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Abstract. The firing pattern of neural pulses often
show the following features: the shapes of individual
pulses are nearly identical and frequency indepen-
dent; the firing frequency can vary over a broad
range; the time period between pulses shows a
stochastic scatter. This behaviour cannot be under-
stood on the basis of a deterministic non-linear
dynamic process, e.g. the Bonhoeffer-van der Pol
model. We demonstrate in this paper that a noise
term added to the Bonhoeffer-van der Pol model can
reproduce the firing patterns of neurons very well.
For this purpose we have considered the Fokker-
Planck equation corresponding to the stochastic
Bonhoeffer-van der Pol model. This equation has
been solved by a new Monte Carlo algorithm. We
demonstrate that the ensuing distribution functions
represent only the global characteristics of the
underlying force field: lines of zero slope which
attract nearby trajectories prove to be the regions of
phase space where the distributions concentrate
their amplitude. Since there are two such lines the
distributions are bimodal representing repeated
fluctuations between two lines of zero slope. Even in
cases where the deterministic Bonhoeffer-van der
Pol model does not show limit cycle behaviour the
stochastic system produces a limit cycle. This cycle
can be identified with the firing of neural pulses.

Key words: Nerve cell, nerve impulse, neuronal dy-
namics, limit cycle, stochastic dynamics

1. Introduction

The coding of information by the electrical activity

of nerve cells in the brain is one of the major un-
solved problems of science. The relevant electrical
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activity of nerve cells are action potentials, which
travel as spikes along nerve fibres and which are
communicated through synapses to other nerve cells.
The key to an understanding, of the information
code behind neural activity will certainly lie in the
aspect that many neurons cooperate in the informa-
tion processing neural tissues of the brain. However,
the signal of single neurons as the building block of
cooperative neural activity is still of interest.

An important aspect of single nerve cell activity
is the frequency of neural pulses travelling along the
axon of the nerve cell. This frequency, the firing rate
of the neuron, can vary from complete silence, i.e.
zero, to about 1kHz. The shapes of the different
pulses in a pulse train elicited by a neuron appear to
be mostly identical. On the other hand, the time lag
between single pulses in a pulse train scatter statis-
tically around a mean value. This variability in the
neuron interspike intervals may be interpreted
through two mechanisms which contribute to the
dynamics for the generation of pulse trains, a deter-
ministic mechanism (Hodgkin and Huxley 1952)
which is responsible for the invariant shape of single
pulses and. an additional stochastic mechanism
(Lecar and Nossal 1971 a, b; Holden 1976; Ricciardi
1982) which -does not greatly affect the shape of
single pulses, but governs the scatter of the lag time
between pulses. An understanding of this latter
stochastic mechanism is of obvious interest since
this mechanism should also control the average
firing rate of neurons in which the information
content of the activity of single neurons is encoded.

The deterministic dynamics of single nerve
pulses has been described experimentally and
theoretically in the celebrated work of Hodgkin and
Huxley (Hodgkin and Huxley 1952). These authors
established a set of 4-dimensional non-linear dif-
ferential equations, the so-called Hodgkin-Huxley
equations, which account rather well for the shape
of nerve pulses of certain neurons, e.g. the squid
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giant axon. The Hodgkin-Huxley equations, in
particular, describe the threshold behaviour of pulse
generation.

Under the condition that a constant current is
applied to the nerve membrane of an axon the
Hodgkin-Huxley equations also predict a train of
pulses. This pulse train corresponds to a limit cycle
solution of the Hodgkin-Huxley equations. The
period of this limit cycle and, hence, the lag time
between pulses is constant. In this respect the solu-
tion differs from the observed behaviour of neurons.
In addition, judged by the set of reasonable physiol-
ogical parameters which enter the Hodgkin-Huxley
equations the period of pulse trains can vary only on
a small scale: below a certain current (the threshold)
the axon after a suitable perturbation exhibits a
single pulse and attains a steady-state thereafter.
Above the threshold current the axon assumes a
limit cycle behaviour the frequency of which varies
only by a small margin upon further increase of the
membrane current. This behaviour implies that the
intrinsic pulse frequency of a neuron can switch only
between a value near zero to a constant high value.
The Hodgkin-Huxley equations for neurons related
to the squid giant axon do not provide a mechanism
whereby the firing rate of a neuron could vary
continually between zero and a maximum value,

