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ABSTRACT

We apply the Pariser-Parr-Pople Hamiltonian to study many-electron excitations in
polyenes and polyacetylene. The excited singlet states of polyenes, calculated by a multi-
reference double excitation expansion, are classified as quasi-particle excitations, namely
as triplet-triplet magnons and particle-hole excitons. From finite polyene spectra we
derive approximate dispersion relations for these quasi-particles in the infinite polyene,

i.e. polyacetylene.

INTRODUCTION

Organic conducting and semiconducting polymers and, in particular, polyacetylene
(CH): as their prototype have been intensively investigated in recent years [1]. These
materials typically consist of strands of conjugated polymers comprising some hundred
to some thousand elementary molecular units. Hence, the polymers are neither ‘infinite’
nor ‘small’ and their description falls into a domain of physics that is located between
molecular and solid state physics. In this letter we want to outline how these branches
of physics can be bridged for correlated many-electron excitations of polyacetylene. The
arguments are based on calculations of electronic spectra of long polyenes 2], the small
relatives of (CH);, and on an investigation of the asymptotic behavior of the spectra in

the limit of very long chains [3].

Knowledge of low-energy electronic states is a prerequisite for an understanding of
conduction and optical properties of (CH);. Like in the case of the polyenes (4] these
states are dominated by the effects of electron correlation. Electron-phonon models of
(CH)z which neglect these effects [5| are inappropriate for qualitatively and quantita-
tively correct descriptions [6]. Exact or close to exact many-body methods are required
for a correct account of electron correlation since, for example, Hartree-Fock [7-9] and

perturbative treatments [10,11] lead to qualitatively wrong predictions [6,12-16].

Exact results on the excited many-electron state spectra exist only for the Hub-
bard model which assumes an equidistant lattice for (CH); and a short-range, on-site

Coulomb interaction of the w-electrons [17-19]. For the infinite Hubbard chain disper-
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sion relations have been calculated for a variety of quasi-particle excitations that can
be characterized either as particle-hole (ph) excitons or as magnons. The ph-excitons,
frequently termed “charge-transfer” or “ionic” excitations, form the conduction band
and exhibit a finite gap. The magnons, which are also called “spin-wave” or “covalent”
excitations, are combinations of triplet excitations, have vanishing band gaps and a

linear dispersion relation in the limit of small quasi-particle momenta.

Due to the complexity of the Bethe ansatz for many-electron states on which the
analytical solutions of the Hubbard model are based, the wavefunctions of the quasi-
particle excitations are still unknown. Furthermore, a connection between dispersion
relations of quasi-particles in the infinite Hubbard chain and discrete spectra of many-
electron states calculated for finite Hubbard rings and chains has not yet been revealed.
Exact excitation energies for finite systems with N w-electrons are known only for two
low-lying ionic states in aromatic (N = 4n + 2,n = 1,2,...,12) rings from a numerical
solution [20] of the Lieb-Wu equations [17] and for the lowest ionic excitation in chains

(N < 12) from a valence-bond approach (21].

Despite the considerable progress that has been achieved for the Hubbard model in
the characterization of the spectra, the simplicity of the model hampers applications to
the understanding of the properties of (CH);. With the assumptions of an equidistant
lattice for (CH)z and of an on-site electron-electron interaction the model does account
neither for the observed alternation of long and short C—C bonds [22] nor for the long-
range character of the Coulomb forces. The Pariser-Parr-Pople (PPP) model for
the m-electrons of (CH); provides both, a long-range Coulomb interaction of the elec-
trons and a description of bond length alternation [2]. The PPP Hamiltonian explains
correctly the electronic spectra observed for polyenes [2,23] and, therefore, should also

provide satisfactory descriptions for (CH).

Up to now the complicated nature of the PPP model has prevented the derivation
of analytical results. Exact numerical wavefunctions and energies of the lowest ionic
excited state in polyenes with up to N = 12 w-electrons have been presented in Ref. 21.
For larger electron systems the enormous dimension of the many-electron Hamiltonian
makes exact calculations a cémputationally extremely difficult task [21]. To circumvent
this difficulty we recently have developed a new multi-reference double excitation con-
figuration interaction method (MRD-CI) which allows very accurate calculations of the

low-energy spectra of polyenes comprising up to 16 m-electrons (2, 24].

