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Methods

Table S1: Summary of the different simulations performed to decrypt the chemomechanical cou-
pling in V1–rotor.

Simulation time (µs)

Method TMDa SMWSTb BEUSc MCMDd FEPe

A3B3 0.3 20.0 — — 1.32f

A3B3–DF 0.3 8.0 28.0g 7.0 —

Total 64.92

a targeted molecular dynamics,1 b string method with swarms of trajectories,2 c biased-exchange umbrella sampling,3

d multiple–copy molecular dynamics without exchange, e free-energy perturbation.4,5 f 0.264 µs for each of the five
configurations ATP (t), ATP (b), ATP (e), ADP+Pi (t) and ADP+Pi (e) — see Table S2 for additional detail, g 14 µs
for each of the two configurations for ADP+Pi (b) and ADP+Pi (b), decomposed in 175 images × 20 replicas per
image × 4 ns per replica.

Figure S1: Flowchart of the section titles, summarizing key findings of the computational investigation, to facilitate
navigation through the Results section.
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Table S2: Summary of the standard binding free-energy calculations performed for ATP and ADP
+ Pi bound to the catalytic domain of V1–rotor.

Contribution Simulation time (ns) Free-energy change (kcal/mol)

ATP, tightly bound (t)

∆Gbound, a
alch 125 -443.5 ± 0.4

∆Gbound, b
restr 7 14.8 ± 0.3

∆Gfree, c
restr 7 -16.1 ± 0.1

∆Gfree, d
alch 125 433.2 ± 0.6

∆G◦,ebind -11.6 ± 0.8

ATP, bound (b)

∆Gbound
alch 125 -441.8 ± 0.8

∆Gbound
restr 7 16.5 ± 0.5

∆Gfree
restr 7 -16.3 ± 0.1

∆Gfree
alch 125 433.2 ± 0.6

∆G◦bind -8.9 ± 1.1

ATP, empty (e)

∆Gbound
alch 125 -438.4 ± 0.8

∆Gbound
restr 7 17.4 ± 0.6

∆Gfree
restr 7 -16.3 ± 0.1

∆Gfree
alch 125 433.2 ± 0.6

∆G◦bind -4.1 ± 1.1

ADP + Pi, tightly bound (t)

∆Gbound
alch 125 -442.0 ± 0.4

∆Gbound
restr 7 15.9 ± 0.5

∆Gfree
restr 7 -18.4 ± 0.1

∆Gfree
alch 125 436.2 ± 0.6

∆G◦bind -8.3 ± 0.9

ADP + Pi, empty (e)

∆Gbound
alch 125 -439.3 ± 0.1

∆Gbound
restr 7 17.2 ± 0.5

∆Gfree
restr 7 -18.4 ± 0.1

∆Gfree
alch 125 436.2 ± 0.6

∆G◦bind -4.3 ± 0.8

a alchemical free-energy change in the bound state, b free-energy change due to the conformational, positional and
orientational restraints imposed in the bound state, c free-energy change due to the conformational restraint imposed
in the free state and the analytical terms for the translation and rotation of a rigid substrate in a homogenous liquid, d

alchemical free-energy change in the free state, e standard binding free energy.
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Alchemical calculations. Computational details

To avoid singularities in the van der Waals potential, which arise in alchemical transformations

when atoms of the substrate, either ATP or ADP+Pi, appear at a location in space already occupied

by other particles, use was made of a separation-shifted scaling soft-core potential6 with a scaling

factor of 4.0. Electrostatic decoupling was applied as the substrate was removed from, or intro-

duced in its environment, turning electrostatic interactions on or off twice as fast as van der Waals

interactions. To prevent the substrate from drifting away from the catalytic domain of V1–rotor,

we tethered it by means of geometric restraints acting on collective variables to the conformation,

position and orientation in the native state (see Figure S2). Towards this end, groups of atoms

pertaining to the enzyme and to the nucleotide were selected, allowing unambiguous definition of

the latter with respect to the former through the introduction of the relevant polar coordinates and

Euler angles. In addition, the conformation of the substrate was frozen by imposing that the dis-

tance root mean-square deviation (RMSD) with respect to that of the native state be equal to zero.