The action potential depends on the behaviour
of ion channels in the neural membrane, in particu-
lar on the voltage-dependent channel gating. Con-
duction by single ion channels is inherently noisy,
mainly because single channels open and close in a
stochastic manner (Koester 1985). However, the
accumulative conduction of the large number of ion
channels in a neuron’s membrane behaves in a
rather deterministic manner, as described, for
instance, by the Hodgkin-Huxley equations, though
one may still expect that the stochastic properties of
the single ion channels surface in the macroscopic
behaviour of the neural membrane.

The observation (see for example Hennig and
Lomo 1985) that recordings from single neurons
exhibit a scatter of the lag time between pulses
suggested to us that we should model the electrical
activity by adding a noise term to the deterministic
dynamics. In the following we will show that such a
description does, in fact, reproduce the observed
firing patterns of neurons: it explains the scatter in
the pulse frequency (which is not surprising) and it
provides a mechanism for a continuous variation of
the pulse frequency from a zero value to a maxi-
mum value (which perhaps is surprising).

There exists an abundant literature on the prob-
lem addressed above. For example, the connection
between single channel properties and the mem-
brane current and membrane potential power spec-

tra was investigated by Conti and Wanke (1975).
Much work has been reviewed in the book by
Holden (1976). A seminal paper on the subject is
that by Lecar and Nossal (1971a,b). However, all
attempts considering stochastic differential equa-
tions differ in an important respect from the present
investigation. The origin of the difference lies in the
difficulty of solving the 4-dimensional system of
non-linear differential equations of Hodgkin and
Huxley in the presence of noise. In previous in-
vestigations, however, the simplifications were car-
ried to an extreme which left the resulting dynamics
as being essentially one-dimensional, the case for
which textbook solutions are available (Gardiner
1983). This simplification was achieved at the price
of model neurons which lack the ability to recover
the resting state and can fire only once. In the
following we will employ a simplification of a
Hodgkin-Huxley neuron in terms of a truly
2-dimensional dynamic system which does not lack
this ability. The price we pay is the need for a new
numerical method to solve 2-dimensional non-linear
stochastic differential equations.

The noise terms assumed in this paper for the
dynamics of neural impulses has been described in
terms of a most simple process (isotropic additive
white noise). In subsequent work one should rather
derive the stochastic properties of the noise which
acts on the macroscopic action potential from the
observed microscopic statistics of single ion channels
and of postsynaptic potentials elicited by secondary
neurons.

2. Stochastic dynamics of nonlinear systems

2.1. Deterministic dynamics of the Bonhoeffer-
van der Pol model

Fitzhugh (1961) has shown that the 4-dimensional
dynamics of the Hodgkin-Huxley equations can be
projected without much loss of information onto a
2-dimensional manifold. The dynamics in this
manifold is described by the equation (Fitzhugh
1961)

6,x|=c(.\'|+x2—%.\’13+Z)=F|(x), (la)
a,.\'z=——i—(.\’| +bx;—a)=F(x). (1b)

This equation actually also resulted from the earlier
work of Bonhoeffer (1941, 1948, 1953), Bonhoeffer
and Langhammer (1948) and vander Pol (1926)
and, therefore, is referred to as the Bonhoeffer-
van der Pol equation. In Eq. (1), a, b, ¢, z are external
parameters which describe the properties of the
neuron. In the following we will adopt the param-



eter values
a=07, b=08, ¢=3.0. (2)

