PERFORMANCE ANALYSIS OF A
PARALLEL MOLECULAR DYNAMICS
PROGRAM

Amitabh B. Sinha
Department of Computer Science
University of Illinois
Urbana, IL 61801

Helmut Heller* Klaus Schulten
Beckman Institute and Department of Physics

University Of Illinois
Urbana, IL 61801

July 13, 1992

‘Abstract

EGO is a parallel molecular dynamics program running on Transputers. We con-
ducted a performance analysis of the EGO program in order to determine whether
it was effectively using the computational resources of Transputers. In particular, we
were concerned with whether communication was overlapped with computation, so
that the overheads due to communication not overlapped with computation were less.
With the assistance of performance tools such as UPSHOT, and with instrumentation
of the EGO program itself, we were able to determine that only 8% of the execution
time of the EGO program was spent in non-overlapping communication. Our next con-
cern was that the MFLOPS rating of the EGO program was 0.25 MFLOPS, while the
Transputers have a sustained rating of 1.5 MFLOPS. We measured MFLOPS rating
of small blocks of OCCAM code and determined that they matched the performance
of the EGO code. |

1 Introduction

A main aim of molecular biology is to understand the structure-function relationship of
biological polymers, mainly proteins and nucleic acids. In the past decade it has become

*To whom correspondance should be sent

evident that the function of a biopolymer is dependent on properties other than its static
structure, such as thermal mobilities of atoms, activated motions of constituent groups,
local electric fields and dielectric relaxation [1, 2, 3, 4, 5, 6]. These properties are often
very difficult to measure experimentally even for small subsections of biopolymers, let alone
for the whole polymer. It appears that the required information can be obtained only by
computer simulations of biopolymers. The prospects of computer simulations in molecular
biology rest on the availability of suitable computer resources. In fact, simulations until
now are limited to rather small biopolymers (of a few thousand atoms) and short simulation
periods (of a few nanoseconds). Furthermore, the cardinal issue of a faithful representation
of biopolymers by computer simulation is closely linked to the availability of computational
resources: realistic descriptions of forces acting between the constituents of biopolymers, e.g.,
a proper description of Coulomb forces without ‘cut-off’, require enormous computer time;
simulations must also represent enough of the surrounding medium, e.g. lipids of biological
“membranes and water, in order to achieve realistic descriptions.

Computer simulations are faced with a serious computational barrier which can be illustrated
by the following estimate of the requirements on computer time: In order to determine the
forces between all atoms of a protein with 12 600 atoms, i.e., of the photosynthetic reaction
center of Rhodopseudomonas viridis, without ‘cut-off’, about 98 s on a Cray X-MP are
needed [7]. Since the forces have to be re-evaluated at each integration step, the size of
which has to be chosen 1 fs or shorter, a simulation describing a period of 1 ns requires
at least one million steps, i.e., more than 1,000 days of Cray time. A ‘cut-off’ of pair
interactions to 10 A reduces this time to about 19 days, but one may question the soundness
of such cut-off. . The numbers illustrate a well-known point, namely, that computational
requirements for molecular dynamics simulations are prohibitive and, for many problems,
exceed all available means. This situation can be improved by employing parallel computers
to simulate biopolymers. Parallel machines have speeds similar to those of much larger
conventional vector machines at a small fraction of their cost. The parallel strategy has made
the method of computer simulations accessible to many researchers, and allows simulations
of larger systems as well as of more realistic (and computer time consuming) force models.

At present, the computational speed, even of parallel computers, is far from what is needed
to solve many typical problems in structural biology, e.g., the description of biochemical
reactions lasting longer than 1 us, or the protein folding problem [8]. More powerful parallel
machines, like the Intel Paragon [9] or Thinking Machines’ CM-5 [10] promise to achieve Tera-
FLOPS performance and allow one to carry out simulations currently beyond reach. It is
essential, however, not only to demand faster hardware, but also to optimize the software for
optimal performance. This optimization is two-fold: on the one hand, new algorithms [11,
12, 13, 14] can bring considerable performance improvements, while on the other hand a
careful analysis and tuning of the code at hand avoids a wastage of the available processing
resources. This motivated us to conduct a performance analysis of the communication-
computation structure of the parallel implementation of a molecular dynamics program to
determine whether further improvements in performance could be achieved by tuning the
program. This is especially important for parallel programs. Due to the nature of parallel
programs which almost always involve communication, in some form or the other, we have
not only to look out for the common pitfalls of sequential programs, e.g., evaluating constant

2

expressions, but in addition we have to check for proper parallelization, e.g., load balancing,
deadlocks, minimization of communication time.

