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ABSTRACT Human apolipoprotein A-1 (apo A-1) is the major protein component of high-density lipoproteins. The apo A-1
lipid-binding domain was used as a template for the synthesis of amphipathic helical proteins termed membrane scaffold
proteins, employed to self-assemble soluble monodisperse discoidal particles called Nanodiscs. In these particles, membrane
scaffold proteins surround a lipid bilayer in a beltlike fashion forming bilayer disks of discrete size and composition. Here we
investigate the structure of Nanodiscs through molecular dynamics simulations in which Nanodiscs were built from scaffold
proteins of various lengths. The simulations showed planar or deformed Nanodiscs depending on optimal length and alignment
of the scaffold proteins. Based on mean surface area per lipid calculations, comparison of small-angle x-ray scattering curves,
and the relatively planar shape of Nanodiscs made from truncated scaffold proteins, one can conclude that the first 17 to 18
residues of the 200-residue apo A-1 lipid-binding domain are not involved in formation of the protein ‘‘belts’’ surrounding the lipid
bilayer. To determine whether the addition of an integral membrane protein has an effect on the overall structure of a Nanodisc,
bacteriorhodopsin was embedded into a Nanodisc and simulated using molecular dynamics, revealing a planar disk with a
slightly rectangular shape.

INTRODUCTION

Discoidal lipid/protein particles, termed Nanodiscs, can be

self-assembled with controlled size and composition (Bay-

burt et al., 2002). Each Nanodisc contains two amphipathic

a-helical proteins, termed membrane scaffold proteins,

surrounding a cylindrical lipid bilayer; a schematic view is

shown in Fig. 1. The size of Nanodiscs can be controlled by

changing the length of the scaffold protein (Denisov et al.,

2004). Nanodiscs can be used as a platform for studying

the structure and mechanism of integral membrane proteins

such as bacteriorhodopsin (bR) (Bayburt and Sligar, 2003),

cytochrome P450 (Baas et al., 2004; Bayburt and Sligar,

2002; Civjan et al., 2003; Duan et al., 2004), and G-protein

coupled receptors (Leitz et al., 2003).

Themembrane scaffold proteins used inmakingNanodiscs

were designed using the amino acid sequence of apolipopro-

tein A-1 (apo A-1) as a scaffold template (Bayburt et al.,

2002). Apolipoproteins are the major protein component of

high-density lipoproteins and can form water-soluble com-

plexes with lipids and cholesterol derivatives (Segrest et al.,

1994). Reconstituted high-density lipoproteins can be pro-

duced using purified apo A-1 and different lipids, with or

without cholesterol (Jonas, 1986).

Based on predictions of its secondary structure, apo A-1

was proposed to have a 43 residue N-terminal globular

domain and a 200-residue C-terminal lipid-binding domain

(Segrest et al., 1994). The lipid-bindingdomainwas character-

ized as having eight 22-mer and two 11-mer amphipathic

a-helical repeats punctuated by the presence of prolines

or glycines (Boguski et al., 1986; Nolte and Atkinson,

1992). The interaction between apo A-1 strands has been ex-

tensively studied, and it was proposed that the interaction

between the two amphipathic proteins involves a series of

salt bridges between oppositely charged residues (Klon et al.,

2000, 2002a, 2002b; Segrest et al., 1999).

The x-ray crystal structure of a lipid-free 200-residue apo

A-1 lipid-binding domain (Borhani et al., 1997) has been

determined, but the structure of the protein bound to lipid

remains unknown. Several models exist for the apo A-1 lipid-

binding domain, including the picket fence (Phillips et al.,

1997), helical hairpin (Rogers et al., 1998), and double-belt

models (Segrest et al., 1999). The double-belt model,

schematically presented in Fig. 1, is now the most widely

accepted.