The free-energy contributions arising from the loss of configurational entropy due to these geomet-

ric restraints were estimated in independent thermodynamic-integration simulations, wherein the

force constant of the harmonic potentials at play was turned reversibly to zero. In the bound states

— either tightly bound (t), bound (b) or empty (e), all contributions can be determined in a single

free-energy calculation, from whence the different gradients can be extracted and subsequently

integrated. For the three bound states and for each substrate, turning the force constant from its

nominal value to zero was stratified in 500 λ–points, at which the integrand was computed over

25 ps of data collection, following 100 ps of thermalization. A separate simulation was performed

in the bulk state to evaluate the conformational term, while the other contributions characterizing

the translation and the rotation of a rigid body in an isotropic environment are determined analyti-

cally.7 The simulation consisted of 500 λ–points, at which 25 ps of thermalization prefaced 100 ps

of data collection.
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Figure S2: Thermodynamic cycle utilized to determine the standard binding free energy of ATP to the catalytic
domain of V1–rotor. The alchemical free-energy calculation in the bound (∆Galch

bound) and in the unbound (∆Galch
free )

states, highlighted in the green box, is carried out on the nucleotide (ATP∗) restrained to its native conformation,
position and orientation in the bound complex by means of suitably chosen harmonic potentials.7 The free-energy
contribution that corresponds to the loss of configurational entropy arising from the geometrical restraints, i.e., the
difference between the restrained (ATP∗) and the free (ATP◦) substrate, is evaluated in separate simulations, both in
the bound (∆Grestr

bound) and in the (∆Grestr
free ) states.

Estimating the error associated to a computed free-energy change constitutes a difficult, often

overlooked task, which can be explained in large measure by the convoluted nature of the sources

of error responsible for the discrepancy between theoretical and experimental measures. From a

dogmatic perspective, failure to provide convincing error bars is also rooted in the common belief

that a single simulation cannot provide both a free-energy difference and the error associated to

it with an equal accuracy. From the standpoint of numerical simulations, the error associated to

a free-energy change has a systematic origin, which primarily stems from finite sampling, and a

statistical origin related to the width of the underlying probability distributions.8 In a more general

sense, systematic errors also embrace force-field inaccuracies, as well as algorithmic artifacts,

albeit these contributions are evidently more cumbersome to appreciate. Ideally, any free-energy
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change ought to be estimated from a series of independent simulations, assumed to sample distinct

regions of phase space. Given the complexity of the alchemical transformations examined here and

the length of the free-energy calculations to warrant convergence (see Table 2), repeating the latter

would obviously be intractable. We resort to provide as a measure of the error associated to the

different contributions to the binding affinity the hysteresis between the forward and the backward

transformation, and apply the Bienayme formula, assuming that each contribution corresponds to

an independent observable.

Theoretical framework for the free–energy estimation along the minimum

free–energy path

Suppose that the dynamics of a high-dimensional atomic system {x} can be simplified as an effec-

tive dynamics in a coarse variable space ζ. The effective dynamics can be described by a Brow-

nian motion in the ζ space with an effective potential energy G(ζ) and diffusion tensor D(ζ).

The former is the potential of mean force (PMF) of the atomic system in the ζ space and the lat-

ter is generally position-dependent and anisotropic.9 One may sample the regions around a given

point η in the ζ space by adding a biasing term to the potential of the atomic system such as

Uη(ζt) = k
2
(ζt−η)2 in which ζt is the instantaneous value of collective variable ζ at time t and k

is the force constant. The free energy of the biased system (or the perturbed free energy) F (η) is:

e−βF (η) =

∫
dζe−β(G(ζ)+Uη(ζ)). (1)

Generalizing the formula in reference 10, one can show that the perturbed free energy at F (ζ) and

the PMF G(ζ) are related via:
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e−βG(ζ) ∝ e−
1

2βk
∇2

ζe−βF (ζ). (2)

For large k, i.e., in the stiff-spring approximation,11 one may expand the above relation to extract

the first two terms in 1/k:10

G(ζ) ≈ F (ζ) +
1

2βk

(
β∇ζF (ζ) ·∇ζF (ζ)−∇2

ζF (ζ)
)
. (3)

Thus, for large force constants, the PMF can be approximated using the perturbed free energy

F (ζ). The validity of this approximation can be tested by a posteriori comparison of the two

terms, assuming the gradient and Laplacian of the perturbed free energy are estimated as well—

which is numerically challenging in a high-dimensional space.