The parameter z corresponds to the membrane
current. This parameter controls the qualitative
behaviour of the solution of Eq. (1). This can be
demonstrated by means of the eigenvalues of the
Jacobian DF of F defined in Eq. (1) which deter-
mine the stability of the system near the single
stationary point x,= (x,,x;2) of Eq.(l). For the
parameters, (2), the physiologically significant
z-range lies between —0.6 and 2.0. One determines
that for z > — 0.3465 the real parts are negative, i.e.
the system has a stable focus at x;. At z ~ — 0.3465
the real part of /,, vanishes and the system under-
goes a Hopf bifurcation (Guckenheim and Holmes
1983; Marsden and McCracken 1976). At lower
values of z one expects that a stable limit cycle
exists. This can be shown, in fact, for large ¢ and
positive b (Treutlein 1984). Figure 1a and b shows
trajectories for the two states, z =0 (a) and z =— 0.4
(b). In the case of Fig. la there exists a stable
stationary point and no limit cycle. The trajectories
shown all reach the stationary point. In the case of
Fig. 1b a stable limit cycle exists and all trajectories
converge asymptotically to this limit cycle. It is quite
remarkable, however, that although the asymptotic
behaviour of the two cases z=0 and z=— 04 is so
different the pattern of trajectories is very similar.
The reason is that the control parameter z does not
affect the global characteristics of the force field
F(x), F>(x) of Eq. (1).

The solution of Eq. (1) has been discussed in
Treutlein and Schulten (1985). The reader should
consult this reference for a better understanding of
the present paper.

2.2. Stochastic differential equation
and Fokker-Planck equation

In order to model stochastic effects accompanying
the dynamics of neural pulse generation we invoke a
noise term in the Bonhoeffer-van der Pol equations.
For a first exploration of the ensuing stochastic
dynamics we choose the simplest realization of
noise, namely additive white noise which is iso-
tropic in the x;- and x,-directions. The reason for
this choice is twofold: (a) For a first exploration on
the importance of noise added to the deterministic
description of action potentials, the simplest choice
should suffice. (b) It is actually not straightforward
to derive the statistics of noise acting on a macro-
scopic level from the microscopic sources mentioned
in the Introduction. With the assumed noise the
Bonhoeffer-van der Pol equations, (1), are thereby
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Fig. 1a and b. Sample trajectories of the deterministic Bon-
hoeffer-van der Pol model as described by Egs. (2), (2); a for
= =0, i.e. a case in which the model does not show limit cycle
behaviour and all trajectories end in a stable focus; b for
z=-04, ie. a case in which the model shows limit cycle
behaviour (Treutlein and Schulten 1985)

replaced by the stochastic differential equation
0 x1=Fi(x1,x3)+adW,()/dt, 3a)
6,.\'2=F2(x,,x2) +G’dW2([)/dl, (3b)

where Fi(x) are defined as in Eq. (1). This equation
differs from the Bonhoeffer-van der Pol equation
through the additive noise terms, o d W;(t) repre-
sents normalized white noise [d W;(1) d W;(1) = §;;d1]
and o the amplitude of the noise.

The dynamics resulting from the stochastic dif-
ferential equation, (3), can best be formulated in
terms of a distribution function, p(x,f), which
describes the probability that an ensemble of sys-
tems obeying Eq. (3) is observed with the phase
space variables x at time . This distribution func-
tion obeys the following Fokker-Planck equation
associated with (3)

Oip(x,0)=D[0f+ 03— 2i0;i Fi(x)] p(x,1) (4a)
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with
D=g%/2. (4b)
p=1/D. (4c)

By introducing a new timescale t — D1, Eq. (4a)
is transformed to

O p(x,1)=[81+ 03— B X, 0, Fi(x)] p(x,7) . (5)

In statistical mechanical applications D corresponds
to the diffusion coefficient and f to the inverse tem-
perature. This correspondence implies

large § < weak noise,
small # & strong noise .