Recent experimental evidence resulting from Nanodiscs

prepared from membrane scaffold proteins of various lengths

suggests that up to 22 N-terminal residues of the originally

predicted 200-residue lipid-binding domain do not bind lipid

(Denisov et al., 2004). Under conditions where the lipid and

scaffold protein stoichiometry is precisely controlled and

optimized, the resultant Nanodiscs are of uniform size.

Nanodiscs were prepared in which the first 11 or 22 residues

of the membrane scaffold protein were removed, and it was

shown that their size and composition do not depend on

the presence of 20–22 N-terminal residues. Thus, it was

suggested that the deleted residues do not participate in the

scaffolding of the lipid bilayer.

Previous molecular dynamics simulations of the apo A-1

protein bound to lipid assumed the picket fence model

(Phillips et al., 1997) and the double-belt model (Klon et al.,

2002b). These simulations used two apo A-1 lipid-binding
Submitted June 3, 2004, and accepted for publication October 27, 2004.

Address reprint requests to Klaus Schulten, E-mail: kschulte@ks.uiuc.edu.

� 2005 by the Biophysical Society

0006-3495/05/01/548/09 $2.00 doi: 10.1529/biophysj.104.046896

548 Biophysical Journal Volume 88 January 2005 548–556



domains and 160 1-palmitoyl-2-oleoyl-sn-glycero-3-phos-
phocholine (POPC) lipids. However, recent experimental

evidence suggests that the optimal ratio of POPC to scaffold

protein (containing the full 200-residue lipid-binding domain

of apo A-1) is 61:1, not the simulated 80:1.

However, a ratio of 80:1 lipids to scaffold protein is optimal

for dipalmitoylphosphatidylcholine (DPPC) (Bayburt et al.,

2002; Denisov et al., 2004). Accordingly, to mimic the

Nanodiscs studied experimentally, the molecular dynamics

simulations reported below use 160 DPPC lipids per Nano-

disc with two scaffold proteins surrounding the lipid bilayer

in a beltlike manner (Fig. 1). Simulations were done using

scaffold proteins based on the predicted 200-residue lipid-

binding domain of apo A-1 as well as N-terminal truncations

of 11or 22 residues.Additionally, bRwas added to aNanodisc

and simulated to determine the effect of embedding an in-

tegral membrane protein on a disk.

METHODS

Molecular dynamics simulations of
pure Nanodiscs

Each Nanodisc simulated is comprised of two membrane scaffold proteins

and 160 DPPC lipids. Scaffold protein MSP1 contains the 200-residue lipid-

binding C-terminal domain of apo A-1. MSP1 D(1–11), MSP1 D(1–22) and

MSP1 D(1–22)g scaffold proteins contain truncations of portions of the first

N-terminal helix, which are summarized in Table 1. All Nanodiscs were

constructed using the program VMD (Visual Molecular Dynamics)

(Humphrey et al., 1996).

The scaffold proteins were initially modeled as a-helical circles with

a central radius of between 43 and 48 Å depending on the length of the

scaffold protein. The two scaffold protein belts were separated by 10 Å along

the entire circumference for all Nanodiscs simulated. Proline residues were

positioned at the outermost portion of the helices, and histidine residues

were left unprotonated. The scaffold proteins were aligned using an

antiparallel belt model with Lys-90 juxtaposed. The Lys-90 scaffold protein

alignment was previously simulated together with 160 POPC lipids (referred

to as the K133/K133 rotamer in the apo A-1 sequence) and found to be stable

for up to 1 ns (Klon et al., 2002b). Additionally, Nanodiscs made with MSP1

D(1–22) scaffolds were simulated with Gly-23 and Glu-200 aligned. This

arrangement, where the N- and C-terminals are aligned, leaves a gap in the

coverage of the hydrophobic lipid tails by scaffold proteins.

