 20) through

t & v

08n20= [ a1t AN Vvt a(m (4.7a)
a=1 . .

or, employing the trapezoidal rule for the time integra-

tion,

o .
A ¢s~s,r(l§sqa)-‘:<i>'§°."'s,r(tﬁ)+(AtB/Z)z;1 vV, U*®

X‘[P(.‘s,r(ts)dq(ts) + %, rlts,1)d *(£5.4)] . (4.7b)

The finite-difference Method 2 has the important ad-
vantage over Method 1 that it can also be employed in
the general case kg # k, for the solution of the exact
Liouville equation (2. 10) [or (2. 15)] and its approximate
version (2. 19). In order to integrate Eq. (2.19) the con-
tinuous distributions pg(7, ) and p,(7, #) are represented
by distribution vectors pg(Zs) and p;(#;) with the compo-
nents p%(,) =ps(7,, £;) and pf(2) = pr(7,, 5), respectively.
The integration of Eq. (2, 19) is then carried out by
means of .

Pislfs) = Ds(ts) + SAL(L - Ug) [ Pslte) + Ps{tan)]

v + At Y3 (45 + t3+1)][ps(ts)+1)r(t5)] , (4. 8a)
Prlfan) =Prlte) + 3 A4(L = Uz) [prlts) + Prlfa.)]
’ + Ot PR3t + ts1) 1 [Ps(t) + Prl£)] ,  (4:8D)

where the diagonal matrices Ug and Uy are defined
through

%@ = s(r, ks and UF*=s(r,)er « (4.9)

We will refer to the solution of the approximate

‘Liouville équation (2. 19) by means of (4. 8) as Method 3.

In this integration scheme the coupling terms % r[3(Z
+ £, [ ps(2) + pr(2:)] accounting for the singlet—triplet
spin transitions are treated explicitly, i.e., ps(f)+p(#)
is taken only at the past time #; and not at %4,,. The
coupling terms are then trivially included in the same
recursive algorithm as employed before for the inte-
gration of Eq. (4.3). The explicit integration of the
coupling terms makes it necessary, however, to choose .
the time steps Af, smaller than in the case of Eq. (4.6),
in particular at short times for which pg+pr is varying
rapidly. - In the course of evaluating the distributions
Ps,z(%.1) the singlet and triplet geminate recombination
yields are obtained through

SER (t.1)= 657 nlt) +(at/2) Y VU=

X[ p%, (ta) + p%, r{ta)] . (4. 10)

For the integration of the exact Liouville equation
(2. 15) we will apply the Crank—Nicholson scheme in a
somewhat modified form. Representing the real and
imaginary parts of the density matrix R; (7, f) and
S;fr, 1), respectively, by the distribution vectors R, ()
and 8, (#;) with the components

R§{tg) =R [, as LA (4. 11a)
S§fts) =Si {70y ta) (4.11b)

the integration of (2. 15) proceeds through the scheme
8iA75:0) =8, A7g) + 34T [L = Uy, = U] [8:(76) + 8 {75.)]
+ATE; [R(t5)] , (4, 12a)
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TABLE 1. Test of coniputational methods—geminate recom-
bination of freely diffusing radicals (kg=#).*

Time  Exact Method Method Method Method
(ns) 1 2 3. = 4
, &ET(8)
10 0.2002°  0.2002°  0.2002°  0.2001¢  0.2002¢
20 0.2032 0.2032 0.2032 0.2031 0.2032
30 0.2051 .  0.2051 0.2051 0.2051 0.2051
40 0.2059 0.2059 0. 2059 0.2060 0.2059
50 "0.2066 0.2066 0.2066 0.2066 0.2066
TR (8)
10 0.02674°> 0.02674° 0.026749 0.02681¢ 0.02672¢
20 0.03031  0.03031  0.03031  0.03040  0.03029
30 0.03144  0.03145  0.03146  0.03142  0.03141 .
40 0.03240  0.03241  0.03241  0.03235  0.03238
0.03295  0.03295 . 0.03296  0.03297  0.03293

50

3D =10" em? s™, kg=K;=4.762 & ns”!, which corresponds to
a value of 0,25 for the total recombination yield, one proton
on each radical with a; =a,=50 G at a magnetic field B=0 G.

bAnalytical expression from Ref. 11.

°As defined in the text with the spatial discretization (in units
"of ) k=0.5 (7= 7=20), h=1.0 (20 <» <50), h=2.0 (50<~

- =100), h=20.0 (100<7 =<500).

9As defined in the text with a space discretization as for
Method 1 and the time discretization (At in units 43/D) At
=0.5(0=<¢=0,01ns), At=1.0(0.01 ns<£=<0.1ns), At=5.0
(0.1 ns<t=<5 ns), At=10.0 (5 ns<¢=<50 ns).

Ru(tm) R;{tg)+3A4[L~U,; -~ Uu] [Rn(ts) +R; {5,4)]
+ AD, [8(75,1)] (4.12b)°
where the vectors D, AR(#)] and E, [S(#)] have the compo-

nents

D”[s(tn— Z[Hu,s {8+ Hy, SE(D)

+% [Hy(ra) = H ()] S5(8) (4. 13a)
ER()=-1 (Z Bl 0= 1 (1)
[Hg,(r ) =H, {r )] RE(D) . (4.13b)
The diagonal matrix U is defined through ,
5 =2s(r Mk sQF + k@) (4.13c)

and Afy=tg, =133 ATy=Tp,y = 755 Ta=(ts+15.1)/2.

We will refer to the solution of the exact Liouville
equation by means of these equations as Method 4. In
this integration scheme one computes at each time step
first the vectors S, (7,,;) employing in the coupling term
E;,[R(#,)] the vectors R, {#;), and in the second step
computes the vectors R, (%,,), employing the newly
evaluated 8, (7;,,) in the coupling term D,,[S(7,,,)]. This
way of interweaving the integration of R,; and S,, greatly
improves the accuracy of the explicit integration of the
coupling terms and, hence, one can choose rather large
time steps Af; as in the case of Eq. (4.6).

The geminate recombination yields ¢%2 r are evalu-

Werner, Schulten, and Schulten: Geminate recombination of radical ion pairs

ated according to

87, oltsn) = s, 7(15)

+AL Y Vo Tr{Qs, p U [R¥(t) + R* ()]}, (4.14)

where V, has been defined above.