In order to estimate the amplitude of the noise
relative to the resting potential, x;,, of the neuron
we expand the force F)(x) around the stationary
point x,. The result is

Fi(xy) = F (x,x2) = (x;— x;1) ¢ (1= x3) . (6)

Near the stationary point x; this is linear and one
can describe the variation of the potential x, under
the influence of this force and the noise in Eq. (3a)
as a Ornstein-Uhlenbeck process. This yields the
stationary distribution

Po(x)) =[2na*] " exp[— (x| —x15)%/2 6% (7a)
o=[fcxl—-D]". (7b)

Here o describes the RMS variation of the mem-
brane potential. The ratio ¢/x;, provides a measure
for the observed noise. In the case of a vanishing
membrane current, i.e. z = 0, one determines

a/x5 =0.7268/)B. (7¢)

For the noise levels § we assume, in the following,
values of the order 10 to 100. This implies that the
noise measured in units of the resting potential is
about 0.1.

2.3. Monte Carlo solution of a 2-dimensional
Fokker-Planck equation

The solution of the 2-dimensional Fokker-Planck
equation, (5), is a non-trivial task. To obtain the
time-dependent distribution and the stationary dis-
tribution we will adopt a Monte Carlo algorithm.
This algorithm is a generalization of the Brownian
dynamics algorithm developed by Lamm and Schul-
ten (1981, 1983).

The key idea of our algorithm is to reduce the
time-development of the distribution function into
short time steps of duration 1. For this purpose we
define the time grid 1=/, j=0,1,2,...,n. We
consider the conditional probability p (x,7]x,0) to

reach x at time 7 when the system had assumed the
variables xy at r=0. By means of the Chapman-
Kolmogorov equation one can obtain the represen-
tation (x, = x, 1, = 1) (8)

[)(x’l i X(),O) =[ dxl see j.dxﬂ—l Hip(xf+]a,j+l ‘xjﬁ’/') .

Here the conditional probabilities 2 (Xj+1, 141, x5, 1))
represent for t=1{,,—1 — 0 the probabilities for
differential displacements.

At this point we take account of the fact that for
t — 0 the displacements |x;,; — x;| can be expected
to be small. One may, therefore approximate the
force field F(x) locally around x; through the linear
expression

Fi(x) = Fi(x)) + ¢ [x; — (x)i] (9a)

which neglects the off-diagonal linear term and all
higher order terms. In this expression

bi= Fi(x;) (9b)

and ¢; are constants to be determined locally by a
corresponding Taylor expansion of the force field
around x;. This approximation implies

P (Xjwrs ey L, 1) =T [(X41 )i, T, (10)

where the #;(x, 7) are solutions of the local 1-dimen-
sional Fokker-Planck equation

Oimi=02mi+(cix +b)0cnmi+cin (11a)
with initial condition

17 (x, 0) =9 [(x;):]. (11b)
The solution of Eq. (11) is the Gaussian
ni=Qna?) 2 exp[—(x— u)*2 0% (12a)
g =[(1=6%)/c]'"? (12b)
#i=(x;); 0: = b; (1 — 6;)/c; (12¢)
0 =exp(—ci1). (12d)

This Gaussian can be simulated by means of a
Monte Carlo procedure invoking a random number
W; corresponding to a standard Gaussian process
and setting

(xje1)i=pi+ o Wi (13)

Equation (8) presents p(x, z| xo, 0) as a convolu-
tion of successive differential displacement distribu-
tions, (12), each of which can be simulated as
indicated by Eq. (13). Therefore, the Monte Carlo
algorithm to evaluate the conditional probability
distribution, (8), proceeds as follows: According to
Eq. (13) one determines successively by means of
standard Gaussian random numbers, W, and W,
the intermediate endpoints xy— x> x3— ... = X, .
This calculation simulates the stochastic motion of a



single “particle”. In order to obtain the distribution
p(x, t|x,0) one needs to simulate the motion of a
large ensemble of “particles”. One then monitors the
frequency of the occurrence of endpoints x; lying
within a volume element 4 around a point x of the
phase space. This frequency can be identified with

plx,t=j1)4.