The DPPC lipid bilayer was created from an initial membrane structure

with a molecular area of 0.63 nm2 (Feller et al., 1997a). The initial mem-

brane structure was replicated and translated to produce a bilayer with a

total of 160 DPPC lipids, 80 per side. The bilayer was minimized with

cylindrical harmonic boundaries at a radius of 39 Å. The minimized DPPC

bilayer was then placed inside the previously constructed cylindrical

membrane scaffold proteins (Fig. 1). The lipids fit easily into MSP1

scaffolds but were scaled down slightly to reduce steric clashes in the cases

of MSP1 D(1–11) (99%), MSP1 D(1–22) (97.5%), and MSP1 D(1–22)g
(97.5%).

The Nanodiscs were then solvated using the Solvate plug-in of VMD to

create a hexagonal periodic water cell extending 10 Å above and below the

lipid headgroups and 15 Å beyond the scaffold proteins. Sodium ions were

added to neutralize the system. The entire system was then minimized to

eliminate steric clashes.

All simulations were performed using the molecular dynamics program

NAMD (Kalé et al., 1999) with CHARMM22 protein (Mackerell et al.,

1998) and CHARMM27 lipid (Feller et al., 1997b) force fields. Constant

temperature was maintained at 300 K using weakly coupled Langevin

dynamics of nonhydrogen atoms; pressure was maintained at 1 atm using

a Langevin piston Nose-Hoover barostat with an oscillation period of 200 fs

and a decay time of 100 fs. Water molecules and all bonds to hydrogen

atoms were held rigid, permitting a 2 fs time step. Full electrostatic forces

were evaluated every three steps using the particle-mesh Ewald method with

a 144 3 1443 96 point grid. Short-range nonbonded terms were evaluated

every step using a 10 Å cutoff for van der Waals (vdW) interactions and

a smooth switching function. All simulations were first carried out with the

scaffold protein Ca atoms harmonically restrained for 0.3–0.6 ns. The

restraints were then removed and the system was allowed to equilibrate for

another 3.9–6.6 ns, for total simulation times between 4.2 and 6.9 ns. The

simulations contained between 145,000 and 156,000 atoms. Nanodiscs

made with MSP1 scaffolds were simulated at the National Center for

Supercomputing Applications (University of Illinois at Urbana-Champaign,

Urbana, IL) on 256 1-GHz PIII processors and on 128 800-Mhz Itanium

processors with performance of 0.6 ns/day and 0.75 ns/day, respectively. All

other Nanodiscs were simulated on a cluster of 48 AMD Athlon MP 26001

processors with performance of between 0.97 and 1.07 ns/day.

Molecular dynamics simulation of Nanodiscs
with embedded bR

The structure of a Nanodisc with MSP1 D(1–11) scaffolds after 4.5 ns of

simulation was used to embed an integral membrane protein, bR. A

monomeric bR was constructed from coordinates obtained from the Protein

Data Bank (PDB ID 1C3W) (Luecke et al., 1999). The protein was placed in

the center of the Nanodisc, with the principal axes of the bR aligned with the

TABLE 1 Membrane scaffold proteins used for simulation

of Nanodiscs

Scaffold

protein

name

Protein

deletions

Alignment

of scaffold

proteins

Simulation

length

(ns)

MSP1* - K90/K90 4.2

MSP1 D(1–11) 1–11 K90/K90 4.5

MSP1 D(1–22) 1–22y K90/K90 6.9

MSP1 D(1–22)g 1–22y G23/Q200 4.5

*The MSP1 membrane scaffold protein contains 200 amino acid residues.

The sequence can be found in the supporting information of Denisov et al.

(2004).
yMSP1 D(1–22) and MSP1 D(1–22)g contain a proline to serine mutation

at residue 23.