In Eq. (4.12), each n-dimensional block of the spin
Hamiltonian H couples n(n+1)/2 elements R}, and n(n
—1)/2 elements S, for each distance ¥4« The diffusion
operator L in'turn couples all N submatrlces R® and
S%; hence, Eq. (4.12) comprises N#® coupled equa-
tions. At low fields the block dimensions n increase
rapidly with the number of nuclear spins and Method 4
can be applied only to very simple radical pair sys-
tems, For a radical pair with one proton on each mole-
cule with identical hyperfine coupling constants and g;
=g,, the density matrix reduces to four nonzero blocks,
one of dimension 4 and three of dimension 2, - Thus,
even for this simple model, 28 diffusion equations have
to be integrated. Choosing a rather coarse spatial dis-
cretization scheme with N=50, Eq. (4.12) comprises
for the largest block of the density matrix a set of 800
(1) coupled equations. Therefore, large nuclear spin
systems on the radical pairs cannot be treated within
the framework of the exact Liouville equation (2, 10) (ex-
cept for high magnetic field strengths) and the approxi-
mate Liouville equation (2. 19) must be employed. How-
ever, this is no problem, as we will demonstrate be-
low that (2.19) provides an excellent approximation to
the exact Liouville equation,

' 'For high magnetic fields (B~ «) the T electron spin
states are decoupled from the S, T, states and the Hamil-
tonian decomposes into 2 X2 blocks coupling the | S,N)
and the | Ty, N) states for each nuclear spin configura-
tion N. If the exchange interaction J (7) is neglected,

the Liouville equation (2, 15) gives rise to only three
coupled diffusion equations for each nonequivalent block
of the Hamiltonian, In this case the exact Liouville
equation (2. 15) can be solved numerically also for radi-
cal pair systems with a large number of nuclear spins,

We want to demonstrate now the numerical accuracy
of the finite-difference integration schemes (Methods
1-4) presented above. Let us first consider the case
Ks=Kr. Since in this case the Liouville equation (2. 19)
holds rigorously, all four methods are expected to yield
exact results. For radicals undergoing free Brounian
molion with a recombination domain defined through s(7)
=5(»-7,), an analytical expression for the singlet and
triplet recombination yields had been derived in Ref, 11,
This provides a direct check of the numerical results of
Methods 1-4. In Table I the geminate recombination
yields of all four computational methods are compared
with the analytical values at times 10 ns, 20 ns,... s
50 ns, for a radical pair system with the hyperfine cou-
pling constants a,=a,=50 G, at B=0 G, in a solvent
medium with D=10"% cm? s™!, and kg =k =k =4. 762 Ans!
corresponding to a total recombination yield of 25%.

The errors in the yields are found to be all less than
0. 1%, demonstrating that the discretization of the dif-
fusion space in Method 1 and the additional discretiza-

tion of time in Methods 2, 3, and 4, as specified below
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TABLE II. Test of computational methods —geminate recom-
bination of radical ion pairs (kg =#xg).*

Time (ns)  Method 1° 'Method 2° Method 3°  Method 4°
_ v dTs(t) .
10 0.5886 0. 5883 0. 5880 0.5884
20 0.6016 0.6013 0.6009 0.6014
30 . 0.6087 0. 6084 0.6085 0.6086
40 0.6118 0.6116 0.6117 0.6117
50 0.6143 0.6140 0.6141 0.6142
T (t)
10 0.1438 0.1437 0.1441 0.1436
20 . 0.1589 0.1589 0.1593 0.1588
30 0.1634 0.1633 0.1633 0. 1631
40 0.1669 0.1669 0.1668 0.1667
50 0.1689 0.1689 0.1689 0.1687

*p=10" cm? s™, kg=kp=4.762 A/ns, which corresponds to a
value of 0.6264 for the total yield of geminate recombination,
solvent polarity € =20, T'=25°C, one proton on each radical
with @y =a, =50 G at a magnetic field B=0 G.
bAg defined in the text with the space and time dxscretlzatlon i
in Tablel.

Table I, ensure an accurate description of the geminate
recombination process.

Table IO exhibits the geminate recombination yields
for radical ions in a polar solvent with € =20 as evalu-
ated by Methods 1, 2, 3, and 4 (at T=25°C, the other
parameters as for Table I). The results of the four
methods again differ by only 0. 1%, proving that no sig-
nificant numerical errors arise in the presence of a
Coulomb force field acting between the radical ions.

In our calculations we found Method 2, which entails
both time and space discretization, to be more efficient
than Method 1, in which the time integration is per-
formed by an eigenvector expansion. For the examples
presented in Tables I and II, a computation time of 15s
on an Univac 1108 installation was needed for the
evaluation.of the yields ¢$7 r (50 ns) by means of
Method 2, whereas the matrix diagonalization to obtain
the eigenvalues and eigenvectors alone in Method 1 re-
quired 35 s, Because of the core space requirements
of the eigenvalue problem, the allowable dimension N
of the matrix L, and consequently the size of the inte~
gration domain and space partitions , are much more
limited in Method 1.

In the case kg +# k5, the Liouville equation (2. 10) needs
to be solved by Method 4 and its approximate version
(2.19) by Method 3. In the following we will demon-
strate the validity of Eq. (2.19) by comparing its pre-
dictions with the results of the exact Liouville equation.
For low fields this demonstration has to be restricted
to the simple two proton radical pair system already
considered above (Tables I,II) as the exact Liouville
equation cannot be solved for larger spin.systems, The
singlet and triplet geminate recombination yields
& (1) and ¢£7(1), respectively, resulting from the
exact and the approximate Liouville equation, are pre-
sented in Fig. 4(a) for a radical ion pair system with
hyperfine coupling constants a; =a,=20 G, at B=0 G, in

" a solvent medium with D=10" cm? 571,

) ; €=30at T
=25°C, and kg=0,9468 A ns™ and k, =2. 8403 & ns™!
corresponding to recombination probabilities of 25% and

- 50%, respectively.'® In order to reduce the computation

time we have chosen a discretization of the radial co-
ordinate coarser than the one in Table I. The singlet

- yield ¢$™(#) exhibits initially a sharp rise and levels
off to a value 16. 8% at 50 ns, whereas the triplet yield

&m(#) is found to increase more slowly and reaches its
saturation value only at longer times (11, 2% at 50 ns).
Up to about 10 ns, the exact and the approximate yield
curves are very close. An error builds up, however,
in the time interval between 10 and 20 ns and stays
nearly constant from thereon. Fifty nanoseconds after

" pair generation the absolute error in the triplet yield

is = 0.3% and on the singlet yield is +0. 1%. This dem-~
onstrates that the suppression of the singlet« triplet
transition probability in the reaction domain, as dis-
cussed in Ref, 2, is overcompensated by an increase
of the transition probability outside the reaction domain

-
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FIG. 4. Time evolution of the singlet and triplet geminate re-
combination yields resulting from the exact Liouville equation
(2.10) as evaluated according to Eq. (4.12) (Method 4) and from
the approximate Liouville equation (2. 19) as evaluated accord-
ing to Eq. (4.8) (Method 3). The space discretization is given
below Table III. For the time discretization see below Table I
(exact yields) and below Table III (approximate yields). (a)

‘Radical ion pair system with one proton spin on each radical at

zero magnetic field (D =10 em? 871, €=30, 7=25 C Ky=
=0.9468 A/ns, kp=2.8403 &/ns, a;=a,=20 G; (b) 2Py~ + DMA’
radical pair system at high magnetic field (B — «) [D=10"5 ¢m?
s, €=30, T=25°C, kg=0.9468 A/ns, kp=2.8403 &/ns, hyper—
fine coupling constants (3. 9) and (3. 10)].
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TABLEIII, Effectof the exchange interaction onthe geminate re-
combination of amodel radical ion pair system®in a solvent € =30,

Model®  o5(B=0)° ¢5(B=200) B =0)° é(B =200) 4:;(8 =_2°°)
B

1 0.161 0.182 0.093 0.048 0.512 .