We have found (Treutlein and Schulten 1985)
that the stochastic Bonhoeffer-van der Pol model for
any initial condition quickly reaches a stationary
state. The corresponding stationary distribution can
be determined by means of the ensemble average
just described, i.e. simulating a large number of
trajectories for a long time and monitoring the ensu-
ing endpoint distribution. However, the stationary
distribution can be obtained faster by invoking a
time average. This can be done by a simulation of a
single trajectory over a long time recording the fre-
quency with which the endpoints x;, j=0,1,2,...
fall into a volume element 4 of the phase space, e.g.
around the point x. This frequency then identifies
the stationary distribution, p (x, f = o) 4.

2.4 Stochastic motion around a limit cycle

The stationary solution of stochastic systems with a
deterministic limit cycle x; (/) for weak and inter-
mediate noise levels is localized around x; (/). The
trajectory x.(/), 0 = /= L denotes the positions on
the limit cycle, the variable / is the length on the
limit cycle when the total length is L.

In order to describe the system near the limit
cycle we decompose the force field F into two com-
ponents

FXF.+F,, (142)

where F. is tangential and F, is normal to the limit
cycle. We assume that we have defined a local
coordinate system in which x is represented by a
position / on the limit cycle and a coordinate &
measured along the direction # normal to the limit
cycle at /, i.e. x =x, (/) + on. For a given x there can
exist several such decompositions. This ambiguity,
however, should not affect the following considera-
tions. The decomposition (14a) is then chosen as
follows

F.=Flx. ()]
F,= F—(F-F./F.) F./F..

(14b)
(14¢)

{a) Diffusion normal to the limit cycle. The force
component (14c) normal to the limit cycle can be
represented as

F,(xp +on)y=n-[F(x,+ én)— F(x.)]n. (15)
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Taylor expansion yields to 1st order

F,(x,+6n) = a(l) on (16a)
where
a(ly=—n-(n-VE,n-VF)T. (16b)

This force corresponds to the potential
Vo(h, ) =%a(l) 8. 17

The potential, V,, varies along the limit cycle. It can
form a steep well, a flat well or in the case where
%2(l) <0, a ridge. In the last case one expects
stochastic trajectories to diverge from the limit
cycle, in the former cases to remain in the neigh-
bourhood of the limit cycle. Only this last case will
be considered now.

In the case where the variation of « (/) is not too
fast, such that for strong enough noise the distribu-
tion adiabatically follows the potential V, along the
limit cycle, and if Eq. (16) is a good approximation
to the normal force, one can predict that for
2(/)>0

po(l, 8)=[Bx()/27)"* exp [~ B o (l) 6¥/2] (18)

describes the variation of the stationary distribution
normal to the limit cycle. The amplitude of (18) on
the limit cycle is

p)=[B=(D]". (19)

This result shows, in accordance with one’s expecta-
tions, that for large « (/), i.e. narrow potential wells,
the distribution has a large amplitude on the limit
cycle whereas for small a(/), i.e. flat potential wells,
the amplitude on the limit cycle is small.

(b) Diffusion along the limit cycle. We consider now
the stochastic motion along the limit cycle. For this

purpose we note that the stochastic differential

equation (3) restricted to the limit cycle is
O/l=F()+odW(r)/dt, (20)

where F(/) is the magnitude of the force on the
limit cycle. Since the force field F(x) is tangential to
the limit cycle we do not require a vectorial represen-
tation. The Fokker-Planck equation corresponding
to (20) is

diy(l.ty=D[@i—pF(D]g 1)
which has to be solved subject to the cyclic bound-
ary condition

g(0.n=g(L, 1),

where L denotes the total length of the limit cycle.
g (/, 1) describes the amplitude of the distribution
along the limit cycle. In the stationary case the fol-

(21 a)

@1b)
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lowing equation holds

[1—-BaF(NIGWNH=0 (22a)
g)y=4g(L). (22b)
The solution of this equation is
g(y=Ce Pro(f{efYOr dr

+ (e — 1) [ eV dr, (23a)
where C is a normalization constant and
vihy=—(§Fdr. (23b)