This report on how such performance analysis was carried out should be useful to other
researchers in the area of parallel molecular dynamics simulations and in other areas solving
difficult computational problems on parallel computers in as much as it would give them
directions in conducting a performance analysis of their code to determine the optimality of
the code. :

In this paper we summarize our performance study of the molecular dynamics program,
EGO, running on Transputers [15, 7, 16, 17]'. In Section 2 we present an overview of the
computation involved in the EGO program and the block structure of the EGO program.

In Section 3.1 we carry out a performance analysis of EGO, and in Section 4 we present our
conclusions.

2 The Program EGO

2.1 Computational Task Involved

In molecular dynamics simulations a large fraction of the computing time is spent in the
evaluation of Coulomb forces. This part of the code therefore presents the best opportunities
for algorithmic speed-ups. Hence, we are mainly concerned with the computation of Coulomb
and van der Waals forces, both involving O(NN?) floating point operations, where N is the
number of atoms in the molecule?. Since the van der Waals forces are computationally very
similar to the Coulomb forces, we examine only the evaluation of Coulomb forces.

i]

origin

Figure 1: The vectors 7; and 7; are with reference to the origin; ;; is the difference
vector.

The Coulomb forces, which describe the electrostatic interactions in a homogeneous dielectric
environment depend on the charges ¢; and g; of pairs (4,j) of atoms and on the corresponding
vector 7j; = 7; —7; joining the atoms at positions 7; and 7; (see Figure 1). The force between
atoms 7 and j acting on atom i is
5 GgiTy ' 1
Y dmerd : (1)

1The Transputer system is an MIMD machine, similar to an Intel hypercube or a network of workstations.
2f(n) = O(g(n)), iff there exist two positive constants ¢ and no such that | f(n) |< ¢ | g(n) | for all
n2ng [18]

The force between atoms ¢ and j acting on atom j is

Fji=-Fyj .. (2)
On a given atom the Coulomb forces of all other atoms act, i.e., the total Coulomb force
acting on an atoms i is F: = Yizj Fi ij- It is, therefore, necessary to determlne F,J for all pairs
of atoms. There are N(N — 1)/2 pairs for a total number N of atoms. Using Newton’s law,
Equation 2, it is not necessary to compute both F and FJ,, therefore it is possible to cut
down the computation time to about one half by avmdmg redundant computations.

2.2 Parallelization of Computational Task

The interactions between any pair of atoms are mutually independent. On a parallel com-
puter that supports fine grained tasks each one of these interactions could be dealt with
as a computational sub-task. In this investigation we want to study the performance on
a Transputer-based MIMD type machine which is not efficiently used in the limit of very
fine computational granularity. Rather, the Transputer is more efficient for medium grained
sub-tasks. Hence, we distribute the atoms of a biopolymer over the available set of proces-
sors, each processor computing the interactions corresponding to the set of atoms local to
it, typically about a thousand atoms.

The atoms assigned to a specific Transputer will be referred to as the ‘own’ atoms of that
Transputer, all other atoms are the ‘external’ atoms. For a discussion of the computational
task of a processor we separate the Coulomb forces into two contributions

Fo= qiq;Tij Qi QT ' (3)

- 3 3
own’ | 471'61",] ‘external’ 47T€T,k
atomsj atoms k

&,

f',- is the force which acts on atom 7 ‘owned’ by the processor. In order to evaluate the first
contribution the processor needs to know only the coordinates of its ‘own’ atoms j. The
second contribution, however, requires knowledge of the coordinates of all ‘external’ atoms
k. Each individual term of the second sum is referred to as a partial force. These coordinates
are passed around the processors in such a way that any tlme coordinates pass by, a processor
uses them to complete computation of the total force F: that acts on its ‘own’ atoms. The
machine topology optimal for the required communication is the systolic loop. The topology
is discussed in the next section.

2.3 Topology of the Transputer System

The systolic ring topology [19, 20, 21, 7], employed in our machine is depicted in Figure 2,
provides the communication channels needed for the ring of processors. The sytolic loop
consists of two rings, such that each processor is connected twice to its left and right neigh-
bors.