I 0.1865 0.183 0.085 0.045 0.532

1 0.169 0.185 0.076 0.041 0.546

*One proton on each radical with a;=a,=20 G, D=10" cm? s,
- T=25°C, Kg=0.9468 A/ns (i.e., total yield of 25% for € =30),
kp=2.84 &/ns (i.e., total yield of 50% for € = 30). 19 Spatial
discretization (in units of A) employed in the finite difference
" method: h=1(7=<r=20), h=2 (20<7r=40), =3 (40<7r <100),
k=20 (100<r =200). Time discretization (Af in units K/D);
Al=0.1{0=<¢=0,01ns), Af=1.0(0.01 ns<t=<5 ns), At=2.5

(t>5 ns).

"I: no exchange interaction; I: J(») =200 G (7 A =r=7.5 }),
J) =0 G (r>7.5 8); II: J(1) =100 G (7 & =r=7.52]), J(r)
=75 G (7.5 A<r=8.54), J =50 G (8.5 A<r=9.5]), J()

=25 G(9.5A<7=10.54), J(r)=0 (»>10.5 ).

®Yields are taken at 50 ns after pair generation, ¢g, (B)
= ¢§‘§"S'T(50 ns, B), B in units of gauss.

due to a predominant loss of the triplet components of
the spin wavefunction (for kp > xg). As to be expected,
the error inthe geminate recombination yields is found to be
somewhat larger for the radical ion recombinationinaless
polar medium with € =20 (the other parameters as before):

. ¢%€7(50 ns): 15.3% (exact), 14.7% (approx.) ,
§7(50 ns): 13.8% (exact), 14.1% (approx.) .
[same discretization as for Fig. “4(a)].

For higher magnetic fields the approximate Liouville
equation (2, 18) can also be tested for radical pairs with
large nuclear spin systems. We have carried out this
test for the system ?Py*+2DMA! with the hyperfine cou-
pling situation described by (3. 9) and (3.10). In Fig.
4(b) the exact results based on Eq. (2.15) are found in
excellent agreement with the approximate results based

"on Eq. (2.19). We may point out that the exact solution
of (2.15) requires the integration of 675 diffusion equa-
tions, whereas the approximate version (2, 19) requires
only the integration of two coupled diffusion equations,

~ The error in the approximate description (2. 19) mainly
arises through the averaging over all nuclear spin states
which introduces the transition rate p%(#) as the driving
term connecting singlet and triplet radical pair states.
At longer times p%(#) vanishes, although the transition
rate contributions of each nuclear spin state does not
vanish and in the exact description continues to trans-
fer radical pairs from the singlet to the triplet electron
spin state and vice versa. The close agreement be-
tween the approximate and the exact results encouraged
us to base in Sec. VII our investigations of the solvent
and temperature dependence of the geminate recombi-
nation of the pyrene-DMA radical pair on the approxi~
mate Liouville equation (2, 19).

V. THE EFFECT OF AN EXCHANGE INTERACTION
J(r) IN THE CONTACT REGION OF A RADICAL PAIR

For an account of the effect of an exchange interac-
- tion J (r) on the geminate recombination of radical

Werner, Schulten, and Schulten: Geminate recombination of radical ion pairs

pairs, we consider again the two-proton radical pair
system of Sec. IV, since only for this simple model sys-
tem can the exact Liouville equation (2. 10) be solved
numerically. The exchange interaction lifts the degen-
eracy between the singlet and triplet electron spin
states and, hence, reduces the singlet ~triplet transi-
tion probability in the contact region. As the strength
of the hyperfine interaction amounts only to about 107
eV, very weak exchange interactions suffice to influence
the geminate recombination, Unfortunately, nothing is
known about the magnitude of J (#) or the domain over
which it is acting. As J(7) is approximately propor-
tional to the overlap of the orbitals of the unpaired elec-
trons in the two radicals, it is expected to decrease
rapidly with increasing radical separation.

In Tables III and IV we have compared three different
models for the exchange interaction: (1) J(#)= 0; (2)
J(7)=200 G in the first space interval and zero else-
where, such that the hyperfine induced spin motion is
completely prevented in the contact region; (3) J(7) is a
decreasing step function extending over a distance of
3.5 A (see below Table III). '

In all cases the recombination is assumed to take
place only in the first space interval (7 ﬁ, 7.5 A). The
calculations are based on the two-proton radical pair
system of Tables III and IV with hyperfine coupling con-

- stants a; =a, =20 G, in solvents with D=10" ¢cm? s and

€=30 and € =20, respectively, The rate constants «g
and kg correspond to 25% and 50% recombination prob-
ability.!® We have evaluated the recombination yields -

* only up to 20 ns, at which time the yields have achieved

80%—90% of their final values, Tables III and IV dem-~
onstrate that the effect of the exchange interaction on
the singlet yield ¢$7(20 ns, B=0) is negligible, How-
ever, for the radical pair models (1), (2), and (3)ina
solvent with € =30, the triplet yield ¢£™.(20 ns, B=0)
decreases from 9.3% to 8,5% and 7.6%, respectively,
reflecting the suppression of the singlet «+triplet tran-
sitions through J (7). As is to be expected, this effect
is more pronounced in a less polar solvent with € =20
(12.3%, 9.5%, 8.3%) as the stronger Coulomb attraction
keeps more pairs in the contact region. The influence
of the exchange interaction is stronger at low magnetic
field strengths than at high fields, and hence, the mag-
netic field effect ¢$%(20 ns, B=200 G)/¢%$7(20 ns, B
=0) increases slightly as demonstrated in Tables III
and IV,

From the above results it is apparent that the effect
of the exchange interaction on the radical ion recombi-

TABLE 1IV. Effect of the exchange interaction on the geminate
recombination of a model radical ion pair system® in a solvent
€=20,

. $7(B =200)
Model®  ¢4(B=0)°  og(B=2000 opB=0)° on(B=200) ~GAB=0)
1 0.128 0.154 0.123 0.064 0.518
1 0,141 0. 160 0.095 0,052 0.546
1 0.147 0.163 0.083 0.046 0. 561
iSee Table III. C¢s,r(B) = 687 ¢ (20 ns, B),

bSee Table III. B in units of gauss.
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TABLE V. Relative diffusion coefficients?
D =D¥; +Dfy, and dielectric constants® for
various solvents at 7=25°C.