This solution satisfies the cyclic boundary condition
(22b). Since the conditions F(0) = F(L) and

0ig(h=F(hgh+C

hold, (23) has also a continuous derivative at / = 0,

In general, the numerical evaluation of g (/) ac-
cording to (23) requires a very high numerical preci-
sion as can be shown by a test of the cyclic boundary
condition. However, it is often sufficient to consider
the limiting cases of weak and strong noise. In the
case of weak noise the following equation holds,
instead of (22 a)

aF(hg()=0 (24a)
and, hence,
g(=C/F() (24b)

for some constant C’. In the case of strong noise, i.e.
small £, the following equation holds instead of (22a)

dig(h=0 (25a)
and, hence, g (/) should be constant _
gh=C". (25b)

As a demonstration of a stochastic motion along
a limit cycle we consider the following force field:

F(x) = F,(x)+ F-(x) (26a)
F,(x)==VU(x) (26b)
U(x) =[a(xi+x3~17)] (26¢)
F.(x) = c(x)(x1, = x)7 (264d)
c(x) =blcos(de)+ 1] (26¢)
tang = x/x,. (26f1)

The resulting force field induces a limit cycle along
the circle x}+x}=/% It can easily be shown, that
F,  F.=0. A constant function ¢ (x) = ¢ would yield
a stationary distribution function of the form

p(x, 1 = o0) xexp(—= S U(x)), (27)

because of V-F.=0 (Treutlein 1984). However,
since in (26¢) V- F,+ 0 the stationary distribution
differes from (27). The distribution for the two
choices of noise levels (§ =1, 10) is shown in Fig. 2a

and b. The spatial dependence of ¢ (x) induces four
maxima. Figure 2c and d presents the distribution
along the limit cycle. The force normal to the
circular limit cycle is radial symmetric and, hence,
the diffusion normal to the limit cycle is indepen-
dent of the azimuthal angle ¢. As a result the distri-
bution along the limit cycle is solely determined by
the stochastic motion along the limit cycle and,
therefore, described by Eq. (22) in the stationary
case. As shown for the two noise levels = 0.5, 6 in
Fig. 2c and d a comparison of the Monte Carlo
simulation with the distribution predicted by Eq.
(23) is satisfactory. These figures demonstrate two
effects of the noise level on the limit cycle diffusion:
(i) large noise diminishes the variation of the
distribution along the limit cycle such that for very
large noise levels the distribution becomes constant;
(i1) an increase of the noise level from small to large
values induces a shift of the distribution maxima
from the force minima to the force maxima.

(c) Summary. The following conclusions for an
approximate analytical description of the stationary
distribution function with stochastic limit cycle be-
haviour can be drawn. The distribution near the
limit cycle is affected by two stochastic processes,
namely (i) normal, (ii) tangential to the limit cycle,
which are often approximately independent. For
strong noise the tangential diffusion leads to a
constant distribution and, hence, does not influence
the total distribution. The normal diffusion induces
a distribution amplitude on the limit cycle according
to (19). Therefore, the total distribution should
behave as

Pappe ()= p (1) (28)

In the case of weak noise the diffusion normal to the
limit cycle does not follow adiabatically the limit
cycle, i.e. the variation of x(/) as given by (16b).
One may, hence assume (/) = const. and neglect
the normal diffusion. The contribution of the tan-
gential diffusion in the limit of weak noise is given
by (24b) and, therefore, the total distribution should
behave as

Pappe () =C'/F (1), (29)

where F is the magnitude of the force on the limit
cycle.