FIGURE 1 Schematic drawing of a Nanodisc. Two scaffold proteins are

wrapped around a lipid bilayer in a beltlike fashion.
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principal axes of the Nanodisc, and lipids were removed to form a hole for

the protein. All lipids within 1 Å of bR were removed, which resulted in

a lipid layer consisting of between 58 and 62 lipids as opposed to the original

80 DPPC lipids per side. The entire structure was solvated using the VMD

plug-in Solvate, sodium ions were added to neutralize the system, and then

the system was minimized to eliminate steric clashes. Additional force-field

parameters were added for the simulation of retinal in bR (Saam et al., 2002;

Tajkhorshid et al., 2000; Tajkhorshid and Suhai, 1999). The simulation was

performed using the same procedure as employed for pure Nanodiscs with

the scaffold protein and bR Ca atoms harmonically restrained for 0.6 ns, at

which time the restraints were removed and the system was allowed to

equilibrate for an additional 3.9 ns for a total simulation time of 4.5 ns. The

system consisted of 154,000 atoms, and was simulated on a cluster of 48

AMD Athlon MP 26001 processors with a performance of 0.90 ns/day.

SAXS measurement and analysis

Small-angle x-ray scattering (SAXS) was measured at the Advanced Photon

Source (Argonne National Laboratory, Argonne, IL) as described in Denisov

et al. (2004). Raw scattering data were processed using the program FIT2D

(Hammersley, 1998; Hammersley et al., 1996) to obtain the scattering curves

in the form log(I/Io) versusQ¼ 4p sin (u)/l. Scattering curves for simulated

structureswere calculated using the programCRYSOL (Svergun et al., 1995).

The CRYSOL program takes a Protein Data Bank file and generates a SAXS

scattering curve; however, the programdoes not contain parameters for lipids.

Therefore, the names of lipid groups, such as methyl, methylene, and others,

were changed into the appropriate groups of the protein amino acids or

nucleotides taken from the CRYSOL manual, assuming that they have the

same electron densities. SAXS curves in the form of log(I/Io) versus Q were

generated by CRYSOL using a hydration shell of 0.334 e/Å�3.

RESULTS AND DISCUSSION

Molecular dynamics simulations were carried out for the

Nanodiscs generated from the scaffold proteins listed in Table

1. The goal of these simulations was to provide realistic

atomic level images of Nanodiscs made with various

truncated scaffold proteins, in particular to explore the in-

volvement of the scaffold proteins N-terminal segment in

binding the lipid bilayer and to investigate the importance of

the alignment of the two scaffold proteins. Initially, Nano-

discs made with MSP1, MSP1 D(1–11), and MSP1 D(1–22)

scaffolds were simulated with a K90/K90 alignment that had

previously been found to form stable structures using

N-terminal truncated apo A-1 in the double-belt model when

simulated with 160 POPC lipids for up to 1 ns (Klon et al.,

2002b). Additionally, a Nanodisc made with MSP1 D(1–22)

scaffolds was simulated with the scaffold proteins N- and

C-terminal gaps aligned (denoted asMSP1 D(1–22)g) in order
to examine the significance of alignment to the overall shape

of the Nanodisc.

Fig. 2 a shows a side view of a Nanodisc made with an

MSP1 scaffold at 4.2 ns of simulation. The Nanodisc exhibits

a severe deformation of both the scaffold protein and lipid

bilayer. There appears to be insufficient lipid packing density

for the length (number of amino acid residues) of the scaffold

protein ‘‘belt’’ surrounding the Nanodisc resulting in an out-

of-plane deformation and a significant flexibility of theMSP1

scaffold. A top view of the Nanodiscs shows that the two

scaffold proteins do not align well with each other (Fig. 3 a).
This suggests that the full 200-residues of the MSP1 scaffold

do not bind optimally around a lipid bilayer of this size.

Simulations of Nanodiscs with smaller diameters, formed

with MSP1 D(1–11) and MSP1 D(1–22) scaffolds, result in

discoidal structures with little deformation of the lipid bilayer

or scaffold proteins (Fig. 2, b and c). The two scaffold proteins
and the proline residues align vertically over each other with

minimal misalignment (Fig. 3 b). Although a Nanodisc made

with MSP1 D(1–22) scaffolds has a stable structure with little

out-of-plane deformation, the vertical alignment of the

scaffold proteins is not as good as in the case of a Nanodisc

made from MSP1 D(1–11) (Fig. 3 c). Since the alignment of

MSP1, MSP1 D(1–11), and MSP1 D(1–22) scaffold proteins

are very similar, the only differences stemming from the

overlapping truncated regions— the out-of-plane deforma-

tion of the Nanodiscs—appears to be due to the overall size of

the Nanodiscs and the packing density of the lipids. Nano-

discs made withMSP1D(1–11) andMSP1D(1–22) scaffolds

have a more densely packed lipid bilayer due to the overall

smaller diameter provided by the scaffold protein and exhibit

less deformation.