Dx10°

Solvent (em?s™) €
ACN® 4,53 37.5
CH;0H 2.85 32.6
DMFY 1.96 37.6
C,H;OH 1.44 - 25.2
C;H,0H 0.77 19.7
apeference 21.  ®Acetonitrile,

bReference 22. 4N, N-dimethylformamide.

nation, i,e., a reduction of the triplet yield ¢ 57 and a
slight increase of the singlet yield ¢%;, depends on the
polarity of the solvent. In polar solvents, such as ace-
tonitrile, dimethylformamide, or methanol, the effect
of the exchange interaction can be neglected to a good
approximation, ’ :

VI. THE RELATIONSHIP BETWEEN THE GEMINATE
RECOMBINATION RATE CONSTANTS ks, k7' AND THE
SECOND-ORDER HOMOGENEOUS RATE CONSTANTS

The geminate recombination yields are functions of
the recombination rate constants kg and k7 in the Liou-
ville equation (2.1). In this section we will provide the
relationship between these quantities and second-order
recombination rate constants which are amenable to ex-
perimental determination,®® The following discussion

“holds, however, only for low concentrations of the radi-
cals, i.e., assumes that the average time between dif-
fusion-controlled radical encounters is much longer
than the time course of the geminate recombination pro-
cess.

In the case of equal singleét and triplet recombination
rate constants x5 and k,, respectively, the overall ho-
mogeneous recombination rate constant k,,, is given by

Rrec =GRy (6.1)

. where ¢ répresents the total yield of geminate recom-
bination and %, the diffusion-controlled homogeneous
recombination rate constant. . ¢ and g, are given by the
expressions® (kg=kp=k)

(6.2)
(6.3)

ky=4uN Dy, /(1 =72/,
d=1/(1+k,/k") ,

where 7, is the Onsager radius, v, =¢?/€kT, and Ny is

Avogadro’s number. «’=«k/Ay presents the first-order
recombination rate constant in the reaction domain with
width Ay,

k, represents the rate constant of separation for the
encounter complex (2A7+%D°),

D (A
ky= o= P i (6.4)
In Egs. (6.2)=(6.4) it is assumed that the radicals re~
combine at the distance 7;, i.e., s(»)=6(r-7). The
microscopic rate constant k can then be determined
from the measured bimolecular rate constant Z..

Unfortunately, such a simple relationship does not ex-
ist if kg#kp. In this case the total (singlet + triplet)
yield of geminate recombination depends on the spin mo-
tion of the radical pair. At low concentrations the total
bimolecular rate constant is given by
Rree = kg [0. 25(9§7s + ¢ 57) + 0. T5(F s + 0F7)] . (B.5)

This formula implies that 25% of the random encoun-
ters occur initially inthe singlet electron spin state giv-
ing rise to a total recombination yield ¢§."s+ 6%, and
75% occur initially in a triplet state with a total recom-
bination yield ¢5% + ¢ %y, These yields depend im-
plicitly on kg and kr. To determine these two rate con-
stants a second experimental parameter is needed. The
most appropriate choice is the homogeneous triplet re-
combination rate constant k7, which is related to the
yields of geminate triplet products ¢%.7% and ¢
through the expression

kY, =5,(0.25¢%%. + 0. 75657%) . (6.6)

As an example we have estimated the rate constants

kg and x, for the system Py-DMA in acetonitrile. Since
the bimolecular rate constants k. and 27, have not
been determined yet for this system, we have assumed
that they are identical to those of the closely related
system pyrene—N, N-diethylaniline (Py-DEA)%: k.
=(4.2£0, 3)10'° dm® mole™ and £ 7, = (4.0+0.3) 10*°

dm?® mole™ - s™!, The fact that %, is close in value to
k.ec implies that very few singlet recombination products
are formed in the encounters, i.e., ks<< kp. The radi-
cals are assumed to be generated at a distance of 7 A,. :

at which distance they are also assumed to recombine

_(this contact distance has been estimated from experi-

mental data’), Using the solvent parameters given in
Table V, the following values were calculated: xg=4.63
A/ns and k;=136 A/ns, Using these rates in Eq. (6. 3),
one obtains the total recombination yields ¢(« s) ~20%
and ¢(xy)88%. These yields would be achieved at ¢
-0 if the pairs would stay all the time in the singlet
(triplet) state. Since the hyperfine mechanism changes
the electron spin state of the pairs in time (see Fig. 1),
the actual (singlet or triplet) yields, as calculated from

"Egs. (2.19) and (2.20) and given in Table VI, are

smaller, .

TABLE VI. Geminate recombination yields
of the system 2Py* + 2DMA" in acetonitrile®
50 ns after pair generation.

Recombination yield in percent

B=0 B —
s 16.3 17.5
T 12.3 7.2
OFTs 0.15 0.083
OFp 86.6 86.9

%s=4.63 A/ns, kp=136 A/ns, T=25°C, 7,
=7.0 A. Solvent parameters as in Table V;
the step lengths employed in the finite-dif-
ference method 3 are given below Table I.
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FIG. 5. Time evolution of the singlet and triplet geminate re-
combination yields at zero and high magnetic field for the sys-
tem ?Py? +2DMA? in acetonitrile (solvent parameters as in
Table III, T=25°C, kg=4.63 A/ns, k=136 X/ns).

_ The time evolution of the singlet and triplet geminate
recombination yields is illustrated in Fig, 5. The sin~ -
glet recombination yield ¢£7(¢, B) is observed to in-
crease very rapidly, reaching 90% of its saturation val-
ue already at about 2 ns. "In contrast, the triplet re-
combination yield ¢%%(t, B) increases more slowly and
reaches 90% of its saturation value after about 20 ns.
The initial rise of the geminate triplet recombination

‘ yield reflects the time evolution of the hyperfine-in-

’

duced triplet probability which according to Fig. 1 takes
about 5 ns to develop to its maximum value. The initial
rise is followed by a long time tail of triplet formation.

