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Theory

In this section the filter function formalism describing the effect of orientational dis-
order on cryptochrome magnetic acuity is introduced. First, the magnetic field filter
function is defined. Second, it is demonstrated in principle how magnetic field me-
diated signalling of cryptochrome is affected by protein orientational fluctuations.
The formalism introduced is then employed for the calculation of the magnetic field
modulated visual pattern in the retina of a bird’s eye.

Magnetic field mediated signalling yield of cryptochrome

For our analysis anX, Y, Z-coordinate frame is associated with the bird’s eye as shown
in Fig. 2. At each point of the retina is affixed a magnetic field-sensitive cryptochrome
molecule. We assume that the orientations of these molecules are highly coordinated
and, in fact, obtained from the X, Y, Z-coordinate frame through a general rotational
transformation D specific for each point on the retina. D is a 3 × 3-matrix with
elements (1, 2)

D =

cosα cos β cos γ − sinα sin γ − cosα cos β sin γ − sinα cos γ cosα sin β
sinα cos β cos γ + cosα sin γ − sinα cos β sin γ + cosα cos γ sinα sin β

− sin β cos γ sin β sin γ cos β

 .

(S1)
The orientation of the cryptochrome molecules distributed over the retina are specified
through an x, y, z-coordinate systems as shown in Fig. 2. This coordinate system is
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affixed to the FADH prosthetic group in cryptochrome, as illustrated in Fig. 2. The
key part of the FADH group, as shown in Fig. 2, is a planar flavin moiety and we
define the z-axis of the x, y, z-coordinate frame to be perpendicular to the flavin plane,
while the x- and y-axes are oriented in the flavin plane as seen in Fig. 2.

The orientation of cryptochrome in the retina is chosen such that its z-axis is
perpendicular to the retina surface, as shown in Figs. 3a-b. This assumption is
rather arbitrary, but does not violate the generality of our rationale because after
having the coordinate frames defined we study all possible spatial reorientations of
cryptochrome. However, crucial is that all cryptochromes assume an orientation
defined through a systematic transformation D that rotates the X, Y, Z coordinate
system into the local x, y, z-coordinate system. We note that for any vector v⃗ with
Cartesian coordinates vj, j = 1, 2, 3 in the X, Y, Z-coordinate frame and Cartesian
coordinates ṽj, j = 1, 2, 3 in the x, y, z-coordinate frame, holds

ṽj =
∑
n

Dnjvn . (S2)

The rotation D is conveniently characterized through three Euler angles α, β, γ
and then denoted D(α, β, γ). The angles are functions of each position r⃗ on the retina
(see Fig. 3a-b). The definition of the Euler angles is connected with r⃗ as follows:
One can express the position r⃗ on the retina through so-called spherical coordinates
r, ϑ, φ, namely, r⃗ = r(sinϑ cosφ, sinϑ sinφ, cosϑ), i.e., each position on the retina
is assigned, besides the retina radius r, a pair of angles (ϑ, φ) as shown in Fig. 3a.
The Euler angles are then chosen as (α, β, γ) = (φ, π−ϑ, 0) as illustrated in Fig. 3b.
The choice of γ = 0 is due to the fact that for the definition of an ideally oriented
coordinate frame only two angles are necessary.

Cryptochrome wiggling introduces orientational disorder of the ideally oriented
proteins. As a result, the ideal x, y, z-coordinate frame is to be replaced by a randomly
oriented x ′, y ′, z ′-coordinate frame, as illustrated in Fig. 3c. This disorder can be
captured mathematically through a second transformation, D(α ′, β ′, γ ′), that takes
the x, y, z-frame for an ideally oriented cryptochrome to the x′, y′, z′ frame of the
randomly reoriented cryptochrome. Thus, the components of the vector ṽj in Eq. (S2)
in the x ′, y ′, z ′-coordinate frame can be written as