Ideally, one may use a one-dimensional collective variable for defining the effective dynamics as

well as the biasing protocol. In practice, however, this may only be possible for extremely simple

systems. A practical solution to this problem is to keep the collective-variable space multidimen-

sional, while sampling only around a particular pathway, represented by a one-dimensional curve

ζ(s), parametrized by s. The choice of the pathway is obviously crucial here and determines

the relevance of the free energy results to the transition of interest. Several path-finding algo-

rithms have been proposed which iteratively/adaptively refine an initial pathway to converge to a

final pathway satisfying a given criterion, e.g., by minimizing the free energy or maximizing the

flux.2,12–15 Among them is the string method with swarms of trajectories2 which is used in this

study.

Assuming ζ(s) approximately represents the minimum free–energy path, and s is its arc-length,

relation (3) can be simplified to:
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G

(
ζ(s)

)
≈ F (s) +

1

2βk

(
β
( d

ds
F (s)

)2
− d2

ds2
F (s)

)
, (4)

in which F (s) is, up to an additive constant, the free energy associated with the system perturbed

by biasing potential k
2

(
ζt − ζ(s)

)2
, and d2

ds2
F (s)|s=s′ − d2

ds2
F (s)|s=s′′ is assumed to dominate

∇2
ζF (ζ)|ζ=ζ(s′) −∇2

ζF (ζ)|ζ=ζ(s′′). Under this assumption, the validation of the stiff-spring ap-

proximation requires the evaluation of F (s) and its first and second derivatives with respect to the

arc-length s. In order to numerically estimate F (s), one may use umbrella sampling (US)16 to dis-

cretize s and define N umbrella windows/images with biasing potentials Ui(ζt) = k
2
(ζt − ζ(si))

2

for i = 0, . . . , N − 1. This scheme can be thought of as a one-dimensional US along the model

reaction coordinate s with an additional restraint on the (shortest) distance from the ζ(s) curve.

Perturbed free energies Fi = F (ζ(si)) can be estimated (up to an additive constant) by self-

consistently solving the equations:17,18

e−βFi =
∑
t

e−βUi(ζ
t)∑

j Tje
−β(Uj(ζt)−Fj)

, (5)

in which
∑

t sums over all collected samples (irrespective of which replica or image they belong

to) and Tj is the number of samples collected for image j.

With appropriate reweighting, the PMF can be reconstructed in any arbitrary collective variable

space, given sufficient sampling in that space. wt, the unnormalized weight of configuration xt can

be estimated via:17

wt =
(∑

i

Tie
−β(Ui(ζt)−Fi)

)−1
(6)

in which {Fi} are estimated via Equation (5). Alternatively,17 one may estimate {wt} and {Fi} by

iteratively solving Equation (6) and:

e−βFi =
∑
t

wte−βUi(ζ
t). (7)
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The PMF in terms of ξ(x), an arbitrary collective variable, is estimated (up to an additive constant)

as:

G(ξ) = −β−1 ln

(∑
t

wtK
(
ξ(xt)− ξ

))
(8)

in which K is a kernel function. The above estimator is not accurate if the sampling in ξ(x) is

not converged which is the case if ξ(x) has a slow dynamics and is not strongly correlated with ζ.

For the special case of ξ = ζ, the perturbed free energies {Fi} can be used directly to estimate the

PMF in the stiff-spring approximation.

The maximum-likelihood (or maximum aposteriori) weighting scheme described above is general

for any arbitrary set of biasing potentials; however, to approximate G
(
ζ(si)

)
by {Fi} and to ex-

amine the stiff-spring approximation by evaluation of the second term of the expansion in relation

(4), and more importantly to relateG
(
ζ(si)

)
to the kinetics even qualitatively, one needs to make

an assumption that ζ(si) is an approximation of the minimum free energy path. Assuming the

scheme results in a smooth function for F (s), the first and second derivatives can be numerically

estimated via finite difference methods from {Fi} to evaluate the second term of the stiff-spring

approximation.