Figure 5 and Table VI also demonstrate that an ap-
plied magnetic field strongly decreases the geminate
triplet recombination yield ¢%7 and increases the gemi-
nate singlet recombination yield ¢%.%. This behavior
is to be expected from the magnetic field dependence of
the triplet probability p3(#) of 2Py* +2DMA! in Fig. 1.
The magnetic field effect, e.g., the difference between
the B=0 and B triplet yield curves, builds up essen-
tially only within the first few nanoseconds and stays
nearly constant from there on,

From the yields in Table VI one can evaluate the ko-
mogeneous recombination rate constants %, and &%, by
virtue of Egs. (6.5) and (6.6), respectively, for zero
and large magnetic fields:

Frec{B =0) =4.20x10" dm® mole™ - s7* ,

ool B~)=4,15%10'" dm® mole™ - 57!,
and

kL(B=0)=3.95Xx10% dm® mole™+ 571 ,

kLo(B ~)=3,89%10'" dm?® mole™ - 57!,

These results demonstrate that in contrast to the gemi~ =

nate recombination, the homogeneous recombination
process is practically not influenced by a magnetic
field, Note that according to Eq. (6. 1) no magnetic
field effect on the rate constant %, is expected for the
case kg=kp. The above results show that also in the
case of a rather strong preference of the triplet recom-

Werner, Schulten, and Schulten: Geminate recombination of radical ion pairs

bination over the singlet recombination (kg < K)y Rypee i8S
altered on}y by about 1% if a magnetic field is applied.

VIl. SOLVENT, TEMPERATURE, CONCENTRATION,
ISOTOPE, AND MAGNETIC FIELD EFFECTS ON THE
GEMINATE RECOMBINATION OF THE ?Py* +2DMA*
RADICAL ION PAIR SYSTEM

In the following we wish to investigate the influence
of different solvents on the geminate recombination
yields. For this purpose we have evaluated the geminate
singlet and triplet recombination yields of the system
2Py7+2DMA7 in typical polar solvents of different polarity
and viscosity [acetonitrile (ACN), N, N-dimethyiforma-

- mide (DMF), methanol, ethanol, and propanol, see

Table V]. Unfortunately, the homogeneous recombination
rate constants k,,, and %, needed for the determination
of the microscopic rate constants kg and x, (see Sec. VI)
have not been measured yet for the system *Py*+2DMA? in
these solvents. At present, we can only estimate the
rate constants kg and k7 from the observed magnetic
field effect on the triplet and free ion yields.® How-
ever, as we will demonstrate now for the solvent ace-
tonitrile, one can readily obtain the yields for any other
set of kg and k; values from the diagrams in Fig. 6.
The abcissa of Fig, 6 represents the total geminate re-
combination yield19 ¢ given by Eq. (6. 3) for the « val~-
ues plotted in Fig. 6(a). « increases very fast with in-
creasing ¢ and is infinite for ¢ =1, In Fig. 6(b) the be~
havior of the geminate #riplet recombination yield for
fixed x5 =18.53 A/ns (¢ =0.5) and varied x,, and for
fixed i, =18.53 A/ns and varied g is presented, It is
observed that the triplet yield increases linearly with
increasing ¢(«;) for fixed kg but decreases with in-
creasing ¢(ks) for fixed kp.

The latter effect results from the increasing amount
of singlet pairs which react at very short times sup-

X/Ans!
150 ¢ 1
FIG. 6. Influence of the rate
100 b . constants kg and Ky on the
: . geminate recombination yields
50 E in acetonitrile. (a) x as a
function of the total recombina-
tion yield"® defined in Eq. (6. 3)
10 T T T for acetonitrile (solvent parame~
8 0 ters see Table V). (b) ~ — —;
S ANy e geminate triplet recombination
§ 61 N N ] yield ¢£% as a function of
% 4Lt N J #(xg), kp=18.53 A/ns fixed;
ol e ™. ~+—~+—: geminate triplet re~
&b 2F - o combination yield ¢$%. as a
S P - function of ¢(k,), ks =18.53
100 T L A/ns fixed. (¢) = — —; gemi-
«~ 80k < S nate singlet recombination yield
& o ®%™ as a function of o(kg), kp
o
5 60r / 1 =18.53 &/ns fixed; —+—-—:
a 7 . binati
c 4LOF =yl 5 geminate singlet recombination
£9 s yield 6% as a function of ¢(kyp),
& 0r s Ks=18.53 &/ns fixed.
il ' s N !
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TABLE VII. Solvent effect on *Py= +°DMA* geminate singlet
and triplet recombination yields for kg =Kk, =18.53 A/ns.®

Solvent #g(B=0° 65(B—%) op(B=0° ¢p(B—w) %}?0}"’
ACN  0.437  0.458 0.0468  0.0262 0.560
CH,OH 0.583  0.610 0.0612  0.0340 0.556
DMF  0.615  0.642 0.0621  0.0346 0.557
C,H,OH 0.786  0.815 0.0634  0.0345 0.544
C3H,OH = 0.904 0.925 0.0454 0.0238 0.524

- *This x value corresponds to a total recombination yield in ace-
tonitrile of 50%. ‘
bYields are given at 50 ns after pair generation (see footnote ¢
of Table III), diffusion coefficients and dielectric constants are
given in Table V, for the hyperfine coupling constants see
text. The radical ion pairs are assumed tobe generated at
7 &, at which distance they are also assumed to recombine.
The step lengths employed in the finite difference method 3
are given below Table 1.

pressing the amount of triplet pairs formed through the
action of the hyperfine mechanism at longer times.
triplet yield for an arbitrary set of x s and k, values can
be obtained by scaling the value ¢ %(xs, k) by the fac-
tor ¢E%(ks, kr) /O (R sy Kp). Figure 6(c) shows the
corresponding dependence of the geminate singlef re~
combination yield on the k¢ and x, values. Owing to the.
fact that during the geminate phase of the recombination
there is on the average almost no singlet production
from triplet pairs (see Fig. 1), the singlet yield is found
to be nearly independent of xr.

In Tables VII, VIO, and IX the yields of singlet and
triplet products 50 ns-after pair generation are com-
pared for B=0 and B-« in various solvents, In order
to focus on the solvent effect influencing the recombina~-
tion yields through the diffusion process, we assumed
in our calculations the rate constants xg and ky to be
characteristic for the radical pair system and indepen-

- dent of the solvent. Since the energy gap between the
radical ion pair state and the ground state is large, this
may be a reasonable assumption for ks. The energy
gap between the ion pair state and the triplet state 3Py *
+ 1D'MA is ‘much smaller, and therefore k, is expected
to depend more sensitively on the dielectric relaxation
properties of the solvent.?*®* However, since ky is
rather large, its variation does not critically influence
the recombination yields (see Fig. 6). In Tables VII-
IX the same k, value (18,53 f\/ns) is used throughout,
but in order to demonstrate the sensitivity of the triplet
yield and its solvent dependence on kg, various kg val-
ues have been employed in the three tables, As shown
above, the triplet yields for other x, values can be ob-
tained by multiplication with the factor ¢(k,)/¢(18.53
A /ns).