ṽ ′
j =

∑
m

Dmj(α
′, β ′, γ ′)ṽm . (S3)

Substituting Eq. (S2) into Eq. (S3) one relates the cartesian coordinates of a vector v⃗
in the X,Y, Z-coordinate frame with the cartesian coordinates ṽ ′

j , j = 1, 2, 3 in the
x ′, y ′, z ′-coordinate frame through two consecutive transformations

ṽ ′
j =

∑
m,n

Dmj(α
′, β ′, γ ′)Dnm(α, β, γ)vn . (S4)

In the X,Y, Z-coordinate frame the Earth magnetic field vector B⃗ is characterized
by the polar angle Θ, azimuthal angle Φ and the magnitude B0 as illustrated in Fig. 3d

B⃗ = (BX , BY , BZ) = B0(sinΘ cosΦ, sinΘ sinΦ, cosΘ). (S5)
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Substituting Eq. (S5) into Eq. (S4) allows one to express then the magnetic field
vector in the x ′, y ′, z ′-coordinate frame, i.e., the field vector as seen relative to a
specific cryptochrome molecule, as a function of α, β, γ, α ′, β ′, γ ′, Θ and Φ

B ′
j (α, β, γ, α

′, β ′, γ ′,Θ,Φ) =
∑
m,n

Dmj(α
′, β ′, γ ′)Dnm(α, β, γ)Bn(Θ,Φ) . (S6)

Equivalently, the magnetic field vector in the x ′, y ′, z ′-coordinate frame can be written
in terms of angles θ ′ and ϕ ′ (see Fig. 3e) as

B⃗ ′ = (Bx ′ , By ′ , Bz ′) = B0(sin θ
′ cosϕ ′, sin θ ′ sinϕ ′, cos θ ′). (S7)

The dependence of cryptochrome’s activation yield on the cryptochrome intrinsic
field orientation θ ′ and ϕ ′ was studied in (3, 4). In these earlier papers we considered
a fixed coordinate frame associated with cryptochrome, and calculated the change in
protein signalling due to the reorientation of the external magnetic field, i.e., due to
a change in θ′ and ϕ′ as defined here. To understand how cryptochrome disorder in
the retina affects the magnetic field modulated signal detected by a bird we assume
B⃗ to be fixed and consider the change in protein orientation with respect to it.

According to the prior investigations cryptochrome has an intrinsic magnetic field
sensing anisotropy axis (signalling axis), which is roughly perpendicular to the plane
of the flavin radical, responsible for cryptochrome’s functioning (3–6). For this reason,
we have fixed in the present treatment the cryptochrome x, y, z-coordinate system to
the FADH prosthetic group, choosing the z-axis perpendicular to the flavin plane as il-
lustrated in Fig. 2. Cryptochrome signalling is dominated by the anisotropic hyperfine
interactions in the two nitrogen atoms (6), highlighted in Fig. 2. If the magnetic field
is applied along the signalling axis, cryptochrome signalling is significantly enhanced,
while applying the magnetic field in perpendicular directions reduces cryptochrome
signalling. Thus, the magnetic field effect in cryptochrome is mainly governed by the
relative orientation of cryptochrome’s signalling axis with respect to the magnetic
field direction, measured by the angle θ ′ defined in Eq. (S7); cryptochrome signalling
is insensitive to the angle ϕ ′ (3–6). Because of the retina spherical symmetry, the
external magnetic field is expected to be detected efficiently if the signalling axes
of cryptochromes are oriented symmetrically around the retina, for example perpen-
dicular to its surface. This particular spatial organization of cryptochromes is one
of the possibilities, in which for any orientation of the external magnetic field there
are always at least several cryptochromes whose signalling axes are collinear with
the magnetic field vector and therefore the cryptochromes represent efficiently the
magnetic field orientation. For the sake of concreteness, we assume the signalling
axis of ideally oriented cryptochromes to be perpendicular to the retina surface. We
stress, however, that there are many other cryptochrome orientational arrangements
that could lead to a visual magnetic field response that is representative of the bird’s
orientation in the Earth’ magnetic field..