In Figure 2 the first ring is used to circulate the coordinates of the atoms in a clockwise
fashion. By applying Equation 2 it is possible to cut down the computation time to about
one half by avoiding redundant computations. This leads to the necessity of communicating
partial forces along the second ring in a counter-clockwise fashion.

4

network Transputer
host Transputer w\’

S

first ring ———/

Figure 2: Schematic diagram of the systolic ring topology of the Transputer system
used in the EGO program.

2.4 Program Flow in EGO

Figure 3 shows the program flow in EGO. The overall structure of the simulation program
is a loop over the computational cycle (initialize — integration, Fig. 3). A cycle starts
at the moment when the program has just completed an integration step, yielding a new
set of coordinates. The computational cycle then uses these coordinates to determine the
forces acting on the atoms. When these forces are determined the Newtonian equations are
integrated for a time step At and a new computational cycle is started.

In a first step (7 — 8, Fig. 3) each node starts computation of the forces F; = Y F‘,-j acting

on its ‘own’ atoms ¢ beginning with the contributions of pair interactions F}j originating from
all of its ‘own’ atoms j. In parallel with this computation3, each node hands the coordinates
of its ‘own’ atoms to its next neighbor in clockwise direction and receives the coordinates of
atoms ‘owned’ by its other neighbor (5 — 6, Fig. 3). Each node keeps its ‘own’ coordinates
in store.

The simulation program then carries out repeatedly the following steps (9 — 10, 11 — 12,
13 — 14 and 15 — 16, Flg 3). On the basis of the coordinates just received each node
evaluates pair interactions F,J for the corresponding set of ‘external’ atoms (11 — 12, Fig. 3),
and adds the results to the forces F; (15 — 16, Fig. 3). As explained above, at this point the
nodes may avoid evaluating interactions of pairs (i, j) which previously have been evaluated
for the opposite ordering of atoms, namely (4,), by a node which ‘owns’ atom j. For this
purpose forces, too, need to be communicated along the ring of computational nodes. After
adding all possible contributions to F: the ‘external’ atoms are passed by each node to its
neighbor next in clock-wise direction (13 — 14, Fig. 3), and new ‘external’ coordinates are
received from its neighbor next in counterclock-wise direction (9 — 10, Fig. 3).

These steps are repeated until each node receives its ‘own’ coordinates again, at which point

3Communication and computation can be overlapped on the same node in a Transputer system, because
communication is carried out by a DMA-engine, while computation is carried out by CPU/FPU unit. The
CPU/FPU unit and the DMA-engine are independent units.

5

-

2
router

start
b} “u
force item coll
28 26
injtialize integration
Vo Vo
H (4 17, i8
3 [l 4
Hom —enitialize _,. calc o (final finisl
generator 2 22

19! 2%
add-forces

Figure 3: This figure shows the program flow in EGO. The code segments perform-
ing communication are executed in parallel with some computational code segments.
Various initializations are carried out in each integration step in stages 3 — 4. In stage
7 — 8 forces between ‘own’ atoms are computed with the simultaneous transfer of ‘own’
atoms to the neighbor, step 5 — 6. In the nezt stage loop, each processor computes
the interactions between its ‘own’ atoms and each set of ‘external’ atoms (11 — 12),
and simultaneously communicates its current set of ‘external’ atoms to its neighbors
(9 — 10). ‘Also, in the nezt stage there occurs the transmission of partial forces and the
addition to the forces maintained by each processor (13 — 14 and 15 — 16).

this loop is terminated. The strategy outlined keeps all computational nodes busy at all
times except for periods when some set of nodes may have to wait for another set of nodes
to complete their computations. However, these periods can be kept very short as long as
all nodes ‘own’ nearly the same number of atoms.

3 Performance Analysis of EGO -

3.1 Distribution of Execution-Time Among Program Segments

The first step in analyzing performance is to determine the parts of the program, which
account for most of the execution time. Once that is done these parts can be examined more
carefully to detect and eliminate performance bottlenecks.

The first few integration steps in the EGO program are disk i/o bound (this consists of

6

reading in and distributing the atoms of the molecule onto the processing elements of the
Transputer system), and are therefore not representative of the execution pattern of the later
integration steps. The results from other, later, integration steps, presumably not affected
by the ifo in the first few steps, were very uniform. We, therefore, arbitrarily chose the
thirty-first integration step as a representative integration step for our analysis. Table 1
shows the break-up of the execution time for the thirty-first integration step for the protein
BPTI (Bovine Pancreatic Trypsin Inhibitor) with 568 atoms on a Transputer system with
25 processors. The third column is the average of the number of timer ticks (1 timer tick
= 64 microseconds) spent executing that code segment on all the processors, and the fourth
column shows the standard deviation from this average.

