Control of pneumatic robot arm dynamics by a neural network
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Abstract

The trajectory control of a pneumatically driven robot arm resembing a skeletal muscle system is
studied. The arm dynamics have been shown to be hysteretic and significantly changing in time due to

external influences (Hesselroth et al., IEEE Systems, Man and Cybernetics, in press) thus requiring an
adaptive controller.

A highly adaptive feedback algorithm is suggested and shown to control accurately trajectory following
tasks,

1 Introduction

When a robot system is designed, the focus generally is a design such that friction, gravity, and payloads can
be practically neglected. Therefore, robots are built extremely stiff (i.e., non-compliant) and are equipped
with joint actuators which are strong enough to overcome threshold friction, position-dependent gravity, and
payloads. The merit of such an approach is that relatively simple control algorithms can be used to position
the end-effector with high accuracy.

However, apart from the high cost of such robot systems, their large strength makes their use in en-
vironments where humans operate, such as hospitals and household environments, too dangerous. In our
research, we concentrate on a new type of robot whose actuators are rubber tubes called rubbertuators,
which are modeled after skeletal muscle systems. The rubbertuators have a high force-to-weight ratio and
are very compliant, such that the robot is safe for operation in direct contact with human operators. In a
previous publication [1], we have investigated a visuo-motor coordination system to control the end-effector
positioning of this robot arm. Although accurate positioning is possible, the trajectory of the robot arm
which connects one endpoint to another is uncontrolled and oscillatory, and completion takes a relatively
long time, i.e., about 30 s.

In this article, we introduce a neural feedback system to train the robot to follow a prescribed trajectory
in real time. The system coarsely learns to follow the trajectory within a few trials, and reaches accurate
positioning after several tens of trials.
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Figure 1: An agonist-antagonist rubbertuator pair connected via a chain, controlling the rotation of a joint.
For joints 1, 2, and 3, each agonist as well as antagonist actuator consists of a pair of rubbertuators.

2 The robot system

The dynamic behaviour of any n degree of freedom robot arm can be described by the equation [2]
7= M()6 + B(®) [66] + C(0) [6?] + F(8,6) + G(6) 1)

where 7 is an n-vector of torques exerted by the links, and ©, ©, © are n-vectors denoting the positions,
velocities, and accelerations of the joints. [éé)] and [@2] are vectors

[66] = [6162,616s,... 6uaba] , [67] = [62.62... 62", @)

M(©) is the matrix of inertia, B(®) is the matrix of Coriolis coefficients, C(©) is the matrix of centrifugal
coeflicients, F(©, ©) a friction term, and G(®©) the gravity working on the joints.

Industrial robots are generally designed to eliminate the interdependence between the joints, such that
the robot arm can be regarded as n independent moving bodies. In that case, M and C are diagonal matrices
and B is zero. This reduces the 3n-valued vector field as described by eq. (1) to n independent functions
of three variables for which the coefficients have to be found. Also, the link actuators are usually made so
powerful that M, C, F, and G can be considered independent of ©. Thus, eq. (1) is reduced to n independent
equations for which simple control methods suffice [3].

However, such simplifications cannot be made for the rubbertuator robot arm. The M, B, C, F, and G
are now functions of ©, and due to the physical properties of rubber change considerably in time. For that
reason, we concentrate on designing an adaptive neural method to control the robot in a feedback loop.

2.1 The rubbertuator Soft Arm

The robot we use, which has been manufactured by Bridgestone Corporation of Tokyo, is a four-link an-
thropomorphic manipulator with five degrees of freedom. Its pneumatic actuators, consisting of two or four
rubbertuators, are arranged in agonist-antagonist pairs. The rubbertuators are relatively light, such that
the arm only weighs 12 kg and can lift 3 kg. Figure 1 shows a rubbertuator agonist-antagonist pair for
controlling one joint.

The manufacturer specifies the force F; exerted by a rubbertuator j at pressure P; and elongation ¢; as

Fj= P7D (“1(1_51) ‘bj)' (3)

Here, D; is the diameter of the rubbertuator before displacement, and a; and b; are tube-specific constants.