RESULTS
Typical results of PPP MRD-CI calculations on polyene spectra are shown in Figure 1
for five low-lying 7-electron singlet excitations. In these calculations a polyene model

geometry has been assumed featuring a bond alternation é = 0.10 A. (The parameter é
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Fig. 1.  Excitation energies of the five lowest excited singlet states resulting from
PPP-MRD-CI expansions for alternating polyenes with N = 4,6,...,16 conjugated
7-electrons. The states are denoted by C;), and ‘alternancy’ symmetry labels [2].

measures the length difference of long and short C—C bonds). The value § = 0.104 is
larger than the value of 0.08 A observed [22] for (CH) and has been chosen to enable

comparisons with Ref. 21.

In this letter we would like to suggest that the PPP data on polyene spectra shown
in Figure 1 on the one hand can be classified in terms of quasi-particle excitations of
the infinite polyene chain, i.e. (CH)z. On the other hand we want to propose that
these results cover large enough systems and sufficiently many low-energy singlet states
to construct approximate dispersion relations of the lowest quasi-particle excitations
in (CH)z. The suggested procedure for the construction of quasi-particle dispersion
relations from computational results on correlated many-electron excitations in finite
systems represents the desired link between molecular and solid state physics, should
be rather general and is the key result of this letter.

For the construction of dispersion relations of many-electron excitations in the infi-
nite system from finite system results it is necessary to associate “quasi-particle” mo-
menta to excitations in finite systems. In one-electron theory such association is simple.
For a finite linear m-electron chain the quasi-‘pa.rticle momenta are quantized and deter-

mined by the length of the chain according to
kqe(N) = gr/(N + 1), g=1,2,3,... (1)

Here, the momentum quantum numbers ¢ label the various excited states and N is the
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number of carbon atoms. For a given class 8 of excitation the connection between the
corresponding dispersion relation Eﬂ(k) and finite system excitation energies Eg (N) is

given by
EPlky(N)] = EE(N), ¢=1,2,3,.... (2)

Egs. (1) and (2) are exact in one-electron theory. In many-electron theory they become

exact in the limit N — oo.

We would like to suggest now that Egs. (1} and (2) also hold — to a very good
approximation — for correlated excitations in many-electron systems as described by
the PPP model of polyenes even for N as small as N ~ 6. Hence, we propose that
excitations in finite polyenes are quasi-particles with momenta given by Eq. (1). Fur-
thermore, according to Eq. (2) computational results on finite polyene spectra, like those
depicted in Figure 1, should provide discrete approximations to dispersion relations EP
of (CH)z. A corresponding construction of approximate dispersion relations requires a
determination of the momentum quantum numbers ¢ labeling the polyene N-electron

states.

The quantum numbers ¢ labeling the low-lying excited singlet states of the polyenes
are determined in Ref. 3. It is shown that the three lowest covalent states 21Ag_ , 11B7
and 31AE (cf. Figure 1) belong to the same excitation class 3, the class of triplet-triplet
(¢t) magnons, and that they have momentum quantum numbers q;; = 2,3,4. The term
‘tt-magnons’ derives from the observation that these singlet excitations are combinations
of two weakly interacting triplet (t) magnons coupled to an overall singlet state. The
t-magnons have momentum quantum numbers ¢, § = 1,2,3,... and the combination
rule g = q; + g explains why the tt-magnons have a smallest quantum number g = 2.
The two lowest ionic states 1!BF and 11Ag' belong to another class (ph-excitons) and

have quantum numbers %r =1,2.

The proposed connection [cf. Eqgs. (1) and (2)] between many-electron excitations
in finite and infinite chains is analyzed in Ref. 3 by a detailed investigation of the
spectra in the limit of large N. Comparisons of well-known exact results on the infinite
Hubbard chain [19] with exact [20,21] and approximate calculations on finite aromatic
(N = 4n + 2) rings and even (N = 2n) chains demonstrate the high accuracy to which
Eq. (2) holds for physically realistic model parameters. Noticeable deviations from
equality in Eq. (2) occur only for ph-excitons (not for magnons) if unrealistically large
interelectronic forces are considered. In that case excitation energies of ionic states
in finite rings and chains represent only an upper bound to quasi-particle excitation
energies in the infinite system and the application of the simple quasi-particle picture

expressed by Egs. (1) and (2) to finite polymers is not justified anymore. However, for
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Fig. 2. Approximate dispersion relations EP* for ph-excitons and E** for tt-mag-
nons in (CH); constructed according to Eqs. (1) and (2) from the PPP-MRD-CI
excitation energies of alternating polyenes shown in Figure 1. For the polyene states
the quantum numbers g of quasi-particle momentum are given. Also shown are linear
fits to the dispersion relations in the small k limit.

the more realistic PPP model with its weaker interelectronic forces these investigations
lead to the expectation that Eq. (2) should provide rather accurate approximations not

only for dispersion relations of ¢t-magnons but also for those of ph-excitons.