Figure S1 shows the cryptochrome magnetic field mediated signalling yield calcu-
lated for a field strength of 0.5 G, i.e., the strength characteristic for the geomagnetic
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field. Figure S1a shows the orientational dependence of the cryptochrome activation
yield in the external magnetic field, as determined in (3). Figure S1b shows the ori-
entational dependence on the relative duration of cryptochrome’s dark reaction as
determined in (4). The results in (3, 4) show that the magnetic field mediated sig-
nalling yield of cryptochrome is not significantly affected by the change of the angle
ϕ ′; this can be seen in Figure S1a; actually Fig. S1b does not show the ϕ′-dependence
as it was argued in (4) that the dependence is weak.

The angle θ ′, defined in Eq. (S7), can be related to α, β, γ, α ′, β ′, γ ′, Θ and
Φ. Consider a scalar product of a unit vector z⃗ ′ directed along the z ′ axis with the
magnetic field vector B⃗ (see Fig. 3e)

B⃗ · z⃗ ′ = |B⃗| · |z⃗ ′| cos θ ′. (S8)

With |z⃗ ′| = 1 and |B⃗| = B0 follows from Eq. (S8)

cos θ ′ =
BXz

′
X +BY z

′
Y +BZz

′
Z

B0

= z ′
X sinΘ cosΦ + z ′

Y sinΘ sinΦ + z ′
Z cosΘ, (S9)

where BX , BY and BZ are defined in Eq. (S5) and z ′
X , z

′
Y , z

′
Z are the cartesian com-

ponents of the z⃗ ′ vector in the X, Y, Z-coordinate frame. In the x ′, y ′, z ′-coordinate
frame the cartesian components of the z⃗ ′ vector are equal to (0,0,1). Thus, substi-
tuting z⃗ ′ = (z ′

X , z
′
Y , z

′
Z) into Eq. (S4) one obtains

z ′
X = − sinα sinα ′ sin β ′ + cosα(cos β ′ sin β + cosα ′ cos β sin β ′) (S10)

z ′
Y = cos β ′ sinα sin β + sin β ′(cosα ′ cos β sinα+ cosα sinα ′) (S11)

z ′
Z = cos β cos β ′ − cosα ′ sin β sin β ′. (S12)

Equations (S10)-(S12) are obtained assuming γ = 0, which does not violate the
generality of the derivations. Figure 3b shows that one can always define the x, y, z-
coordinate frame in such a way that γ = 0 holds at all points of the retina.

Substituting Eqs. (S10)-(S12) into Eq. (S9) one obtains cos θ ′ as a function of α,
β, α ′, β ′, Θ and Φ. The resulting expression reveals that θ ′ does not depend on the
Euler angle γ ′, defined in Fig. 3c. Therefore, one concludes that magnetoreceptive
properties of cryptochrome are γ ′-independent, i.e., cryptochromes are free to reorient
around the axis defining γ ′.

As described in (3, 4), the accurate calculation of the magnetic field mediated
signalling yield of cryptochrome, shown in Fig. S1, is a non-trivial task. However,
for the sake of simplicity one may assume, without introducing a significant error, a
Gaussian-shaped parametric dependence of the signaling yield. The deviation of the
z ′-axis from the external magnetic field vector is a measure for the magnetic field
mediated signalling yield of cryptochrome

F = F0 exp

[
−
(
n2
x ′ + n2

y ′

)
σ2

]
. (S13)

Here nx ′ = Bx ′/B0 and ny ′ = By ′/B0 are the normalized projections of the magnetic
field vector on the (x ′y ′)-plane of the cryptochrome’s intrinsic coordinate frame, i.e.,
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on the flavin plane. F0 is the maximal value of the signalling yield, and σ defines the
signalling acuity. Substituting nx ′ and ny ′ into Eq. (S13) one obtains