As described in Methods, a Nanodisc made with MSP1

D(1–22) scaffolds was simulated with a second alignment of

the scaffold proteins, termed MSP1 D(1–22)g, in which the

gaps are aligned. This resulted in a structure with increased

out-of-plane deformation of both the scaffold protein and the

lipid bilayer (Figs. 2 d and 3 d). This deformation is due to

the alignment of the two scaffold proteins, as the proteins

have the same composition as Nanodiscs made with MSP1

FIGURE 2 Side view of Nanodiscs at 4.2 ns. Nanodiscs made with (a)
MSP1, (b) MSP1 D(1–11), (c) MSP1 D(1–22), and (d) MSP1 D(1–22)g

scaffold proteins. Each Nanodisc is constructed of two membrane scaffold

proteins and 160 DPPC lipids. The membrane scaffold proteins are depicted

in tube representation in blue and red. Prolines are highlighted in sphere

representation in yellow and green. DPPC lipids are shown in MSMS

surface representation. The lipid headgroups are shown in orange and the tail

groups in gray. The alignment of the top (blue) and bottom (red) scaffold
proteins is specified in Table 1.

550 Shih et al.

Biophysical Journal 88(1) 548–556



D(1–22) scaffolds. The model suggests that the alignment of

the two scaffold proteins and their prolines plays a role in

reducing the out-of-plane deformation of the Nanodisc and

stabilization of the planar bilayer.

Fig. 4 provides a view of Nanodiscs made withMSP1D(1–

22) scaffolds and illustrates the effective coverage of the

hydrophobic tail groups of the DPPC lipids by the membrane

scaffold proteins. The hydrophobic tails are effectively

covered out to 6.9 ns of simulation. All other membrane

scaffold proteins provided a similar coverage of the lipid tail

groups. The majority of the hydrophobic residues of the

amphiphatic membrane scaffold proteins are on the interior

side of the helices, making contact with the hydrophobic lipid

tail groups and enabling the membrane scaffold proteins to

solubilize lipid bilayers with the outwardly oriented hydro-

philic sides. Water is effectively shielded from the hydro-

phobic inside of the Nanodisc by the hydrophilic side of the

scaffold protein. The presence of a hydrophilic solvent such as

water is needed to maintain a discoidal lipid/protein structure.

In the simulations, sodium ions are added to thewater phase to

neutralize the system. For allNanodiscs simulated, the sodium

ions diffuse freely during the simulations, never becoming

stuck to the scaffold protein or lipid headgroups.

The calculated root mean-square deviation (RMSD) of all

the atoms in the Nanodiscs (lipids and scaffold proteins)

shows that the Nanodiscs do not reach an asymptotic RMSD

value, even after 6.9 ns (Fig. 5 a). This is due to the extended
random movement of lipids in the bilayer. In fact, the time

needed for the lipids to reach an RMSD equilibrium value is

;10 ms as determined by means of diffusion theory (see

Appendix). The time dependence of the lipids’ RMSD value

is found to be in good approximation

ðr~ðtÞ � r~ðt0ÞÞ2
� �

� R2½1� expð�3:39Dðt � t0Þ=R2Þ�;

