Non-linear Prediction with Self-organizing Maps

Jorg Walter, Helge Ritter and Klaus Schulten

Beckman-Institute and Department of Physics
University of Illinois at Urbana-Champaign, Urbana, IL 61801

Abstract:

We consider the problem of predicting highly non-linear time sequence
data, where the usual approach of adaptive, linear regressive models has
difficulty. For this case, we suggest the use of an adaptive covering of
the state space of the process with a set of linear regressive models each
of which is only locally used. We show that such an adaptive covering,
together with learning of the appropriate prediction coefficients, can be
realized using Kohonen’s algorithm of self-organizing maps. To illustrate
the method, we present simulation results for a set of benchmarking prob-
lems.

1. Introduction

Many tasks involve time sequences of data for which predictions are desired. Often information about
the underlying process generating the data is only partial and incomplete, so that predictions cannot be
based on a known analytical model. In such cases, one has to resort to adaptive methods, which in effect
construct some approximate model of the unknown process from a sufficiently long sample of sequence
data.

One of the most widely used method is based on adaptive linear regression [4]. The predicted value
#(t+1) at the next time step is given in terms of a linear combination of a fixed number m + 1 of previous
values, i.e.

m
Ft+1)=) az(t—i) (1)
i=0

and the initially unknown coefficients a;,i = 0...m are recursively estimated by a suitable stochastic
minimization procedure for the mean square error of the predicted values [4]. If the actual process can
be satisfactorily described by a linear model, the coefficients a; will gradually converge to a set of values
providing a good approximation of the process.

However, in many cases of interest, the linearity condition is not well obeyed and an accurate prediction
based on a fixed set of coefficients a; is not possible. One of the major sucessful approaches for this situation
was suggested in [8,9] and has nowadays become known as the “Back-Propagation” algorithm.

In this contribution, we suggest to discretize the state space of the system in such cases, and to use a
separate set of prediction coefficients a; within each discretization cell. For sufficiently small discretization
cells, the linearity assumption will then be a good approximation within each cell, and a good set of
prediction coefficients, locally valid for each cell, can be found.

The necessary phase space discretization and the finding of appropriate values a; can most conveniently
be achieved using Kohonen’s algorithm of self-organizing maps [1,2,5]. This approach can be viewed as
an extension of previous work [3,6], where the task was to learn nonlinear kinematic and dynamic trans-
formations for a robot by generating an adaptive discretization of its state space and finding for each
discretization cell a locally valid linear approximation to the nonlinear, true transformation. Here we in-
vestigate this method for the time domain and cover the state space of the unknown system by a set of
locally valid linear process models of the form (1).

I-589

In the following we report results obtained with this method for a particular set of “benchmark prob-
lems”: to predict the 3d-motion of an object in a set of nonlinear potentials given by

V(z,y,2) = Qez® 4+ Quy° + Q,2°, Qi =const. ¢ >0, even integer. (2)

This choice includes two interesting limiting cases: ¢ = 2 gives rise to an exactly solvable problem, for
which (2) becomes an exact solution with a single coefficient set a;. For ¢ = oo, free motion in a cube
-1 < z,y,z < 1, with ideally reflecting walls results. All other choices for ¢ interpolate between these two
extremes.

In the next section, we will give a description of the algorithm. In section 3 we will present simulation
results for the instructive cases ¢ = 2 (i.e. exactly solvable case), ¢ = 4, ¢ = 8 (i.e. medium nonlinearity)
and ¢ = 16 (i.e. very strong nonlinearity).

2. Algorithm

For the potential (2) the motions along each of the coordinate axes are independent of each other and
can, therefore, be predicted by three independent modules M, My, and M, of the same kind. The trajectory
of the motion is sampled at discrete time steps, and for each coordinate direction the m+1 last, consecutive
samples are combined into a “history vector” Thisi, Ghist and Zhise, respectively. In the following, we will
restrict the discussion to the z—direction only, the remaining two other directions are treated in the same
manner.

Each module uses “its” history vector to make the prediction for the next time step. For the z—module,
this prediction is given by

m
Ty = Eai,szt—i = ds - Thig, with Thist = (xnx:-u . '7xt—m)T 3)
i=0
As explained in the introduction, the essential aspect of the method is that the coefficient vector d@s need
not be the same for each prediction, but instead can depend on the current state (location, history) of the
moving particle and is chosen each time from a discrete set labeled by the additional index s.

Both this choice and the adaptive learning of a suitable set of vectors @s is implemented with a neural
network algorithm based on Kohonen’s “self-organizing maps” [1,2,5]: The network consists of a planar
lattice ! of “neurons”, labeled by their lattice positions r € M,. Each formal neuron stores one of the
coefficient vectors dy together with a “reference vector” wy of dimension n + 1. The lattice acts as a
“winner-takes-all” network, whose “winner” sprovides the next prediction vector d@s and is selected by
choosing the one whose reference vector wg has the minimal distance to the input Z;m:

s = &y imll = min [[r — Z,pim| (4)

This partitions the input space into discretization cells or “receptive fields”, each of which is given by the
set of inputs selecting the same unit. The reference vector wy is the centroid of the cell r. The vector &yim
constitutes the input to the network, and describes the current state of the object. In principle, Zp;s: can
be used for this task (then n = m), but a slightly more convenient choice ? is the vector

" T

Tyrim = (T, @121, ..., An2y,)" a; = const. (5)
which contains z; and the differences ;, := z; — z,_, as its components (the «; are auxiliary scaling
constants to bring all components roughly into the same range).