F (θ ′) = F (α, β, α ′, β ′,Θ,Φ) = F0 exp

[
−sin2 θ ′

σ2

]
. (S14)

F (θ ′) is cryptochrome’s signaling efficiency. If the magnetic field is applied along the
signalling axis of cryptochrome (θ ′ = 0) the protein efficiency is maximal, namely,
equal to F (0) = F0, while if it is perpendicular to that axis (θ ′ = π/2) the efficiency
reaches its minimum value. An important parameter, defining magnetoreceptive prop-
erties of cryptochrome, is the relative change of the signalling yield, ∆

∆ ≡ |F (0)− F (π/2)|
F (0)

= 1− exp

[
− 1

σ2

]
(S15)

which defines how efficiently cryptochrome responds to reorientation of the external
magnetic field. Figure S1b shows that in a magnetic field of 0.5 G, ∆ can be as large
as 0.17. Equation (S15) allows one to express σ as a function of ∆

σ =

√
1

ln [1/(1−∆)]
. (S16)

To average the magnetic field mediated signalling yield of cryptochrome over all
possible orientations of the protein, we assume that the change in cryptochrome
orientation, i.e., the change in the angles α ′, β ′ and γ ′, arising in the course of
cryptochrome’s wiggling, is linked to a potential of mean force

Epot = E(α ′, β ′, γ ′). (S17)

According to statistical mechanics (7, 8) the average value of the magnetic field me-
diated signalling yield of cryptochrome, ⟨F ⟩ is

⟨F (α, β,Θ,Φ)⟩ =
1

Z

∫ 2π

0

∫ π

0

∫ 2π

0

F (α, β, α ′, β ′,Θ,Φ)×

× exp (−Epot/kBT ) sin β
′dα ′dβ ′dγ ′, (S18)

where F (α, β, α ′, β ′,Θ,Φ) is defined in Eq. (S14) and Z is the partition function of
the system defined as

Z =

∫ 2π

0

∫ π

0

∫ 2π

0

exp (−Epot/kBT ) sin β
′dα ′dβ ′dγ ′. (S19)

T in Eqs. (S18)-(S19) is the temperature of the system and kB is the Botzmann factor.
Equation (S18) shows that ⟨F (α, β,Θ,Φ)⟩ depends on Epot which in turn is α ′,

β ′ and γ ′ dependent. It is impossible to write out explicitly the exact functional
form of the potential energy term, because it involves many different biologically
related factors which are presently unknown. However, since the magnetoreceptive
properties of cryptochrome are γ ′-independent (as follows from Eqs. (S10)-(S12))
and are influenced mainly by the angle θ ′, as illustrated in Fig. S1, the only angle
that is expected to govern the orientational ordering of cryptochrome is β ′. Thus,
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cryptochrome orientational wiggling is relevant mainly along β ′. Taking this into
account we assume

Epot(α
′, β ′, γ ′) = V (β ′). (S20)

We let V (β ′) adopt a very simple functional form characterized through the depth
of the potential well, defined by ε0kBT where ε0 is a dimensionless parameter with a
minimum at β ′ = 0, π and a barrier of ε0kBT at β ′ = π/2. Such potential is given by

V (β ′) = ε0kBT sin2 β ′. (S21)

Substituting Eq. (S20)-(S21) and Eq. (S14) into Eq. (S18) one obtains

⟨F (α, β,Θ,Φ)⟩ =
F0∫ 2π

0

∫ π

0

∫ 2π

0
exp

[
−ε0 sin

2 β ′
]
sin β ′dα ′dβ ′dγ ′

×

×
∫ 2π

0

∫ π

0

∫ 2π

0

exp

[
−sin2 θ ′

σ2
− ε0 sin

2 β ′
]
sin β ′dα ′dβ ′dγ ′.(S22)