Figure 2 demonstrates that the quasi-particle picture expressed by Egs. (1) and (2)
is valid for the PPP model of (CH);. The figure shows discrete approximations to the
dispersion relations EPA(k) of ph-excitons and E*(k) of tt-magnons which have been
constructed according to these equations from the polyene MRD-CI data in Figure 1.
If, as mentioned above for the case of ph-excitons in more strongly correlated Hubbard
models, the construction procedure would not be applicable, then the data of each
excited state should form a separate curve in Figure 2. Therefore, the very fact, that
the excitation energies of the two ionic and three covalent polyene states form two
smooth curves when plotted on a k-scale, represents an ‘a posteriori’ justification of
that construction procedure. The very small scatter of the data points reflects remaining
finite size effects and becomes smaller with decreasing momenta, i.e. increasing polyene
lengths.

In addition to the finite polyene excitation energies Figure 2 shows linear fits
EP(k) = EF (0) + &Pk to the small k branches of the dispersion relations. The close to
linear behavior of the dispersion relations in the range 0.05 < k < 7/4 had to be ex-

pected from the corresponding behavior of dispersion relations determined analytically
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Fig. 3. Approximate dispersion relations of singlet quasi-particles in hypothetical
non-alternating (CH) constructed from PPP-MRD-CI results on finite polyenes {2].

for ph-excitons and t¢t-magnons in the Hubbard model. In the limit k¥ — 0 the dispersion
relations should approach the respective gaps quadratically with k [3,19]. Therefore,
the estimates £PP(0) for the ‘optical gap’ and E*(0) for the ‘covalent gap’ are slightly

smaller than the true gaps.

The main prediction of the PPP dispersion relations shown in Figure 2 is: The lowest
singlet excitations in (CH); are tt-magnons. These magnons are optically forbidden and
exhibit a finite ‘covalent’ gap £*(0) predicted in the chosen model geometry (§ = 0.10A)
at about 1.8 eV. The optical gap E’P"(O) of the ph-excitons is predicted at about 2.9eV.
The latter value is 0.7eV larger than the observed value [4]. This difference has to be
attributed mainly to the overestimate of bond alternation in our calculations. That

fact, as well as the qrigin of the ‘covalent gap’, is exhibited by Figure 3.

Figure 3 shows discrete approximations to the dispersion relations EPh (k) and E*(k)
for the PPP model of a hypothetical non-alternating (CH); (6§ = 0). The linear fits to
the data points in the small k range predict a reduction of the optical gap by about 1eV
and a vanishing covalent gap. The latter prediction is identical to that of the Hubbard
model which also applies to non-alternating m-orbital chains. Hence, the size of the
covalent gap entirely depends on the degree of bond alternation in (CH);. From the
observed bond alternation one may estimate a value of about 1.4 eV for the covalent gap
in (CH)z. The optical gap is affected much less by bond alternation. The 1.9eV gap
remaining for non-alternating (CH)z is solely due to electron correlation. As one may

conclude from comparisons with results on the Hubbard model long-range electron-
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electron interactions furnish the main contribution to this gap [3]. Thus, the term
‘Peierls insulator’ commonly used for (CH); is misleading. Such term would imply that
the optical gap is mainly caused by bond alternation.

Some of the physical consequences of the existence of a band of tt-magnons below
the optically allowed conduction band of ph-excitons in (CH), are discussed in Ref. 3
to which the reader is referred. Here, we would like to conclude with a few remarks
on theoretical perspectives which are opened up by the results presented above. If, as
shown, excitation energies calculated for finite correlated many-electron systems can
be related quite accurately to quasi-particle energies in the infinite system, then one
should also be able to construct accurate quasi-particle wavefunctions, that are adapted
to the translational symmetry, from wavefunctions of excitations in finite systems. Such
quasi-particle wavefunctions could then serve as starting point for an investigation (1)
of the asymptotic behavior of quasi-particle dispersion relations in the limit of small
momenta k and (2) of the coupling of the electronic degrees of freedom to those of the

lattice to study solitonic excitations in (CH);. We are currently persueing these ideas.
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