where R is the radius of the lipid bilayer (3.9 nm) andD is the

lipid diffusion coefficient. Matching the theoretical time

dependence at t � t0 to the simulation data (see Appendix

and Fig. 5) yields D ¼ 1.5 nm2/ms. Since the microsecond

time needed for the lipid bilayer to reach an asymptotic

RMSD value is not within the timescale achievable by

molecular dynamics, one can monitor the RMSD of the out-

of-plane deformation of the scaffold protein alone to

determine whether the scaffold protein itself has equili-

brated. This RMSD value relative to a bisecting plane shows

that the Nanodiscs made with MSP1 D(1–11) and MSP1

D(1–22) scaffolds reach equilibrium within 1.5 ns, but the

Nanodiscs made with MSP1 and MSP1 D(1–22)g scaffolds

do not (Fig. 5 b). We conclude that Nanodiscs made with

MSP1 D(1–11) and MSP1 D(1–22) are more rigid and main-

tain a planar disk shape, whereas the other two Nanodiscs

exhibit slow out-of-plane fluctuations.

The interaction energy, consisting of the electrostatic and

vdW energies between all atoms in one scaffold protein

relative to the other, has been determined and is compared for

the Nanodiscs in Fig. 6. For the purposes of this comparison,

the energies shown have been divided by the number of

residues per scaffold protein, i.e., represented energies are

energies per residue. A lower interaction energy per residue,

as seen for MSP1 D(1–11) and MSP1 D(1–22) scaffolds,

indicates a stronger attraction between the two scaffold

proteins. MSP1 and MSP1 D(1–22)g scaffolds are found to

experience less attractive forces between the two scaffold

proteins, which is consistent with the increased deformation

seen in these structures (Fig. 2, a and d). MSP1 D(1–11)

scaffold proteins have the strongest attraction and the

FIGURE 4 Nanodiscs made with MSP1 D(1–22) scaffolds in side-by-side

stereo view at 6.9 ns. All atoms are depicted using a sphere representation.

DPPC lipid headgroups are shown in orange, and tail groups in gray. The

amino acid residues in the membrane scaffold proteins are colored according

to the residue property: basic residues are shown in blue, acid residues in red,

polar residues in green, and nonpolar residues in white. The hydrophobic tail

groups of the DPPC lipids (in gray) are covered by the membrane scaffold

proteins.

FIGURE 3 Top view of Nanodiscs at 4.2 ns. Nanodisc made with (a)
MSP1, (b) MSP1 D(1–11), (c) MSP1 D(1–22), and (d) MSP1 D(1–22)g

scaffolds. Lipids are removed to reveal the membrane scaffold proteins,

which are shown in blue and red tube representation. Alignment of the

prolines is highlighted in yellow and green using a sphere representation.

Fig. 2 shows a side view of the scaffold proteins and lipids and explains the

color coding of the scaffold proteins.
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respective Nanodisc assumes the flattest cylindrical shape of

all Nanodiscs simulated (Figs. 2 b and 3 b).
Further analysis of the Nanodiscs reveals a decrease in the

surface area per lipid over time, with the most dramatic

change seen for the lipid bilayer of Nanodiscs made with

MSP1 scaffolds (Fig. 7). This is another indication that these

Nanodiscs do not contain an optimal lipid packing density.

The experimentally determined surface area per lipid for

Nanodiscs made with MSP1, MSP1 D(1–11), and MSP1

D(1–22) scaffolds is 52 Å2 at 293 K (Denisov et al., 2004). A

comparison with Fig. 7 reveals that Nanodiscs made with

MSP1 D(1–11) and MSP1 D(1–22) scaffolds reproduce this

packing density best. We can conclude that the optimal lipid-

binding domain has a length between that of MSP1 D(1–11)

and MSP1 D(1–22) scaffolds.