Here sin2 θ ′ can be calculated from Eq. (S9). It depends on α, β, α ′, β ′, Θ and Φ.
Since θ ′ is γ ′ independent, Eq. (S22) can be further simplified

⟨F (α, β,Θ,Φ)⟩ =
F0

2π
∫ π

0
exp

[
−ε0 sin

2 β ′
]
sin β ′dβ ′ ×

×
∫ π

0

∫ 2π

0

exp

[
−sin2 θ ′

σ2
− ε0 sin

2 β ′
]
sin β ′dα ′dβ ′. (S23)

The integrals in Eq. (S23) can be evaluated numerically, although an analytical solu-
tion is possible for several limiting cases. Dividing ⟨F ⟩ in Eq. (S23) by F0 one obtains
the relative magnetic field mediated signalling yield of cryptochrome (magnetic filter
function), which is an important quantity because a sensory system of a bird likely
detects relative changes in biochemical processes rather than the absolute values. The
magnetic filter function is determined by the orientation of the external magnetic field
defined by the angles Θ and Φ and varies at different sites of the retina, characterized
by the angles α and β

⟨F (α, β,Θ,Φ)⟩ =

∫ π

0

∫ 2π

0
exp

[
−(1− cos2 θ ′)/σ2 − ε0 sin

2 β ′] sin β ′dα ′dβ ′

2π
∫ π

0
exp

[
−ε0 sin

2 β ′
]
sin β ′dβ ′ .(S24)

σ is defined in Eq. (S16), which is not substituted into Eq. (S24) for the sake of
simplicity.

Repetitive cryptochrome activation increases acuity

Suppose that cryptochrome, like many other sensory proteins, affects a signalling
cascade, which results in the activation of specific molecules, which in turn perform a
further biological function such as opening or closing an ion-channel. Let N0 be the
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number of activated molecules generated in this step in the absence of the external
magnetic field. The external magnetic field, according to our assumption, reduces
the number of activated molecules, described by the filter function ⟨F (α, β,Θ,Φ)⟩,
defined in Eq. (S24). After the cryptochrome signalling cycle is completed the number
of activated molecules in the magnetic field mediated step of the transduction reaction
is then

N1 = N0⟨F (α, β,Θ,Φ)⟩. (S25)

The termination of cryptochrome signalling does not necessarily coincide with the
termination of the transduction reaction. Before the latter reaction is actually com-
plete, cryptochrome may get activated a second time, further quenching the number
of activated molecules in the magnetic field mediated step of the transduction reaction

N2 = N1⟨F (α, β,Θ,Φ)⟩ = N0⟨F (α, β,Θ,Φ)⟩2. (S26)

In general, cryptochrome activation may occur η times, thereby significantly changing
the number of the activated molecules in the magnetic field mediated step of the
transduction process, according to the expression

Nη = Nη−1⟨F (α, β,Θ,Φ)⟩ = N0⟨F (α, β,Θ,Φ)⟩η. (S27)

The number Nη of activated molecules defines the efficiency, defined as
Nη

N0

= I(α, β) = ⟨F (α, β,Θ,Φ)⟩η, (S28)

of a cryptochrome-containing receptor cell. I(α, β) measures to which extent the
cell characterized through its retinal position (α, β) contributes to the retinal im-
age. I(α, β) is measured in arbitrary units varying between 0 and 1, reflecting the
modulation level of the virtual visual image in a bird’s eye by the magnetic field.