Program Code Average Standard | Percent
Phase Segment | Timer Ticks | Deviation | Deviation I
initial 3—4 736.9 11.8 1.6

first 5—6 247.0 28.4 11.5
7—8 504.0 244 4.8

next 9—10 6735.2 565.5 8.4

11 — 12 5082.0 1000.1 19.7

13— 14 253.0 16.5 6.5

15 — 16 277.6 6.5 2.3

final 17 — 18 236.5 150.8 63.8

19 - 20 1802.7 449.8 249

finish 21 — 22 20.1 5.0 24.8
integration | 25 — 26 70.0 7.0 10.0

Table 1: This table shows the split-up of time among the various code segments (and
their corresponding phases in the execution of the EGO program) for the thirty-
first integration step. The first two columns show the program phases and the code
segments, respectively. The phase names and the code segment numbers are with
reference to Figure 3. The third column shows the number of timer ticks (averaged
over 25 processors) spent in executing that code segment, the fourth column shows the
standard deviation from the average time in timer ticks, and the fifth column shows
the deviation as a percentage of the average time.

Table 1 shows that the nezt phase (the loop over the stage 9 — 16) contributes the most to
the execution time. The reason for the pre-dominance of the next stage is that it is in this
stage that each processor computes pair-wise interactions between its ‘own’ set of atoms and
each of the other ‘external’ sets of atoms.

3.2 The next Phase

In the previous section we have determined that a majority of the execution time was spent
in the next stage. In the next stage there is a significant amount of communication — the

7 J

sending and the receiving of coordinates and forces from each processor to and from its right
and left neighbor, respectively, in the ring topology. In this section we take a more detailed
look at the computation and communication in the nezt phase.

usend coordinates %

37
recv coordinates

39send forces

communication .,

41
recv forces

add-forces 16

11 12
computation

iterate for ail the non-local pairs

Figure 4: In the nezt phase loop, each processor computes interactions between its ‘own’
set of atoms and each of the ‘external’ sets of atoms(11 — 12). Simultaneous with the
computation of interactions each processor is carrying out a significant amount of
communication — sending its current set of ‘external’ atoms to the next neighbour in
the ring (35 — 36), receiving its next set of ‘external’ atoms from its predecessor (37 —
38), sending partial forces of the previous set of ‘external’ atoms to next neighbour
(39 — 40), and receiving partial forces on its current set of ‘external’ atoms from its
predecessor (41 — 42).

Figure 4 provides a detailed view of the nezt stage. The nezt phase is repeated for all
‘own’ and ‘external’ pair combinations, avoiding duplication of efforts in the computation of
~ the interaction forces between atoms ¢ and j. Stages 35 — 36 and 37 — 38 represent the
sending and receiving of coordinates between a processor and its successor and predecessor,
respectively. Similarly, stages 39 — 40 and 41 — 42 represent the sending and receipt of
forces between a processor and its successor and predecessor, respectively. The computation
of the pair-wise interaction between a processor’s ‘own’ set of atoms and the currently residing
‘external’ set is done in stage 11 — 12. Stages 13 — 14 and 15 — 16 do not take much time,
and are thus not important for this analysis (the execution times for these stages appear in
Table 1).

Table 2 shows the time spent by EGO in executing the various sub-segments of the next phase.

8

It can be determined from the table that both the computation and communication times
are significant. What is not apparent from this table is to what degree the communication
time is overlapped with the computation time. In the following section we look at some
performance tools that provide a visual representation of the nezt phase.

Code Average Standard
Segment | Timer Ticks | Deviation
11 - 12 5082.0 1000.5
35— 36 3508.6 935.6
37 — 38 3270.9 812.7
39 — 40 4872.0 775.6
41 — 42 4853.9 1136.2

Table 2: This table shows the split-up of time among up the various code sub-segments
of the nezt phase of computation. Some of the sub-segments have been left out, because
their corresponding timings appear in Table 1. The first column shows the code
segments, the numbers are with reference to Figure 4. The second column shows
the number of timer ticks (averaged over 25 processors) spent in executing that code
segment, and the third column shows the standard deviation from the average time.