SAXS can be used to provide low-resolution information

on the structure of Nanodiscs in solution. Previous SAXS

observations on Nanodiscs were analyzed using ‘‘bead’’

models, revealing that Nanodiscs are indeed discoidal

particles (Denisov et al., 2004). Structures resulting from

molecular dynamics simulations can also be used as models

for back-calculating SAXS curves, providing an opportunity

for comparison with experimental data. As shown in Fig. 8,

SAXS curves generated from simulated structures, Nanodiscs

madewith full lengthMSP1 and truncatedMSP1D(1–11) and

MSP1 D(1–22) scaffolds, show a characteristic minimum at

;0.07 Å�1, corresponding to the diameter of the disk, and

a broad maximum at 0.11–0.15 Å�1, which is a characteristic

feature of lipid bilayers (Bolze et al., 2000; Denisov et al.,

2004; Funari et al., 2001; Taya et al., 2002). The simulated

Nanodiscs made with MSP1 D(1–22) yields a SAXS curve

with characteristic minimum, maximum, and overall shape

that most closely resembles the experimentally measured

SAXS curve (Fig. 8, a and b), but its SAXS curve does not

match the observed curve exactly. This suggests that the

simulated structures of the Nanodiscs made with MSP1

FIGURE 5 Root mean-square deviation of

Nanodiscs. MSP1 shown in green, MSP1 D(1–

11) in black, MSP1 D(1–22) in red, and MSP1

D(1–22)g in blue. (a) RMSD of Nanodiscs

relative to the initial structure. (Inset) Mean-

square deviation of the DPPC lipid bilayer

bounded by the membrane scaffold proteins

over time. For the lipid bilayer RMSD to reach

its asymptotic value, i.e., equilibrium, requires

;10 ms (diffusion coefficient 1.5 nm2/ms). (b)

RMSDmeasuring the out-of-plane deformation

of the membrane scaffold proteins, determined

through the deviation of all atoms in each

membrane scaffold protein relative to the plane

bisecting the Nanodisc.

FIGURE 6 Interaction energy between the two membrane scaffold

proteins. MSP1 is shown in green, MSP1 D(1–11) in black, MSP1 D(1–

22) in red, and MSP1 D(1–22)g in blue. The energy shown accounts for the

electrostatic and vdW interaction between all atoms in one membrane

scaffold protein and all atoms of the other scaffold protein. The total

interaction energy has been divided by the number of amino acid residues in

the membrane scaffold protein to yield the interaction energy per residue.

FIGURE 7 Mean surface area per DPPC lipid. The Nanodisc made with

MSP1 is shown in green, with MSP1 D(1–11) in black, MSP1 D(1–22) in

red, and MSP1 D(1–22)g in blue. The dashed line at 52 Å2 represents the

mean surface area per lipid determined experimentally (Denisov et al.,

2004).

552 Shih et al.

Biophysical Journal 88(1) 548–556



D(1–22) still does not match the in vitro structure precisely.

The remaining difference may result from changes in the

packing density of the lipid bilayer, since the scattering

contrast of the lipids undergoes dramatic changes in the range

ofmean surface area per lipid values seen inNanodiscs (Sachs

et al., 2003; Tristram-Nagle and Nagle, 2004).

Based on previously reported experimental evidence

(Denisov et al., 2004) and on the simulations described, it

appears that the first 11–22 residues of the originally predicted

200-residue C-terminal lipid-binding domain of apo A-1 do

not, in fact, bind to lipid. The actual lipid-binding domain of

apo A-1 appears to start between residues 11 and 22, and

based on the surface area per lipid results shown in Fig. 7 and

SAXS curves shown in Fig. 8, the most likely starting point

should be at residues 17–18. In experimentally prepared

Nanodiscs, these 17–18 N-terminal residues most likely stick

out from the discoidal structure and are not involved in

forming belts around the lipid bilayer.

Nanodiscs can be used as platforms for studying integral

membrane proteins such as bR (Bayburt and Sligar, 2003).

To determine whether molecular dynamics could be used to

study integral membrane proteins embedded in Nanodiscs,

a simulation was done of bR in a Nanodisc formed with

MSP1 D(1–11) scaffolds (Fig. 9). The resulting Nanodisc

does not exhibit any out-of-plane deformation with the addi-

tion of bR; however, the Nanodisc adopts a slightly rectan-

gular shape.