From Eq. (S24) and Eq. (S28) follows that at a fixed orientation of the magnetic
field the varying (with α, β) efficiency of the cells in the retina (due to the varying
relative orientation of the magnetic field relative to the local cryptochromes) leads to
a formation of a disc-shaped virtual visual pattern in the bird’s field of view. Size
and intensity of this pattern are related to the acuity of the vision-based magnetic
compass. Let Imax and Imin be the maximal and the minimal values of I(α, β),
respectively. Then the maximal variation of the magnetic field mediated pattern, A,
is

A = Imax − Imin. (S29)

The modulation level of the visual signal through the magnetic field, defined in
Eq. (S28), allows one to determine the total variation, S, of the magnetic field medi-
ated pattern defined as

S =

∫ 2π

0

∫ π/2

0

(I(α, β)− Imin) sin βdβdα. (S30)

According to this definition holds 0 ≤ S ≤ 2π. Another important characteristic
of the magnetic filter function is the size of the magnetic field mediated disc-shaped
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pattern at half intensity, ∆Ω, which can be calculated numerically as the solution of
the equation

A

2
= I (Ωmax −∆Ω/2)− Imin, (S31)

where Ωmax = (α, β)max denotes α and β at which I(α, β) reaches its maximal value
and where A is the maximal intensity of the magnetic field mediated pattern defined
in Eq. (S29). The quantities A, S, and ∆Ω in Eqs. (S29-S31) define the acuity of the
visual-based compass. A is the measure of the maximal intensity of the magnetic field
mediated pattern (increasing A leads to an increase of the magnetic field mediated
signal in the retina), S indicates to which extend the retina is influenced by the
magnetic field and ∆Ω defines the size of the magnetic field mediated pattern. A
small value of ∆Ω corresponds to a well localized magnetic field mediated spot on
the retina, allowing a bird to resolve the magnetic field better than in case of a large
spot, i.e., large ∆Ω.

Mapping of the magnetic field mediated pattern to the visual
field

The position of the magnetic field mediated pattern in the retina is defined in Eq. (S9)
by the angle θ ′ (see Fig. 3), which in turn is Φ and Θ dependent. The angles Θ and
Φ change upon bird rotation in the horizontal plane, causing the displacement of the
magnetic field mediated pattern mapped to the animal’s visual field.

Let the angle ω characterize the turn of a bird heading with respect to magnetic
North as shown in Fig. S2a. Thus, the Cartesian components of the vector B⃗ in the
(X, Y, Z) coordinate frame change according to

B⃗ ′ = RyB⃗, (S32)

where Ry is the rotation matrix, which describes the rotation of the (X, Y, Z) coor-
dinate frame (see Fig. 3) around the Y -axis

Ry =

 cosω 0 − sinω
0 1 0

sinω 0 cosω

 . (S33)

Substituting Eq. (S5) and Eq. (S33) into Eq. (S32) one obtains

B⃗ ′ = B0(− cosΘ sinω + cosω cosΦ sinΘ, sinΘ sinΦ,

cosω cosΘ + cosΦ sinω sinΘ). (S34)

Let Θ0 and Φ0 be the reference angles of B⃗ in the (X, Y, Z) coordinate frame (see
Fig. 3d), corresponding to a bird flying towards magnetic North. According to this
definition Θ0 is the inclination angle of the magnetic field vector and Φ0 is given by
Φ0 = π/2, allowing one to rewrite Eq. (S34) as

B⃗ ′ = B0(− cosΘ0 sinω, sinΘ0, cosΘ0 cosω). (S35)
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Equation (S35) and Eq. (S5) give the Cartesian coordinates of B⃗ in the (X,Y, Z)-
coordinate frame as a function of (Θ0, ω) and (Θ,Φ), respectively. Equating the

components of B⃗ in both equations results in

sinΘ cosΦ = − cosΘ0 sinω (S36)

sinΘ sinΦ = sinΘ0 (S37)

cosΘ = cosΘ0 cosω. (S38)

Substituting Eqs. (S36-S38) into Eq. (S9) one obtains
cos θ ′ = −z ′

X cosΘ0 sinω + z ′
Y sinΘ0 + z ′

Z cosΘ0 cosω, (S39)

where z ′
X , z

′
Y , z

′
Z are defined in Eqs. (S10-S12).