3.3 Communication Overhead Analysis

We had two choices for a visual tool to look at the execution of the EGO program —
ParaGraph [22], and Upshot [23]. Both ParaGraph and Upshot run under X-Window and
are post-execution tools. They provide displays based on a logfile containing the trace of
the program execution. We describe both these tools briefly and explain our choice for a
computational performance tool.

ParaGraph, developed by Heath and Etheridge at Oakridge National Laboratories, offers a
wide range of analyses — critical path computation, lengths of message queues, concurrency
profile, spacetime diagrams etc. Its primary drawback is that many of the analyses are de-
pendent on the assumption of synchrony in message passing. Message passing synchrony
essentially means that the time for a send on one processor should precede the time for
the corresponding receive on another processor. Since most non-shared memory machines,
including the Transputer, do not have a common clock this poses some problems. For this
purpose an additional tool, PICL (Portable Instrumentation Communication Library) [24],
is provided. PICL implements communication primitives on some non-shared memory ma-
chines in a distributed fashion, and the PICL implementation takes care of synchrony issues.
However PICL is not implemented for Transputers. Therefore, even though ParaGraph of-
fered enviable information about the execution of the program, we opted against it because
without the assistance of PICL it turned out to be very difficult to produce the proper logfiles
for post-execution data analysis. _
Upshot was developed by Herrarte and Lusk at the Argonne National Laboratory. It does not
provide the analyses supported by ParaGraph, but its requirements for the logfiles are much

9

less stringent. Our main concern was to be able to display the execution of the EGO program,
and analyze it for communication overheads. Upshot displays the logfile information either
(or both) as an event trace of the program over all processors over time or as a trace of states
of the program on all processors over time, where a state has a beginning and a closing event.
We chose Upshot as the performance tool, because its logfiles could be easily generated by
checkpointing critical points in the EGO program.

The local clocks of the processors of the Transputer system are reset at the beginning of
every program execution. This provides sufficient synchrony between the clocks local to
each Transputer to properly order events during data analysis, since the drift of the clocks
over our performance runs (10 minutes wall clock time) was small enough — less than 2-3
timer ticks. This approximate synchrony is necessary if we are to make any sort of relevant
analysis of overlaps of communication and computation on a processor and the overlap of
the iterations of the next phase over all the processors.

The trace information was generated by clocking the events marked in the flow chart of
Figure 3 and the diagram for the nezt stage in Figure 4. Information was stored in local
buffers while an integration step was being performed. At the end of the integration step
data was written out to the host processor. This way no additional communication during
an integration step was introduced which would have disturbed the execution pattern of
EGO. The generality of the UPSHOT program allowed a very simple clocking mechanism
to generate the desired trace for runs of the EGO program.

UPSHOT displays only one event for each processor. To monitor concurrency of execution
of two events on the same processor, one can adopt one of the following methods:

o The first approach is to simultaneously display the communication and computation in
the next phase in two separate UPSHOT runs. This can be done by having two separate
log-files, one containing just communication events and the other computation events
(or more trivially by having the same log-file, and displaying only the appropriate
states).

o The other approach is to split the events occurring on one processor into communication
and computation events, and displaying them on different virtual processors in the same
UPSHOT run.

The UPSHOT views for communication and computation are displayed in Figure 5, the
upper picture showing the communication and the lower picture showing the computation in
the nezt phase. A qualitative idea about the overlap of computation and communication can
be obtained from these figures. We also determined the percentage of time spent exclusively
" in communication, i.e., the amount of wasted time. We describe below the corresponding
procedure to determine this time. .

Each period of communication has a starting event occurring at time, S,,, and a finishing
event occurring at time, F,,. Similarly, each period of computation has a starting event
occurring at time, Sp, and a finishing event occurring at time, F,. We will denote the
periods when communication occurred alone, C, by pairs of these states, e.g., {Sm, Sp}. The
magnitude of non-overlapping communication can be estimated as S, — Sy,. There are six
possible ways in which a pair of communication and computation periods can interleave (the
commas separate the events in the order they occur):

10

Zoom—out Zoom—in Display Options State Definition Reset Quit
Page view A 100 f11e:
Craph view y y - datas
Zoomstep: D01 oot 00t x oo o008 bq oo state file:
datal.stg
Load

EdgeNiose

RARRRRS
comp-send

"ABRRANDOYD
AGcsmeumvns ey

time in milliseconds

Zoom-out) Zoom—in Display Options State Definition Reset Quit
— Y .
— Log file:
State file:
data2.sts
Load

EdgeWise

(RARRERR
computatior

(T LYY RRFER]
ASceRuUNNNZEI* BRI RINNRZSSEY

time in milliseconds

Figure 5: These figures present the UPSHOT views of communication and computation
in the nezt phase of the EGO program.