The yield values in Table VII are evaluated for spin-
independent geminate recombination, i.e., kg=Kkp
=18.53 A/ns. This value corresponds to the total re-
combination yields'® 50. 0%, 66.4%, 69.7%, 86.7%, and
96. 0% in the solvents ACN, methanol, DMF, ethanol,
and propanol, respectively, As expected from these
values, the singlet yield ¢%™(50 ns, B) in Table VII in-
creases strongly with increasing solvent viscosity and
decreasing polarity, This is not the case, however,

The ,

* for the triplet yield ¢§°.’“T(50 ns, B), which increases in

going from acetonitrile to ethanol but decreases again
for the solvent propanol. This behavior is readily un-
derstood by the competition between singlet and triplet
recombination explained above in connection with Fig.
6(b). -As has been discussed in Sec. V, the decrease of
the triplet yield from ethanol to propanol is predicted

to be even more pronounced if an exchange interaction
J(7) in the contact region of the radical pair is taken in-
to account,

The solvent effect on the triplet yield should become
more distinct for a reduced recombination prob-
ability of singlet pairs, i.e., small kg. In Table VIII
we present the results for the extreme case of no re-
combination to singlet products (x5 =0). In this case the
triplet yield rises from about 5% for acetonitrile to 30%
for propanol. A comparison of the results for the sol-

vents acetonitrile and dimethylformamide, of almost

identical polarity (€=37.5 and ¢=37.6) but rather dif-
ferent viscosities, shows the considerable influence of
the diffusion coefficient D on the triplet recombination
yield.

Tables VII and VIII alsodemonstrate that the free ion
yield ¢, =1 - o5 - ¢%7, depends strongly on the val-
ue of k5. In the case of kg=«, presented in Table VII,
a free ion yield of only 50% in the solvent acetonitrile,
35% in methanol, 32% in dimethylformamide, and 15%
in ethanol is predicted. The experimental observations
give, however, larger free ion yields in these solvents,?
which again is in agreement with our conclusion that g

is smaller than kp. -

In Table IX we present the singlet and triplet yields

£75(50 ns, B) and ¢£7(50 ns, B) for x5=6.176 A/ns
and x;=18.53 A/ns. The ks value corresponds to total
recombination yields'® of 25.0%, 39.7%, 43.4%, 68.5%,
and 88. 8% in the solvents ACN, methanol, DMF, etha-
nol, and propanol, respectively., In this case the gemi~
nate triplet recombination behavior is intermediate to
the case of Tables VII and VIII. The triplet yield in-
creases considerably in going from acetonitrile to etha-
nol but is slightly reduced in propanol. The yields giv~
en in Table IX are in reasonable agreement with experi-
mental results, ?

The solvent influence on the time;dependent triplet

 geminate recombination yields corresponding to Table

IX is presented in Fig. 7. Except for scaling factors,

"TABLE VIII. Solvent effect on 2ny +2DMA* triplet recombina-

tion yield for kg =0 and x, =18.53 A/ns. *

oy ey GBS bu(B—)
Solvent ¢p(B=0)°  ¢p(B — ) B0V m
ACN 0.0833 0.0486 0.583 1.038
CH,0H 0.145 0. 0865 0.597 1.068
DMF 0.158 0.0951 0.602 1,075
C,H,0H 0.276 0.175 0.634 1.140
C3H,0H 0.397 0.269 0.678 1,212

%This « value corresponds to a recombination yield of 50% " in
acetonitrile.
bSee Table VII.
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TABLE IX. Solvent effect on *Py7 +2DMA* geminate singlet and triplet recombination yields.

for kg=6.176 A/ns and k,=18.53 A/ng, *
‘ s T

' = Q)P - (B=0)p - Op(B—=) (B~
Solvent ¢g(B=0) (B —+ =) ‘ (B =0) ¢p(B ~— =) 3 B=0) m
ACN 0,206 0.220 0.0664 0. 0380 0.573 1.020
CHy;OH 0.317 0,342 0.101 0.0580 0.575 1.031
DMF 0,347 0.374 0.106 0,0611 0,577 1.032
C,H;OH 0.547 - 0.592 0.137 0.0779 0.570 1.044
C3H,OH -+ 0.750 0. 800 0.122 0.0673 0.550 1. 040

*These « values correspond to recombination yields in acetonitrile of 25% (kg) and 50% (x),

respectively,
bSee Table VII.

the yield curves of the various solvents appear to be of
similar shape. A comparison of the triplet yield curves
for ethanol and propanol demonstrates, however, that »
in the less polar and more viscous solvent propanol the
increase of the triplet yield is relatively faster initially
owing to the slower separation of the radical pair, but

" at longer times it is slower, The latter effect results
from the competition between the singlet and triplet re-
combination discussed above,

Tables VII, VI, and IX show that the relative mag-
netic field effect on the triplet yield [¢$™(50 ns, B~ )/

%2,(50 ns, B=0)] is insensitive with respect to solvent
polarity and viscosity. It depends, however, slightly
on the choice of ks. The reason for this behavior is
that the ratio of hyperfine-induced singlet«~triplet tran-
sition probabilities 1 - p%(t, B—~=)/p}(t, B=0) decreases
from an initial value of ¥ within the rise time of the
triplet probability to a value of about 0.4 at longer
times. Consequently; the largest relative lowering of
the triplet yield with increasing field strength is
achieved if triplet products are formed only at short
times, i.e., for large kg as in the case presented in
Table VII, In the case kg=0 a considerable fraction of
triplet products is formed at longer times and, hence,
the relative magnetic field effect is smaller, as demon-
strated by Table VII. ‘

. . , :
[
2 1sp .
& C,HgOH
£ C3H;0H
ey DMF
s 110 CH30H 1
S
‘5 ACN
]
=3
= . . , . .
0 10 20 30 40 50

Time/ns
FIG. 7. Solvent influence on the time-~ dependent triplet recom-
bination yield at zero magnetic field for the system 2Py® +2DMA'
(T=25°C, ks=6.176 A/ns, kp=18.53 A/ns). Solvents: ace-
tonitrile (ACN), N, N-dimethylformanide (DMF), methanol,
ethanol, and propanol characterized through the D and € values
in Table V.