Finally, for averaging an arbitrary quantityA(x) along the pathway ζ(s), one may use the weighted

average Ā(s) =
∑

tw
tA(xt)δ

(
ζt−ζ(s)

)
. However, in the stiff-spring approximation, unweighted

estimator Āi = 〈A(xt)〉i is often more efficient. σ̄2
i = 〈A2(xt)−Ā2〉i/g provides an estimate for the

variance, given g = 1+2τAac/∆t is the statistical inefficiency in which τAac is the autocorrelation time

associated with quantity A, and ∆t is the lag time between the data points used in the analysis.19
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Theoretical framework for rate estimation along the minimum free–energy

path

Suppose that ξ(x) is a one–dimensional coarse coordinate (or collective variable) defined as a

function of atomic coordinates x, and G(ξ) is the potential of mean force associated with ξ,

exp
(
− βG(ξ)

)
=
〈
δ
(
ξ(xt)− ξ

)〉
, (9)

in which
〈
.
〉

is an ensemble average and β−1 = kBT , in which T and kB are the temperature and

Boltzman constant, respectively. Assuming ξ dynamics can be effectively described by a diffusive

model, we have,

dξ =
(
− βD(ξ)

d

dξ
G(ξ) +

d

dξ
D(ξ)

)
dt+

√
2D(ξ)dB. (10)

in which D(ξ) is a position-dependent diffusion constant, and B(t) is a Wiener process such that

〈B(t)〉 = 0 and 〈B2(t)〉 = t. The Fokker-Planck (or Smoluchowski) equation associated with this

process is:20

∂

∂t
p(ξ, t|ξ0, 0) =

∂

∂ξ

(
D(ξ) exp

(
− βG(ξ)

)) ∂

∂ξ

(
exp

(
βG(r)

)
p(ξ, t|ξ0, 0)

)
, (11)

in which p(ξ, t|ξ0, t) is the likelihood of finding the system at ξ after time t, given it was at ξ0 at

time 0. Discretizing the above relation results in,

P(δt) = (1 + Rδt)P(0), (12)
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for small δt, in which P(t) is a vector with elements Pi = p(ξi, t|ξ0, 0), and R is a tridiagonal

matrix with elements:

Ri i±1 = δξ2D(ξi i± 1
2
) exp

(
− β

(
G(ξi)−G(ξi± 1

2
)
))

, (13)

and Ri i = −Ri i+1 −Ri i−1. More generally, for any lag time ∆t and any time t, we have:

P(t+ ∆t) = exp(R∆t)P(t), (14)

which indicates the likelihood of finding a trajectory at bin j at time t+ ∆t, given it was at bin i at

time t, is proportional to exp(R∆t)i j . Therefore, assuming that neither G(ξ) nor D(ξ) is known,

one may find both, as in Ref. 21, by maximizing the likelihood L =
∏

α exp(R∆t)iα jα (
∏

α runs

over all observations of trajectories starting at the iα at a given time t and being found at bin jα at

time t + δt). Assuming G(ξ) is known, one may find D(ξ) using a similar maximum-likelihood

approach. For any given D(ξ), R can be evaluated, resulting in the log-likelihood,

l =
∑
α

ln
(

exp(Rδt)iα jα

)
, (15)

which can be maximized using a Metropolis Monte Carlo algorithm. We first estimate the factors

exp

(
− β

(
G(ξi) − G(ξi± 1

2
)
))

in Ri i±1 by evaluating the function G(ξ) at ξ = ξA + n δξ
2

for

n = 0, 1, . . . , 2N , in which G(ξ) is defined in the range [ξA, ξB] and N = [ ξB−ξA
δξ

]. An arbitrary

seriesDi+ 1
2
, i = 0, . . . , N−1 can be used as an initial guess forD(ξi+ 1

2
). Ri i±1 andRi i values are

then calculated to estimate the log-likelihood l. For a faster convergence, one may start with the

estimates of R associated with the ∆t → 0 limit of relation (13) (i.e., relation (12)) to maximize

the log-likelihood in (15). It is easy to show that the following values for Ri,i±1 maximize the
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log-likelihood in (15) at the ∆t→ 0 limit:

Ri i±1 =
1

∆t

Ni i±1 +Ni±1 i

Ni i exp

(
− β

(
G(ξi±1)−G(ξi)

))
+Ni±1 i±1

, (16)

in which Ni j is the number of observed jumps from bin i to j at the given lag time ∆t. Diagonal

values of R can be also estimated as usual using Ri i = −Ri i+1 −Ri i−1. while the other elements

are zero. For an arbitrary lag time ∆t, the log-likelihood in relation (15) can be evaluated using

the values of N matrix as (for any given matrix R):

l =
∑
α

Ni j ln
(

exp(Rδt)i j

)
. (17)

Starting from the ∆t→ 0 limit of R, one can use a metropolis Monte Carlo algorithm to maximize

the log-likelihood l in relation (17). Di+ 1
2

is then can be estimated using:

Di+ 1
2

= δξ2Ri i+1 exp

(
β
(
G(ξi)−G(ξi± 1

2
)
))

. (18)

D(ξi) can be estimated by interpolation (Di− 1
2

+Di− 1
2
)/2. The mean-first-passage time τ̄FP (i.e.,

the rate inverse, k−1) from the initial (A) to the final (B) state can be then estimated using the

following relation:22

k−1 = τ̄FP =

∫ ξB

ξA

dξ

∫ ξ
ξA
dξ′ exp

(
− βG(ξ′)

)
D(ξ) exp

(
− βG(ξ)

) . (19)

k and τ̄FP were estimated numerically using:

k−1 = τ̄FP =
N∑
i=0

∑i
j=0 exp

(
− βG(ξj)

)
D(ξi) exp

(
− βG(ξi)

) . (20)
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Estimating the number of observed jumps from image i to j within a time interval ∆t (i.e., lag

time), we can build a (∆t dependent) matrix Nij , which contains all the information needed to

estimate the R.23 Using relation (16), we can estimate an initial value for the R elements (Figure

S9a). The log–likelihood l is calculated using relation (17). At every iteration, an Rij value

(conditioned on i = j±1) is randomly selected and altered by adding a random number ε between

−0.05/∆t and 0.05/∆t. This will require the modification of three other non-zero elements of

R immediately neighboring Rij according to R′ji = R′ji + ε exp

(
− β

(
G(ξj) − G(ξi)

))
, R′ii =

R′ii − ε exp

(
− β

(
G(ξj) − G(ξi)

))
, and R′ii = R′ii − ε. These modification will be accepted

with the probability min(1, exp(l′ − l)), in which l and l′ are the old and new log–likelihoods

calculated using (17). The algorithm will stop once the log–likelihood converges within a given

numerical accuracy (|l′ − l| < X) (Figure S9b). Di+ 1
2

is then can be estimated using relation (18)

with δξ = 1. D(ξi) can be estimated by interpolation (Di− 1
2

+Di− 1
2
)/2.

All the VMD and NAMD tcl–scripts required for implementation of the aforementioned free–

energy and rate methods, as well as those for the string simulations are provided herewith in a

separate folder, denoted Simulation–script.
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Figure S3: The energy changes from Anisotropic Network Model (ANM)–predicted pathways of conformational
transitions in the V1–ring (A3B3) complex are employed to screen the most probable sequence of events that connect
R∗ to F∗. (a) First, all the three protein states are allowed to change simultaneously in an ANM pathway: (AeBe, AtBt,
AbBb→AbBb, AeBe, AtBt). (b) Second, two protein states change simultaneously during ANM:(AeBe, AtBt, AbBb