11

—

- (Sm> Finy Spy F,): C = {Spm, Fu}.

N

. (Sp, Fp, Sy Fin): C = {Sim, Fin}.

w

. (Sps Sy Fony Fy): C = 0.
4. (SmySp) Fny Fp): C = {Sm, Sp}

ot

. (Sps Sms Fyp, F): C = {F,, Fm}.
6. (SmsSps Fp, Fin): C = {Smy Fim}.

A record of communication and computation periods and a knowledge of the above inter-
leavings allows one to estimate the overall non-overlapping communication time, C. We
were able to determine that in the nezt phase 8% of the execution time (averaged over all
the processors) was spent in non-overlapping communication.

3.4 MPFLOPS Achieved

The small fraction of time spent in non-overlapping communication didn’t leave much room
for improvement in the communication overheads of the EGO program. The only issue
that we had not addressed so far were possible improvements of blocks of sequential code.
Our first step in that direction involved measuring MFLOPS rates for segments of code and
comparing them with the rated performance of the Transputers — 1.5 MFLOPS (sustained,
for a 20 MHz part [25]).

The Transputer manuals [25, 26, 27, 28, 29, 30, 31] provides data for number of cycles
taken to execute various floating point operations. The corresponding figures for addition,
subtraction, multiplication, divison and square root of double floating operations are 7, 7,
20, 32 and 80 cycles, respectively. An addition takes 350 nanoseconds?, hence 2.86 million
additions can be done per second. Since the floating point rating of the Transputer is 1.5
MFLOPS, an addition can be taken to correspond to 0.5 floating point operations. Similarly
subtraction, multiplication, divison and square roots are equivalent to 0.5, 1.5, 2.4, and 6.3
floating point operations, respectively.

Armed with the above figures we evaluated the inner loop of the EGO code for its floating
point performance. The MFLOPS rate for this code segment turned out to be a dismal 0.27
MFLOPS. Since there were conditional statements and loops in that program segment, we
conducted tests to determine MFLOPS rates for some other small demonstration programs.
The demonstration programs are shown in Figure 6. .

The execution time for program segments A, B, C, D, and E in Figure 6 were 432, 180, 442,
500, and 2370 timer ticks®, respectively. Using the floating point conversion data determined
earlier on, program segments A, B, and C had MFLOPS ratings of 0.36, 0.87, and 0.35,
respectively. The corresponding MFLOPS rating for E would be 0.57 if we considered the
overheads of the conditional statement, and 0.75 otherwise. We did not compute MFLOPS

4assuming a 50 ns cycle time on a 20MHz Transputer

51 timer tick = 64us

12

REAL64 new, old:
new = 1,0(REAL64)
old = 0.5(REAL64)

SEQ i=0 FOR 10000 new := new + old SEQ i=0 FOR 1000
SEQ new := new - old SEQ j=0 FOR 10
new := new + old new := new + old SEQ
new := new - old new := new - old new := new + old
-..repeat last two steps 9998 times new := new - old
(A) (B) ©)
SEQ i=0 FOR 10000 SEQ i=0 FOR 10000
IF IF
new=1.0 new>old
new := 0.5 (REAL64) new := new'new
new=0.5 newc<old
new := 1.0 (REAL64) new := DSQRT(new)

©) (E)

Figure 6: Code blocks used to measure the MFLOPS performance.

rating for program segment D, but it can be seen from the timings obtained that a conditional
statement can take a considerable amount of time.

The poor MFLOPS performance of these very basic program segments was an indication
that the MFLOPS performance of EGO (the basic structure of EGO being very similar to
program segment C) was not unusual, and would probably need assembly coding to achieve
better performance.

4 Conclusions

In this paper we have traced out the efforts in conducting a performance analysis of EGO,
a parallel molecular dynamics program running on Transputers. The performance analysis
was carried out by generating trace data for a run of the EGO program, and then examining
the data with performance tools such as Upshot, and some of our own routines to measure
communication overheads. We were able to determine that the EGO program did not suffer
from one of the main drawbacks of parallel programs — communication overheads. We were
also able to determine that the poor MFLOPS rating of the EGO program was not unusual
by measuring MFLOPS rates for some small sample program segments. The ratings for these

13

program segments differed considerably from the expected sustained rating of 1.5 MFLOPS
for the Transputers. The MFLOPS rate of these code segments could be improved with
re-coding many of these program segments into assembly language. The drawback of such
codes would be their non-portability.