The robot can be controlled in position control mode or pressure control mode. In position control mode,
an internal PID controller [2] is used for positioning the joints of the robot. Obviously, this can only give
very coarse positioning, and our measurements show that the feedback makes all joints of the arm oscillate
with an amplitude of about 1°, never reaching the desired position accurately. In pressure control mode, each
rubbertuator can be given a desired pressure. An internal feedback mechanism will then realise this pressure.
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Figure 2: The neural robot control system in a feedback loop with the robot.

However, from eq. (3) it can be seen that the resulting force not only depends on the new pressure, but also
on the previous diameter; therefore, the pressure-force and hence pressure—position relation is hysteretic.

Secondly, the use of rubber tubes in a pneumatic system results in non-negligible temperature effects.
Rubber is a good insulator, such that temperature changes due to the repeated contraction and expansion, as
well as temperature influences from the environment, are only gradually accommodated to. The temperature
of the tube has a strong effect on the expansion of the air enclosed in it. In accordance with these observations,
we measured a joint rotation in the order of 0.5-1° after the desired pressure has been attained, over a period
of 200 seconds.

From these observations, it is clear that an adaptive controller is required to obtain accurate positioning
with the robot arm.

3 Controller structure

When two rubbertuators with property (3) are combined into one actuator, the torque 7 exerted on the
sprocket is

T=7(P~ P)0® + 12(P1 + P2)8 + v (P — P2) (4)

where 0 is the current joint angle and 71, ¥, and 73 are constants depending on ay,2, b12, D12, and the
sprocket radius. The dependency on D means that D must be a parameter of the system. Since we do
not have D readily available, we choose Py 3 before displacement, which, together with @, contains the same
information.

The task of the robot controller is to generate pressures P;(t) for the first muscle of a joint, such that a
specified trajectory (9¢(t), éd(t), éd(t)) is followed. The ‘stiffness’ P, + P, is always kept constant, such that
the pressure from the second rubbertuator can be derived from the first.

The robot control system, which is depicted in figure 2, receives values 0(t) from the robot at intervals
of approximately 20 ms. In order to obtain a estimates of § and § which are not too much noise-sensitive,
these values are fitted to orthonormal polynomials following an incremental algorithm described in [4, 5].
Thus we can, with some accuracy, find 6, 8, and 6 at each desired time. ) .

The measured pressure P (t), 6(t), 0(t) and 6(t), and the desired 84(t), 64(t), and 64(t) are input to the
neural network. The network then generates a target pressure P(t + At) which is sent to the robot. The
obtained rotation, after the pressure change has been applied, is used as a new learning sample.

3.1 Network structure

The whole control system consists of two programs running on two processors. One program gathers the
data from the robot and calculates the joint velocity and acceleration. These data are transmitted to the
neural network. The neural network is a feed-forward network trained with conjugate gradient optimisation
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Figure 3: Training the system on a sin(t) cos?(11t) wave. The solid line is the target trajectory, the dotted
line the realised trajectory. Initially, the trajectory is reasonable followed where velocity is constant; after
only 16 trials, the whole trajectory is followed with an average error of 0.1°.

with Powell restarts [6]. Newly generated samples are continuously added to the bin of available samples,
upon which minimisation is performed.

4 Results

The system, with no a priori knowledge, is trained on a trajectory sin(t) cos?(11t). Initially, the trajectory is
only followed very coarsely. After 16 trials, however, accurate trajectory following is obtained, with an error
of 1° near the extrema, and less than 0.1° on the slope (see figure 3).

5 Conclusions

Is has been demonstrated that the Bridgestone rubbertuator SoftArm can be controlled with an adaptive
feedback mechanism to do trajectory following. First results, when the robot is controlled at a moderate
speed, show that the network is capable of following the trajectory accurately after a short period of learning.

To follow trajectories at a higher speed, more testing is necessary. Also, we have started the investigation
into the simultaneous control of multiple joints of the SoftArm.
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