Longer trajectory estimates can be achieved by using the procedure recursively with estimated “history”

values instead of Z,,;,,, and Z),,.

1The two-dimensionality is suggested from the situation in the cortex, where the neurons
are essentially arranged in a sheet-like fashion. For technical applications, however, more
elaborate topologies (e.g. a torus) may offer advantages.

2motivated by the physical phase vector.

1-590

However, for successful operation of the system suitable values for dg and s must be determined. This
can be done adaptively during a “learning phase” of the system. At each prediction step, when neuron s
has been selected, all vectors dy and Wy are adjusted, according to::

a.g‘new) — agiold) + flh/rsAEira (7)

Here ¢ and ¢ scale the overall size of the adaption step, and hrs and hjg are “bell-shaped” functions of
the lattice distance ||r — s|| from the selected neuron. Both functions attain their maximum value of unity
if d = ||r — s|| vanishes, and decrease to zero as d increases. Their effect is to include a whole subset
of neurons in each adaptation step, thus increasing the rate of convergence, but confining adjustments to
a “neighborhood region” of the selected neuron, containing only neurons that have to learn very similar
parameter values and that can, therefore, profitably participate in the same adjustment step. For a more
detailed discussion of this strategy, see e.g. [6,7]. A convenient choice for hrs is a Gaussian

hrs = exp (-—||r - sllz/az) (8)

and hlg likewise. Here o determines the radius of the neighborhood region. Initially, its value is chosen
fairly large for rapid, but coarse adaptation of many neurons at each step, and it is gradually decreased as
the system becomes more and more fine-tuned.

To complete the description of the adaptation equations (6) and (7), we still have to specify the quantity
Ady. It is chosen to minimize the quadratic prediction error

Z (o141 — ds - Fhip) = Z (zpr41 — Fo41)’, 9)
v 7

and is given by an error correction rule of Widrow-Hoff typ [10]:

o Lo Thi
Aar = (rt+1 - ay - zh,') “le”?- (10)
)

This completes our description of the algorithm.

3. Simulation Results

In this section, we will present some simulation results of applying the method to the 3d trajectory
prediction task for potentials of the order ¢ = 2, 4, 8 and 16 given by equation (2) . For comparison
reasons we chose the same parameter values in all four cases : a 12 x 12 (=: L x L) lattice of neurons
with a two-dimensional task space (i.e. n = 1, @ = 1) and a linear prediction procedure using the last
three trajectory values (i.e. m = 2). Parameters o = o(t) and ¢’ = ¢'(t) are, during the first 500 learning
steps, linearly decreasing from initial values of 0.7L and 0.8L to intermediate values of 0.2L and 0.1L,
respectively, and then more slowly to their final values of 0.05L and 0.02L during 4,500 further learning
steps. Parameter ¢ = (t) is changed in the same fashion, initial, intermediate and final values being given
by 0.5, 0.09 and 0.001, respectively. The parameter &’ = 0.7 is held constant.

The vectors @ are randomly initialized, and the output vectors @ are initially zero (these choices are
rather uncritical; the task space discretization develops for a broad parameter range rather quickly to an
ordered structure allowing meaningful neighborhood cooperation).

I-591

-@

Potential c¢c=2 Potential c=4

Potential ¢ =8 Potential c=16

Fig. 1 a,b,c,d: Trajectory Examples (bold lines) with vertical projection onto
the bottom plane (thin lines), and predictions by the network (dashed lines).

The network is trained with a series of trajectories with randomly chosen starting values. For each
trial, the kinetic energy of the motion is chosen in such a way, that the trajectory remains within the cube
-1 < z,y,z < 1. A few examples of such trajectories are shown in Fig. 1 (bold lines) together with
their projections onto the base plane (shadow, thin lines). Despite their fairly intricate shape, the network
can make quite accurate predictions after it has been exposed to a sufficient number of samples. For the
depicted examples, the dashed lines show such predictions made by the network, and the tick marks indicate
the discrete timesteps used. In the case ¢ = 2, the predicted trajectory is almost indistinguishable from
the true trajectory. It can be shown that a single coefficient vector dr is adequate to solve the prediction
task ezactly in this case. Therefore, all units should learn the same coefficient set, which is indeed the
case. In all other cases, a single vector @y would not suffice for accurate predictions. Accordingly, for these
cases different neurons learn different values ay. This is shown in Figure 3 for the case ¢=16. Each mesh
surface represents one set of coefficients a;r (¢ =0, 1,2) as r varies over the 12x12-lattice of the z-module.
Evidently, for different parts of the trajectory very different coefficient values are needed and are learnt by
the network.