3. Stochastic dynamics of neural pulses/Results

3.1 Deterministic limit cycle with noise

Employing the Monte Carlo method outlined in
Sect. 2.3 we have determined (Treutlein and Schulten
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Fig. 2a—d. Stationary distribution

0 1 1 i

for a Fokker-Planck system, (3), and
a force field, (26), with b=/=1;
the distributions resulted from a
Monte Carlo simulation sampling
about 5000000 points of a single
trajectory; a §=6; b = 60; ¢ com-
parison of a Monte Carlo distribu-
tion for f#=0.5 with the analytical
approximation (23); d same as ¢ for
B=6, ie. for the distribution pre-
.] sentedina

i 1 1

1
0 100 200 300 0
c LIMIT CYCLE d

1985) the time-dependent distribution for the sto-
chastic Bonhoeffer-van der Pol model, (5), in the
case where z=—04, i.e. when the deterministic
Eq. (1) yields a stable limit cycle. The results showed
that the system very quickly reaches a stationary
distribution. Hence, it appears sufficient to charac-
terize the Bonhoeffer-van der Pol model by its
stationary distribution. For this purpose we present
in Fig. 3 this distribution for a noise level £ =10.
The distribution is mainly concentrated around the
limit cycle observed for the deterministic system.
The distribution along the limit cycle is, however,
distinctly bimodal. The maximum values of the
distribution are situated along the two local attrac-
tors which characterize the Bonhoeffer-van der Pol
model (Treutlein and Schulten 1985). The bimodal
distribution can be rationalized by noting that the
force F(/) along the deterministic limit cycle as-
sumes two minimum values on the two local attrac-
tors, i.e. the distribution along the limit cycle should
assume two maxima on the two attractors.

3.2 Noise-induced limit cycle behaviour

We want to consider now the stochastic Bonhoeffer-
van der Pol model in the case of zero membrane
current, i.e. - = 0. For this z value the deterministic

700 300

LIMIT CYCLE

%o.a

Fig. 3. Stationary distribution of the stochastic Bonhoeffer-
van der Pol model with z=— 0.4 for the noise level = 10;
the distributions resulted from single Monte Carlo trajectories
sampling about 29000000 points (Treutlein and Schulten
(1985)

model does not show a limit cycle behaviour but
rather approaches a stable focus. Figure4a and b
show the stationary distribution of the stochastic
system for the two noise levels f#= 10 and = 100. A
comparison of the distributions of Figs. 3 and 4a
which both correspond to = 10 but to different z
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Fig. 4a and b. Stationary distribution of the stochastic Bon-
hoeffer-van der Pol model for - =0, i.e. the case that no
deterministic limit cycle exists; the distributions results from a
Monte Carlo trajectory sampling about 29000000 jump points;
a f= 10, b =100 (Treutlein and Schulten 1985)

X2

-1F

_2 1 i J l
‘3 2 1 0 1 2, 3

Fig. 5. Contour plot representation of the distribution in
Fig. 4a superimposed on a deterministic trajectory (Treutlein
and Schulten 1985)

‘neuron; a z =— 0.4 (limit cycle situation),

S

o
N - O == N
gjlll

Xy

.

15. 20.
Time

Fig. 6a—c. Trace of the x| variable of a Monte Carlo trajec-
tory for the stochastic Bonhoeffer-van der Pol model with
B =10 representing the electrical membrane potential of a
z=0 (no limit
cycle), ¢ z = | (no limit cycle)

values, namely z=—-0.4 and z=0, respectively,
shows that the stochastic system for z =0 behaves
almost identically to the z = — 0.4 limit cycle system.
The difference in the behaviour between the sto-
chastic system and the deterministic system is dem-
onstrated in Fig. 5 which presents the contour
lines to Fig.4a superimposed on a deterministic
trajectory. This trajectory approaches most directly
the stable focus. In contrast the stochastic system
exhibits a bimodal distribution which represents
repeated jumps of stochastic trajectories between
the two local attractors. Even in the case of weak
noise the distribution is bimodal as seen in Fig. 4b.
The interpretation of this finding is that the noise
induces the Bonhoeffer-van der Pol model to move
along the limit cycle in a parameter range where the
deterministic system does no show limit cycle be-
haviour.
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3.3 Variation of the firing rate of neural pulses