→ AbBb, AeBe, AbBb), (AeBe, AtBt, AbBb → AbBb, AtBt, AtBt), (AeBe, AtBt, AbBb → AeBe, AeBe, AtBt).
(c) Third, only one state changes at a time: (AeBe, AtBt, AbBb → AbBb, AtBt, AbBb), (AeBe, AtBt, AbBb →
AeBe, AeBe, AbBb), (AeBe, AtBt, AbBb → AeBe, AtBt, AtBt). (d) The product from the pathway with the lowest
barrier among the seven ANM pathways, (AeBe, AeBe, AbBb), was subjected to two further transitions (AeBe, AeBe,
AbBb→ AbBb, AeBe, AbBb) and (AeBe, AeBe, AbBb→ AeBe, AeBe, AtBt); the former pathway exhibits a smaller
barrier.
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Figure S4: Protocol for generating a trial pathway of conformational transitions in the V1–rotor. Starting with
structures along the minimal free energy pathway (MFEP) of the V1–ring conformational rotation (Figure 3), V1–
rotor models are constructed for 100 images across the transition pathway via insertion of a DF stalk into the central
pore of the respective rings. Structures representing image number 10 (a), 50 (b) and 100 (c) are provided before and
after the stalk insertion. At each image, the insertion is realized with MDFF simulations of the central stalk into the
density of the central pore, while simultaneously performing TMD simulations that constrains the ring of the V1–rotor
to conformations along the V1–ring MFEP derived in Figure 3. (d) Convergence of the combined TMD and MDFF
procedure is shown for selected images in terms of RMSD of structures from the V1–rotor pathway with respect to
those from their target along the V1–ring pathway. For a given image, the initial decrease in RMSD confirms that TMD
has enforced a ring conformation within the V1–rotor, which is similar to that from the V1–ring rotation pathway at the
particular point. However, convergence to RMSD values of 2 to 3 Å implies that insertion of a stalk still changes the
local structure of the ring, and the V1–rotor and V1–ring conformational transition pathways are disparate. Since the
TMD simulation for constructing the I→F pathway for the V1–rotor structural transition is initiated with a structure
representing state I, convergence of this simulation for constructing images further away from I requires additional
simulation time.
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Figure S 5: Workflow illustrating the computational protocol employed to capture the conformational transition
pathways of the V1–ring and V1–rotor. The molecular modeling steps are indicated in red, the simulation steps
in blue, and the analysis steps in black. The simulations begin with the setting of the nucleotide (ATP and ADP+Pi)
states guided by FEP calculations. Nine ANM pathways are subsequently constructed for capturing the conformational
rotation of the V1–ring. The pathway with the lowest barrier is refined via TMD and string simulations with swarm of
trajectories to derive the MFEP for V1–ring conformational rotation. MDFF simulations are applied in concert with
TMD simulations to construct a preliminary stalk rotation pathway that is further refined via a second round of string
simulations. The resulting pathway is characterized for free–energy and rates by employing maximum–likelihood
schemes with statistics acquired from BEUS and multi-copy MD simulations respectively.
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Figure S 6: Construction of the reduced space for the string simulations of the V1–ring complex, as well as
the V1–rotor. (a) The nucleotide–containing AB interface is colored by interaction energies showing residues in
green within a 10 Å cutoff contributing predominantly to the interface interactions. (b) The same set of residues
capture the major RMSD changes within a tentative R∗ to F∗ pathway, thus, implying their significance in deriving
a reduced description that probes the R∗ to F∗ conformational transition; the RMSD is computed with respect to the
thermally-averaged F∗ structure. 84 residues are derived from the nucleotide-binding AB interface. An additional
47 residues are derived from the non–nucleotide binding interface. In total, the C-alpha atoms from each of these
3 × (84+47) residues are considered to construct the 3 × (84+47) × 3 = 1179 dimensional reduced space. The A
subunit residues included in the subspace are number 7 8 9 10 11 12 54 55 56 57 58 59 60 61 62
83 85 91 92 94 95 101 102 103 104 105 233 234 235 260 261 262 263 264 265 266
267 268 270 271 293 294 295 296 297 298 299 300 333 336 337 340 343 344 346
347 352 353 392 393 from the chains A, B and C in the PDB file of the V1–rotor, and similarly for the B
subunit are residue numbers 23 24 25 26 27 46 47 48 49 76 114 115 116 117 118 119 120
121 122 123 124 144 145 146 266 267 269 270 275 276 278 279 282 283 286 287
289 317 320 321 322 323 324 350 351 from chains D, E and F.
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Figure S7: (a) RMSD drift of individual images from their initial configuration on the V1–ring conformational
rotation pathway across 50 iterations of the string procedure showing that the drift ceases beyond 40 iterations and the
string converges by 50 iterations, relaxing the trial pathway into a MFEP. (b) Similarly, for the V1–rotor stalk rotation
pathway, only 20 more iterations are required within which the RMSD drift ceases beyond the first ten iterations.

Figure S8: (a) Estimate of the free energy derived from statistics accumulated during the BEUS simulations across
175 images of the V1–rotor transition pathway. 1000 iterations of the maximum-likelihood scheme involving equations
(6) and (7) suffice to provide a convergent one-dimensional free–energy profile. (b) The error estimation, performed
using a resampling approach24 with 100 trials, confirms that the free energy profile is computed with a sampling error
of ± 1.5 kcal/mol. The free energy profile after the addition of higher order terms in equation (4) , shown in green,
changes negligibly. (c) An 11–th order polynomial approximation is derived out of the free–energy profile to derive
the higher-order correction terms in equation (4).