I-592

To evaluate the prediction accuracy more quantitatively, we consider the euclidean error E; for predic-
tion of u time steps ahead:

E, = \/(Z't+u = F1)” + Wetn — Gran)” + (Zran — Frg)”. (11)

Figure 2 a shows Ejo (averaged over several trials) for the four cases ¢ =2,c=4,c =8 andc =16 as
learning proceeds. As can be seen, in all cases the error decays rapidly from large initial values to much
smaller final values and, as would be expected, the asymptotic performance improves as one goes to smaller
values of ¢.

1.00
15
S —
58 o1 u’16 Potential
oo u*8 Potential //
E2 050 u”4 Potential] I l /
2 'S u”2 Potential 1 Ayw l
£2 025 / 1 \ :
2 .]
0.00 ’
0 1000 2000 3000
Number of Learning Steps
0.50
[u”16 Potential
u”8 Potential
u”4 Potential \
0_25'_ u”2 Potential |

Forcasting Error
[/cube size]

N
iy .

.

0 10 20 30
Prediction Depth [Time Steps]

Fig. 2: (a, top) Eu=10 vs. number of adaption steps. Fig. 3 a, b, c: Prediction
(b, bottom) Error E vs. u after learning. coefficients ao(r), a1(r) and as(r)
of the z-module (¢ = 16) after
learning.

Another way to evaluate the performance of the network is to monitor the error as a function of the
prediction depth p after learning (Figure 2 b). As can be seen, prediction is very accurate in any of the
four cases, as long as p does not grow too large. As p increases, only the predictions for the lower order
potentials remain accurate. Finally, Figures 4 a,b show the discretization of the two-dimensional task
space by the network M, for the case ¢ = 16. In both diagrams, the centers @wr of the discretization cells
found by the network have been “projected” into the task space. In addition, centers belonging to nearest
lattice neighbors are connected by lines and a representative subset of the task space points visited by the
motion is indicated by dots. Figure 4a shows the initial “random” state, Fig. 4b the state after learning.
Fig.4b illustrates:

(i) Discretization centers cluster in regions with high density of dots reflecting an economical and
demand-driven allocation of computational resources.

I-593

o

,‘,Aw D

Fig. 4 a,b: Correspondence between task space and neural
lattice before (left) and after learning (right).

(#7) The topology conserving properties of the mapping: points close in the task space correspond to
neurons close in the lattice, providing the basis for their profitable cooperation. Because similar situations
require tuning to similar prediction vectors d@y, these neurons will have to learn similar vectors @y, and can
profitably participate in the same adjustment steps, which is also mirrored in the smooth surface of Fig. 3 .
We found that this cooperation greatly enhances the whole system performance in respect of robustness as
well as the rate of convergence.

4. Conclusion

We have investigated a new approach for the prediction of very non-linear time sequence data. The
main idea is to use a Kohonen network to adaptively discretize the set of the input data, and to estimate
in each discretization cell a separate set of linear prediction coefficients. We tested the method on kinetic
trajectories in a set of potentials and we found reasonable performance, even with a fairly small network.
In view of the generality and flexibility of the approach, an extension and investigation for more demanding
tasks seems to be very promising.

5. References:

[1] Kohonen T. (1982) Self-organized formation of topographically correct feature maps. Biol. Cybern. 43:59-69.
{2] Kohonen T. (1984) Self-organization and Associative Memory. Springer Series in Information Science, Vol.8,
Springer, Berlin, Heidelberg, New York.

[3] Martinetz T., Ritter H., Schulten K. (1990) Three-dimensional Neural Net for Learning Visuo-motor Coordination
of a Robot Arm. IEEE Transactions on Neural Networks 1

[4] Rhodes I.B. (1971) A Tutorial Introduction to Estimation and Filtering. IEEE Transactions on Automatic
Control 6:688-706

[5] Ritter H., Schulten K. (1986) Topology Conserving Mappings for Learning Motor Tasks. In: Denker J.S. (Ed.),
Neural Networks for Computing, AIP Conf. Proceedings 151, pp. 376-380, Snowbird, Utah

[6] Ritter H., Martinetz T., Schulten K. (1989) Topology Conserving Maps for Learning Visuomotor-Coordination,
Neural Networks 2, pp. 159-168.

[7] Ritter H., Schulten K. (1989) Convergence Properties of Kohonen’s Topology Conserving Maps: Fluctuations,
Stability and Dimension Selection. Biol. Cybern. 60:59-71.

[8] Rumelhart D.E., Hinton G.E., Williams R.J. (1986) Learning Representation by Back-Propagating Errors.
Nature 323:533-536

[9] Werbos P. (1974) New Tools For Predictions ans Analysis in the Behavioral Sciences (Ph.D. thesis) Cambridge,
Mass.: Harvard U. Committee on Applied Mathematics.

[10] Widrow B, Hoff M.E.(1960) Adaptive Switching Circuits, WESCON Conv Record, part IV, pp. 96-104.

I-594