5 Acknowledgements

This work was supported by the National Institutes of Health Resource Concurrent Biological
Computing under grant number 1 P41 RR05969*01. We thank Rusty Lusk at Argonne
National Laboratory for assistance with the Upshot performance tool. We also thank L. V.
Kale at the University of Illinois for insights into performance bottlenecks and techniques
for analysis of parallel programs.

14

References

[1] M. Karplus, in: Studies in Physical and Theoretical Chemistry, ed. J. L. Rivail (Elsevier
Science Publishers, Amsterdam, 1990) p. 427.

2] M. Karplus and J. A. McCammon, Scientific American 4 (1986) 30.
[3] M. Karplus and J. A. McCammon, Ann. Rev. Biochem. 53 (1983) 263.

[4] C. L. Brooks III, M. Karplus, and B. M. Pettitt, Proteins: A Theoretical Perspective
of Dynamics, Structure and Thermodynamics (John Wiley & Sons, New York, 1988).

[5] J. A. McCammon, B. R. Gelin, and M. Karplus, Nature 267 (1977) 585.

[6] J. A. McCammon and S. C. Harvey, Dynamics of proteins and nucleic acids (Cambridge
University Press, Cambridge, 1987).

[7] H. Heller, H. Grubmiiller, and K. Schulten, Molecular Simulation 5 (1990) 133.
[8] F. M. Richards, Scient. Am. (1988) 54.
(9] Intel Corporation (1991).

[10] The Connection Machine CM-5 Technical Summary (Thinking Machines Corporation,
1991).

[11] L. Greengard and V. Rohklin, J. Comp. Phys. 73 (1987) 325.

[12] L. Greengard, The Rapid Evaluation of Potential Fields in Particle Systems (MIT Press,
Cambridge, 1988).

[13] L. Greengard and W. D. Gropp, A parallel version of the fast multipole method (1988).

[14] L. Greengard and V. Rokhlin, On the efficient implementation of the fast multipole
algorithm (1988).

[15] K. Boehncke, H. Heller, H. Grubmiiller, and K. Schulten, in: NATUG 3: Transputer
Research and Applications 3, ed. A. S. Wagner (IOS Press, Amsterdam, 1990) p. 83.

[16] H. Grubmiiller, H. Heller, A. Windemuth, and K. Schulten, Molecular Simulation 6
(1991) 121.

[17] B. Banko and H. Heller, User Manual for EGO (405 N. Mathews Ave., Urbana, IL 61801,
U.S.A., 1991), [Beckman Institute Technical Report UIUC-BI-TB-92-07).

(18] E. Horowitz and S. Sahni, Fundamentals of Computer Algorithms (Computer Science
Press, Rockville, Maryland, 1989).

[19] N. S. Ostlund and R. A. Whiteside, in: Macromolecular Structure and Specificity:
Computer-Assisted Modeling and Applications, eds. B. Venkataraghavan and R. J. Feld-
man (Annals of the N. Y. Acad. of Sciences 439, New York, 1985) p. 195.

15

[20] W. D. Hillis and J. Barnes, Nature 326 (1987) 27.
[21] A. R. C. Raine, D. Fincham, and W. Smith, Comput. Phys. Commun. 55 (1989) 13.

[22] M. T. Heath and J. A. Etheridge, ParaGraph: A tool for visualizing performance of
parallel programs.

[23] V. Herrarte and R. Lusk, User Manual for Upshot. ¢

[24] G. A. Geist, M. T. Heath, B. W. Peyton, and P. H. Worley, PICL: a portable instru-
mented communication library, C reference manual (1990).

[25] Reference Manual: Transputer Architecture (1987), #72TRN04803.
[26] The ’I‘rénsputer Databook (1989).

[27] IMS T800 Architecture (1987), Technical note 6, #72TCH00601.
[28] IMS T800 Transputer (1987), Preliminary Data, #42108200.

[29] The Transputer Family 1987 (1987), product information.

[30] Reference Manual: Transputer (1985).

[31] IMS T414 Transputer (1987), preliminary Data, #42107801.

16