For the case kg =ky =k no magnetic field effect on the
free ion yield ¢, =1 = ¢%7 - ¢£7% can be expected.
However, if xg< k., fewer radical ion pairs will recom-
bine when a field is applied, and hence, there will be a
positive magnetic field effect on the free ion yield. “This
is shown for the extreme case xg=0 in the last column
of Table VIII. The relative magnetic field effect on the
free ion yield is strongly influenced by the solvent po-
larity and viscosity and is found to vary between 4% for
acetonitrile and 21% for propanol. The last column of
Table IX shows the relative magnetic ﬁeld effect on the
free ion yield for the values x5=6.176 A ns* and Kp
=18.53 A ns™. In this case the influence of the solvent
is much less pronounced and the magnetic field effect
on the free ion yield varies only slightly, between 2%
and 4% for acetonitrile and propanol, respectively. We
note that small positive magnetic field effects on the
free ion yield have been observed experimentally.® Al-
though the magnetic field effect on the free ion yield is
small and, consequently, a rather insensitive quantity,

it may be regarded as a measure for the ratio xs/k.

Figure 8 compares the magnetic field dependence of
& (50 ns, B)/¢5".(50 ns, B=0) for the radical pair
system 2Py +2DMA® at low and high donor concentra-
tions (see Sec. I) and for perdeuterated pyrene at high
donor concentrations. Curve a presents the relative
magnetic field effect on the geminate triplet yield of

gemp ..
2e™(B=0)

B) /¢

gem
S—T

¢

1 1 1 i d,

0 50 100 150 = 200 250
Magnetic Field / G

FIG. 8. Magnetic field dependence of the geminate triplet
recombination yield in acetonitrile (D and € values, see Table
V, T=25°C, Kg=Kkp=18.53 R/ns) (a) 2Py +2DMA®; (b) Py®
+2¢% (c)zd-Py- + 2%, ,
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TABLE X. Isotope effects on the geminate triplet recombination
yields (in %) of 2Py*+*DMA? and ?Py+%¢" in acetonitrile. *

System® #s-7(50 ns, B=0) b5-7(50 ns, B )
2pys +2DMA*- 6.65 3.80
%d-Py* +2d-DMA® oo -2.77
2pys +2e? 2.80 1.61
2d-Pys +%% . 0.76 0.28

2Solvent parameters and rate constants as in Table IX.
bSee text. .

2py*+2DMA® at low DMA concentrations in acetonitrile
(solvent parameters and rate constants as in Table VII).
The field effect, as already pointed out above, does not
depend sensitively on the solvent parameters and recom-
bination rate constants «g and xp, but is characteristic
of the hyperfine coupling in the recombining radical
pair, The excellent agreement between the predicted
magnetic field dependence of the triplet yield for the
.system pyrene-3, 5-dimethoxy-N, N-dimethylaniline and
the experimental observation? can therefore be consid-
ered a direct proof for the hyperfine mechanism to be
responsible for the geminate recombination to triplet
products.

At high donor (DMA) concentrations, the possibility
of a fast electron exchange reaction as discussed in Sec.
I exists. Curve b in Fig. 8 shows the calculated mag-
netic field dependence of the system 2Py* +2¢* describ-
‘ing the extreme situation that there is no effective hy-
perfine coupling in the DMA® radical ions. The solvent
is again acetonitrile with the parameters in Table VII.
As the hyperfine coupling in this system is much weak-
er than in 2Py*+2DMA?, smaller field strengths suffice
to suppress the S« T,, transitions and, thus, to lower
the triplet yield. The existence of electron exchange .
reactions, therefore, could be verified by the experi~
mental observation of a concentration dependence in the
magnetic field effect.’ The magnetic field effect on the
system 2d-Py*+2¢* (perdeuterated pyrene at high donor
concentrations) is depicted by curve ¢ in Fig. 8. As in
this case the hyperfine coupling is very weak owing to
the small hyperfine coupling constants of the deuterium
spins, magnetic fields of just a few gauss induce a
strong percentile reduction of the geminate triplet yield
(the absolute yield being small, however).

Curves g and b in Fig. 8 show ¢%™(50 ns, B)/¢$™(50
ns, B=0) to increase at low fields by about 1% and 8%,
respectively, This increase originates from the fact
that at low magnetic fields B the triplet probability
P%(¢, B) is very close in value to p3(#, B =0) during the
initial rise but exceeds p%(¢, B=0) at later times (see
Figs. 1 and 2), The increase of ¢%7%(50 ns, B)/¢ 5% (50
ns, B=0) above the value 1 is hence due to triplet re~
combination products in the time span between about 5
ns and 14 ns for the system 2Py’ +2DMA? and for times
longer than ~ 15 ns for the system ZPy®+2%¢*,

The different time evolution of the triplet probability
1%(#) for systems characterized by different hyperfine
coupling situations leads also to very different geminate

' Recombination Yield in Percent
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triplet recombination yields. In Table X the triplet
yields of the nondeuterated and deuterated radical pair
system 2Py*+?DMA? and 2Py* +2¢* in acetonitrile are
compared. In all cases the recombination rate con-
stants were chosen to be kg=6, 176 A ns'and kp=18.53
A ns™ disregarding any possible isotope effect on the
electron transfer process. As is to be expected, the
largest triplet yield is predicted for 2Py +2DMA® with
the largest hyperfine coupling constants. At high mag-
netic fields the triplet yield is lowered by about 1% if
pyrene and DMA are perdeuterated (compare Fig. 3),

a value which may be modified by a possible isotope ef-
fect on the rate constants kg and xy. Under the assump-
tion that at high donor concentrations only the nuclear
spins on the pyrene radical contribute to the hyperfine
induced singlete triplet transition, the formation of ‘
triplet radical pairs is slowed down considerably (com-
pare Figs. 1 and 2). Table X predicts the triplet yield
to be reduced then by more than 50%. The triplet yield'
is predicted to become even smaller, in fact almost
negligible, when the pyrene is perdeuterated. In the

" calculations of Table X, we neglected any increase of

the effective relative diffusion coefficient through the
greater mobility of a radical electron hopping between
the donor molecules., Such an effect would lead to a
further reduction of the geminate triplet yields at high
donor concentrations, \

The temperature dependence of the geminate recom-
bination yields for the system 2Py*+2DMA® in methanol
is shown graphically in Fig. 9. It results from the com-
bined effects of the temperature dependence of the dif- .
fusion coefficient D, the dielectric constant €, and the.
friction term GF in the Smoluchowski operator (2. 3):
with increasing temperature D increases, € decreases,
and B decreases., We have assumed the rate constants,
ks=6,176 A ns™ and k;=18.53 A ns”? to be independent
of the temperature, an assumption which may be some-
what unrealistic. Figure 9 demonstrates that the sin-
glet yield is much more sensitive against temperature
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FIG. 9. Temperature dependence of the geminate singlet and
triplet recombination yields of the system?Py® +°DMA? in
methanol (D and € values, see Table V, xg=6.176 A/ns, Ky
=18.53 A/ ns). The temperature dependence of the diffusion
constant D was evaluated according to D(t) =D(25°C)