S18



Figure S9: (a)The matrix Nij (equation 16), illustrating the number of passages of unbiased MD trajectories be-
tween images i and j, is found to be block-diagonal. This feature implies that a reactive trajectory on the MFEP of
the V1–rotor traverses primarily within immediate neighbors. (b) The acceptance ratio of the Metropolis–Hastings al-
gorithm for the determination of diffusion coefficient by maximizing the log-likelihood (17) converges to 50% within
10,000 iterations. (c) The diffusion coefficient, and hence the first passage time τ̄FP (equation (20)) attributed to a
conformational transition depends on the lag time, ∆t, chosen to count the number of i→ j passages in the matrix Nij

, and performing the subsequent maximum-likelihood analysis with equation (16). At smaller time intervals, the data
remains correlated and therefore, the diffusion coefficient is overestimated, underestimating the transition time. The
computed τ̄FP increases and converges to approximately 1.09 ms when the ∆t is raised from 2 ps to 64 ps in powers
of 2. (d) Autocorrelation function of the image index time series exhibits a decay time of 68 ps, in excellent agreement
with the lag time of 64 ps used to construct the Nij matrix, thus supporting our choice of ∆t.
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Results

Table S3: RMSD of the A and B proteins from the V1–ring as they undergo a conformational
rotation from I∗→ R∗ and I→ R states, elucidating that the magnitude of the change in the ring is
comparable both in the presence and absence of the DF stalk. For a given change in the nucleotide
binding site, i.e., between (e), (b) and (t), transformation of the B domains is mostly lesser than
that of the A domains. Nonetheless, the B domain changes significantly during the I∗→ II (Figure
3) and I→ 2 (Figure 5), where an empty site (Be∗ or Be) is transformed into bindable site (Be∗′ or
Be′) to facilitate ATP binding.

Transition RMSD (Å) Transition RMSD (Å)

Ae∗→ At∗ 2.5 Ae→ At 2.5
Ae∗→ Ab∗ 2.2 Ae→ Ab 2.3
Ab∗→ At∗ 1.7 Ab→ At 1.9
Ae∗→ Ae∗′ 1.2 Ae→ Ae′ 1.8

Be∗→ Bt∗ 2.1 Be→ Bt 2.4
Be∗→ Bb∗ 1.7 Be→ Bb 2.2
Bb∗→ Bt∗ 1.2 Bb→ Bt 1.8
Be∗→ Be∗′ 2.2 Be→ Be′ 2.0
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Table S4: List of hotspot residues identified employing Robetta computational alanine mutations
of structures extracted from the string simulation of the V1–rotor. Mutations indicated by * are
experimentally verified;25,26 the mutation indicated by + is observed from an intermediate, namely
2 in the V1–rotor transition pathway. This mutation is obscure to the end-points of the transition
but is now identified in our simulations and validated by independent experiments.25 The upper
panel indicates key residues at the AD and BD interfaces, while the lower panel indicates those for
the AB interface.

Subunit Resid ∆∆Gcomplex (kcal/mol) ∆Gpartner (kcal/mol)

∗+A 396 1.20 0.92
∗A 476 0.48 0.74
∗A 477 0.33 0.65
B 270 3.21 0.15
B 271 1.43 0.08
D 11 1.07 0.12

+D 14 1.69 1.07
∗D 28 0.81 0.81
D 161 1.15 0.56
D 165 1.95 0.44

A 300 0.06 1.08
A 303 6.56 5.27
A 333 2.03 1.15
A 352 1.27 1.55
B 221 3.94 6.21
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Figure S10: Close-up of the ATP binding pocket in the A submit of the V1–ring, highlighting key residues interacting
with ATP’s adenine base and the charged phosphate groups.S22



Figure S11: RMSD of the structures isolated along every image of the string simulation with respect to known
crystal structures of V1–ring intermediates showing the intermediate II visits the bi,e,b state reported in PDB ID
3VR2, and intermediate III resembles state b,e,b of PDB ID 3VR3.
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Figure S12: (a) Top-down view of the V1–rotor highlighting angles between the A and B subunit at the nucleotide-
binding interface along the XY coordinate plane, which captures opening and closing of the interface during the I→ F
structural transition. Hinge angle within the A subunit, perpendicular to the XY plane, which captures a swivel motion
of the subunit is provided in Figures 9-10. (b) These angles, capturing the in and out-of-plane motions, are plotted
along the I → F transition pathway, portraying clearly a series of events: opening of the AtBt interface, indicated
by an increase in both the angles (red trace), is followed by a closing of AeBe shown by decrease in the associated
angles (black trace) which, in turn, is followed by a closing of AbBb (blue trace). (c) The same sequence of events is
captured by changes in the contact area of the AB interface, measured by methods presented in Ref 27. An opening
of the AtBt interface, indicated by a decrease in contact area (red trace), is followed by an increase in the contact area
of the AeBe interface (black trace), which, again, is followed by a closing of AbBb (blue trace).
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Figure S 13: One-dimensional free energy profile characterizing the product (ADP + Pi )–inhibited pathway of
V1–rotor structural transitions reveals that this process is endothermic, and that the rotation is thermodynamically
unfavorable in the presence of products bound to the empty site. An intermediate is observed along this pathway,
denoted 1′, which resembles the A3B3 conformation of state I, but the stalk has straightened (inset).
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Figure S14: Dynamical network analysis of the AtBe interface illustrating that the motion of hydrophobic residues
I473 from the A domain and that of V387 from the B domain are dynamically correlated. (inset).
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Figure S15: Ring-stalk allostery: 2→ 3 transition. Inward swivel of the A domain by 15◦ during the Ae′ → Ab′