We finally consider the problem posed in the
Introduction, namely how neurons vary the firing
rate of the nerve pulses. Figures 6a—c show time
traces of the x; variable of the stochastic Bon-
hoeffer-van der Pol model for z=-04 (a), z=0
(b), and z = 1.0 (c) i.e. the cases in which the deter-
ministic system does (a) and does not (b), (c) show a
limit cycle. The traces of x, are remarkably similar
to physiological recordings of single nerve cells in
that the shapes of single pulses are rather invariant
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Fig. 9. Sample trajectories approaching the stable focus and
sparatrix line (see text) for the Bonhoeffer-van der Pol model
with z = 0 (Treutlein and Schulten 1985)

but a scatter in the time between pulses is observed.
The recording of the system in Fig. 6b corresponds
to the distribution in Fig. 4a. Every pulse corre-
sponds to a round along a noise-induced limit cycle.

The question of how the frequency of pulses

varies when the membrane current z is changed is
addressed in the diagram of Fig. 7. This figure
shows for the case =10 how the mean period
between pulses depends on z. Altering = from about
— 1.0 to about + 2.0 induces a 55-fold increase of the
mean time between pulses. Further variation of :
increases the time even further such that the pulse
frequency can virtually be varied continuously from
zero to a high value. On the basis of this result we
like to suggest then that neurons, in order to code
the frequency of their axonic pulses, either employ

intrinsic electrical membrane noise or use for that

purpose the electrical signals of synapses converging

on them (which most likely appear like noise). This

result corresponds to a similar finding of Lecar and

Nossal (1971 a).

The distribution of interspike intervals is shown

in Fig.8a and b for the parameters =10 and

=-—05 (a) and z=0 (b). This result compares
qualitatively to a recent observation of the frequen-
cy distribution of interspike intervals of motor units
in rats (Hennig and Lemo 1985).

We wish to comment finally on the mechanism
which controls the noise-induced pulse generation in
the framework of the Bonhoeffer-van der Pol model.
This mechanism can be explained by means of
Fig. 9. This figure shows the stationary point from
which all stochastic trajectories start. For the mem-
brane currents z < — 0.35 considered here the sta-
tionary point is stable for the deterministic system.
However, stochastic trajectories succeed in crossing
the local separatrix determined by us recently
(Treutlein and Schulten 1985) and then produce a

-
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Fig. 10. Integration path for the potential energy according
Eq. (30). The dashed line represents the separatrix (see Fig. 9)
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Fig. 11. Dependence on the noise level 8 of the mean period
between neural pulses for the stochastic Bonhoeffer-van der
Pol model as described by Monte Carlo simulations. The solid
line shows the result of the Kramer’s theory, i.e. Eq. (31), the
squares represent the data obtained from the simulation
(z=10). In applying (31) we have choosen the line segment in
Fig. 10.

neural spike since on the left of the sparatrix a re-
covery of the resting state is possible only by a
detour which assumes low intermediate potential
values. The frequency of stochastically induced neu-
ral spikes can be reproduced quantitatively if one
assumes the stochastic motion of the system along
the line indicated in Fig. 10. The ensuing motion is
I-dimensional and, hence, a potential U (x) can be
defined when x is the distance from the stationary
point x;

U(x)=—[3dx' - F(x)) (30)

U (x) assumes a minimum at x = 0 and a maximum
at a value x =x,. Applying Kramer’s theory for
barrier crossing (Risken 1985) yields an expression

for the mean time lag {t) between two pulses:

(ty=(2/B)exp(B4U) (31)
with
AU =U(xm) (32)
and
2 =27/{d2U(0) D2U (xm)} . (33)

In applying formulas (31)—(33) the reader should
note that the physical mean time lag is actually
(t)/D [see below Eq. (4)]. Figure 11 compares, for
- =0, {z) evaluated according to Eq. (31) with the
{t) values obtained from a simulation of stochastic
trajectories. This comparision shows that the ap-
proximation (31) reproduces the exact 7 values over
a wide range of f values. We consider the simple
analytical approximation (31) an important result of
this paper as it relates the stochastic aspects of
excitability entailed in £ and D to the macroscopic
behaviour of neural impulses as described by (7).
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