% (T'+273.16/298.16) [n(25°C)/n(T)]. The viscosities 7(T) and
the dielectric constants €(7) were taken from Ref, 22.
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variation than the triplet yield. This may be explained
again by the competition between the singlet product for-
mation in the first few nanoseconds and -the hyperfine-
induced triplet product formation at later times. The
difference in the temperature dependence of the triplet
and the free ion yield is in qualitative agreement with
experimental results,®

The theoretical predictions of the time-dependent
geminate recombination yields presented above cannot
be compared directly with experimental observations.
The main reason is that the radical ion pairs are not
generated instantaneously, but rather originate from a
series of sequential processes started by a laser pulse
with a half-width of about 8 ns. In addition there exist
competing mechanisms for triplet product formation,
for example intersystem crossing in an exciplex pre-
ceding the ion pair formation,

In order to account for all these processes one may
evaluate the radical ion pair formation rate R(?) [see Eq.
(2.1)] by solving the differential equations describing
the processes preceding the formation of the radical ion
- pair. This has been discussed in detail in Ref. 2. Pro-
vided the bimolecular rate constants k.. and kL. are
known from experiment, all parameters entering in the
theoretical simulation of the triplet and free ion extinc~
tion curves (e.g., initial concentration, rate constants,
and extinction coefficients) are either experimentally
known or may be fitted unambiguously.? This renders
‘possible a direct comparison between the experimental
and theoretical magnetic field effect on the triplet yield,
‘which has been shown to be a direct measure of the
geminate triplet yield, The results of such simulations
will be presented together with experimental results
elsewhere, :

_VIIi. SUMMARY

We have provided a quantitative theoretical descrip-
tion for the experimentally observed magnetic field
modulation of the geminate recombination of radical ion
pairs. In the case of different recombination probabili-
ties for the singlet and triplet pairs, the stochastic
Liouville equation describing the entire recombination
process comprises a large set of coupled diffusion equa-
tions,” A numerical algorithm has been presented which
renders possible the exact solution of the Liouville equa-
tion for the spin motion of radical pair systems with
only a few nuclear spins in the case of arbitrary mag-
netic fields as well as for large nuclear spin systems in
the high-field case. In order to treat large spin sys-
tems at arbitrary magnetic fields, we have introduced
an approximate Liouville equation entailing only two
coupled diffusion equations. This simple approxima-
tion has been demonstrated to yield results in excellent
agreement with the exact results available,

The principal conclusions derived from our study are
the following: The triplet geminate recombination yield
depends sensitively on the strength of the hyperfine cou-
pling in the radical ions and is lowered by more than
40% when an external magnetic field is applied. The

"magnetic field effect on the homogeneous recombination
is negligible. Applying the theory to the system 2Py*

+2DMA?, we investigated the solvent and temperature
dependence of the geminate recombination yields. As
expected, the singlet yield was found to increase strong-
ly with decreasing solvent polarity, increasing viscosi-
ty, and decreasing temperature. However, this is not
so for the geminate triplet recombination yield, which
is much less influenced by the solvent. This result can
be explained by the competition between singlet recom-
bination, occurring shortly after pair generation, and

. the triplet recombination, starting only after the hyper-

fine mechanism has succeeded to convert the radical
pair from the singlet to the triplet electron spin state,

In the calculations mentioned so far, the exchange in-
teraction J (») (singlet—triplet splitting) in the contact
region of the radical pairs had been neglected. Its in-

~ fluence on the geminate recombination yield has been
. studied in Sec. V., - Since the exchange in interaction.
~ suppresses the singletetriplet transition probability,

it also reduces the geminate triplet yield. This effect
has been shown to be important only in the case of
weakly polar solvents. } :

Our description of the geminate radical ion pair re-
combination process has been based on the macroscopic
system properties, e.g., solvent viscosity and dielec-
tric constant, So far, little is known about these prop-
erties on the microscopic scale for radical pair separa-
tions comparable with molecular dimensions. Further-
more, for lack of information concerning anisotropic
reaction propensities, we have assumed the diffusion
and recombination processes to be spherically sym- .
metrie, :We hope that our work will stimulate more ex-
perimental investigations of geminate radical reactions’
from which information about the microscopic details of
the diffusion as well as the recombination processes can
be abstracted.
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APPENDIX: STATISTICAL TREATMENT OF
HYPERFINE COUPLING INDUCED SINGLET
- TRIPLET TRANSITIONS AT LARGE MAGNETIC
FIELDS o

At large magnetic fields and for g, =g, the Hamiltonian
(2) couples only the S, and T, electron spin states. In
this limit the triplet probability p}(¢) defined as in Sec.
II can be evaluated analytically. For radical pairs with
n nuclear spins 3 and hyperfine coupling constants a;,
i=1,...m,

(A1)

where the summation goes over all 2" nuclear spin states
N and
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a(N)=2 Z am; (m;=£1/2). (A2)
i
Brocklehurst® has simplified the expression (A1),
(¢ ——( H cos——- ) . (A3)

From this expression it is not evident why p3(¢) at large
fields, as illustrated in Figs. 1 and 2, assumes such a
simple functional behavior, a sigmoidal increase from
zero to the value 3. Rather, from the expressions (A1)
and (A3) which depend on » parameters a;, one may ex-
pect a more complicated functional behavior. We 'will
show now that, in fact, p}(#) can be approximated by

Y )

an expression which depends solely on the sum of hyper-
fine coupling constants }, | a,| and on %, and which re-
flects directly the sigmoidal behavior of p3(z).

(A4)

, To obtain (A4) we replace in (A2) the hyperfine cou-
pling constants q; by their average value

@y 2 lay

a(N) assumes then the values 2k(a), k=-n/2, —n/2
+1,...,n/2 for

(1)
\in+k

nuclear configurations, - The validity of approximation
(A4) depends on how accurately the distribution (A2) of
the a(N) values is described by this binomial distribu-~
tion. The replacement (A5) simplifies (Al):

) o ‘ (A5)

n/2 ( n < )
a
I sin®p <L ¢ AS6)
Pl 2 k=-n/z,-2n/zu.. Nzn+ k) 2 ¢
As®
/ n
(172, | =~2(2m)™/ 2 exp(~2k%/n) ,
=+
2
this sum may be replaced by the integral
)= [ —Le expl= 2/n)sinix @, (A7)

This integral can be evaluated, and with the definition
(A5) for (a) one obtains the expression (A4). .The re-
placement of (A6) by (A7) involves the “short time ap-
proximation” which holds for {(a)f < 1.
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