transition is allosterically coupled to the motion of F425 in the ATP binding pocket (inset), in converse to the events
present in Figure 9: as ATP crawls into the bindable site, F425 forms a π–π stacking interaction with the adenine
base, which is accompanied by an inward swiveling motion of the Ae′. Simultaneously, D34 and R38 of the stalk lose
electrostatic interactions with R475 and E472 of transformed Ab′, and R164 from the stalk starts interacting with the
dangling E472. This reorganization induces a wringing deformation of the stalk. For the sake of clear presentation
only stalk residues are labeled in the figure; all key residues at the ring-stalk interface are illustrated in Figure S16.
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Figure S 16: Four views of the V1–ring – DF stalk interface are presented in clockwise direction: top-down,
transverse-section, top-down of a central slice and inverse transverse-section showing key residues that mediate rota-
tion of the stalk. The same views are employed to showcase details of the rotational transition in movies M1 to M4.
An additional movie, M5, is provided, which illustrates the wring and rotation of the entire stalk.
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Figure S17: Ring-stalk allostery: 3→ 4 transition. Rotation of the DF stalk involving the reorganization of the
E161, R164 and R165 residues to allow interaction with R475 of the Ab subunit, E384 of Bb subunit and E472 of the
Absubunit.

S29



Figure S 18: (a) Average interaction energies derived from the BEUS simulations (presented in solid lines) of
layers L1 (purple), L2 (orange), L4 (black) and L5 (red) of the central stalk are presented along the transition path
as functions of the image indices, and show that each layer overcomes a different magnitude of energy barrier and at
different instant of time to manifest the overall rotation of the central stalk. Consequently, the change in rotation angle
(presented in dotted lines) is observed over different range of images for different layers. While for the more flexible
layers L1 and L5, the rotation happens earlier in the transition, also reflected in the wringing motion, rotation of L2
follows, and finally L4 rotates, overcoming the highest barrier. The rotation of layer L2 is initially slow as it conforms
to a local energy minimum; its motion enhances subsequently due to structural coupling with the neighboring layer,
L1, which rotates significantly over the same range of images to achieve a lower energy. L3, the layer with maximum
torsional stiffness (Figure 8), shows minimal energy barriers as it is the least V1–ring-interacting part of the DF stalk.
Therefore rotation of L3 (shown in blue dotted lines) remains inherently coupled to that of L4, the layer with the highest
rotational barrier, as can be observed from the similarity in L3 and L4 rotational trends. (b) Primary interactions that
contribute to the rotational barriers presented in (a) are shown in terms of the distance between respective partners.
Dotted lines represent disruption of the ring-stalk interaction between residues from the A or B subunit and those from
D; solid lines represent the recovery of these interactions after the stalk has rotated and new A-D or B-D interactions
have been resurrected.
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Figure S19: Key pair interactions between the stalk, and A and B domains are illustrated in atomic detail. An
electrostatic and a hydrophobic reorganization pathway is displayed, elucidating the role of water in the former and a
concerted mechanism for the latter.
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Figure S20: One–dimensional free–energy profiles characterizing the structural transitions of the V1–ring (orange),
those of the V1–rotor (red). While the free–energy profile for the ring is derived out of 1179 collective variables
representing the AB interface, that of the rotor further includes positions of the key residues from the stalk (presented
in Figures S16 and S19). A third profile (red-dashed) shows the V1–rotor free energy changes, but only with the AB
interface variables. Close agreement of the free–energy profiles with and without the stalk contribution suggests that
majority of the conformational transition energy is harnessed at the AB interfaces. The point of significant energy
difference between the two V1–rotor profiles is about the state 2→ 3 barrier, which is underestimated when the stalk
variables are not taken into account.
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