A pattern on a sphere can be conveniently mapped to a plane by the so-called
Miller cylindrical projection (9), in which a spot on the sphere with longitude λ and
latitude ϕ is mapped to a spot with coordinates (x, y) defined through the relation-
ships

x = λ (S40)

y =
5

4
ln

[
tan

(
π

4
+

2

5
ϕ

)]
. (S41)

The Miller projection can be used to map the magnetic field mediated pattern in the
retina to the visual field of a bird. Hence, λ and ϕ characterize different spots in
the retina as illustrated in Fig. S2b. The coordinates (λ, ϕ) are related to the Euler
angles (α, β), defined in Fig. 3b, as

cos β = cosϕ sinλ (S42)

sin β =
√
1− (cosϕ sinλ)2 (S43)

cosα = − cosϕ cosλ√
1− (cosϕ sinλ)2

(S44)

sinα = − sinϕ√
1− (cosϕ sinλ)2

. (S45)

Here λ ∈ [0 · · ·π] and ϕ ∈ [−π/2 · · ·π/2] describe different spots on the retina
(see Fig. S2b). According to Eqs. (S40-S41), the coordinates of different points of
the visual field are measured in arbitrary units, such that x ∈ [0 · · ·π] and y ∈
[−2.303 · · · 2.303].

Substituting Eqs. (S42-S45) into Eqs. (S10-S12) and the resulting equations into
Eq. (S39) one obtains cos θ ′ as a function of ϕ, λ, Θ0, ω, α

′ and β ′. Finally, substi-
tuting cos θ ′ into Eq. (S24) one obtains ⟨F (Θ0, ω, λ, ϕ)⟩, which in turn allows one to
rewrite I(α, β) in Eq. (S28) as I(Θ0, ω, λ, ϕ).

I(Θ0, ω, λ, ϕ) describes the modulation level of cells in the retina by a magnetic
field characterized through the coordinates (λ, ϕ), which can be expressed as a func-
tion of the coordinates (x, y) in the visual field through
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λ = x (S46)

ϕ =
5

2

(
arctan [exp (4y/5)]− π

4

)
. (S47)

Substituting Eqs. (S46-S47) into I(Θ0, ω, λ, ϕ) allows one to calculate the modulation
level of the visual field through the magnetic field mediated pattern in the retina.
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Figure S1: Cryptochrome signalling yield due to a magnetic field strength of 0.5 G. (a)
shows the orientational dependence of cryptochrome activation yield in the external
magnetic field, as determined in (3). (b) shows the relative duration of cryptochrome
dark reaction as established in (4).
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Figure S2: The angle ω characterizes the turn of a bird with respect to magnetic North
(a). ω = 0◦ corresponds to the the bird flying directly towards magnetic North. (b)
shows schematically the inverted projection of a visual field onto the retina of a bird’s
eye. The longitude and latitude coordinates (λ, ϕ) are indicated for several points on
the retina. The (X, Y, Z) coordinate frame, associated with the retina, is also shown.
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Figure S3: Modulation of the visual field through the geomagnetic field for a bird
flying at day time. The modulation patterns correspond to that shown in Fig. 5
and are calculated for different wiggling regimes of cryptochrome, characterized by
the parameter ε0 (see Eq. (5)): (a) ε0 = 100 (wiggling with small amplitude); (b)
ε0 = 10; (c) ε0 = 3; (d) ε0 = 1 (wiggling with large amplitude).
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Figure S4: Modulation of the visual field through the geomagnetic field, evaluated
as in Fig. 5, for a bird flying at day time, calculated for ε0 = 3, assuming different
numbers of cryptochrome activation cycles: (a) η = 1; (b) η = 2; (c) η = 3; (d) η = 5.
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Figure S5: Nighttime panoramic view at Frankfurt am Main, Germany, modified
through the magnetic filter function defined in Eq. (S24). The modulation patterns
have been evaluated as in Fig. 5.
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