CONCLUSIONS

Molecular dynamics has been proven to be a suitable method

for studying the structure of Nanodiscs. The method can be

used to investigate such issues as deformation of the

Nanodisc, alignment of membrane scaffold proteins, and

properties of the lipid bilayer. The Nanodiscs solvated in an

aqueous environment are of small enough size to permit all-

atom molecular dynamics simulations in the nanosecond

time range, which is long enough to allow for the relaxation

of the scaffold protein, but not long enough for an overall

restructuring of the Nanodisc, e.g., a change in the scaffold

protein alignment. Further collaboration between experiment

and theory should lead to Nanodisc models that fit more

closely the available experimental data. The models obtained

here and further improved models could be used to design

improved scaffold proteins and in planning experiments with

proteins embedded into or adhering to Nanodiscs.

Such experiments allow one to study the interactions of

the membrane proteins with a membrane, the mechanism of

action of membrane proteins, and the three-dimensional

structure in a native lipid membrane environment. No other

experimental system currently allows for such precise

control over the environment of membrane proteins. Since

Nanodiscs contain a small patch of membrane of known

composition, they are also ideally suited for studying the

properties of bilayers such as lipid phase transitions (Shaw

et al., 2004) and the effect of cholesterol.

APPENDIX

In this appendix, we derive an idealized description of lipids diffusing in

a Nanodisc. The lipids are assumed to diffuse freely inside a disk of radius R,

obeying the two-dimensional diffusion equation

@t pðr~; tjr~0; t0Þ ¼ D @
2

r 1
1

r
@r 1

1

r
2 @

2

f

� �
pðr~; tjr~0; t0Þ (1)

FIGURE 8 Small-angle x-ray scattering of Nanodiscs. Comparison of

small-angle x-ray scattering signals observed for Nanodiscs made with

MSP1 (a), and calculated for Nanodiscs with MSP1 D(1–22) (b), MSP1

D(1–11) (c), and MSP1 (d) scaffolds. The curves are vertically separated for
clarity.

FIGURE 9 A side and top view of bacteriorhodopsin in a Nanodisc made

with MSP1 D(1–11) scaffolds at 4.5 ns. Shown in cyan and red are the two

membrane scaffold proteins surrounding the DPPC lipid bilayer in a beltlike

fashion. DPPC lipids are shown in orange (headgroups) and gray (tail

groups). Embedded in the center of the lipid bilayer is a bacteriorhodopsin

shown using a surface representation colored according to their residue

properties; basic residues are shown in blue, acid residues in red, polar

residues in green, and nonpolar residues in white.
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along with the boundary conditions

@rpðr~; tjr~0; t0Þ ¼ 0 for r ¼ R (2)

lim
r/0

pðr~; tjr~0; t0Þ ¼ finite (3)

and the initial condition

pðr~; t0jr~0; t0Þ ¼ dðr~� r~0Þ: (4)

The boundary condition, Eq. 2, implies that the lipids are ‘‘reflected’’ at the

circumference of the Nanodisc.

Here we seek to provide a mathematical expression for the mean-square

deviation of the lipids defined through

ðr~ðtÞ � r~ðt0ÞÞ2
� �

¼
Z

dr~

Z
dr~0ðr~� r~0Þ2 pðr~; tjr~0; t0Þ

1

pR
2;

(5)

where integrals are taken over the disk area. We employed in this expression

the spatially independent initial distribution of lipids, 1=pR2.

To evaluate the right hand side of Eq. 5, we expand pðr~; tjr~0; t0Þ in terms

of eigenfunctions of the differential operator in Eq. 1, the so-called diffusion

operator. This is accomplished through

pðr~; tjr~0; t0Þ ¼ +
n;m

cnm Jn ynm
r

R

� �
e
inf

exp �y
2

nm

Dðt � t0Þ
R

2

� �
(6)

since

D @
2

r 1
1

r
@r 1

1

r
2 @

2

f

� �
Jn ynm

r

R

� �
e
inf ¼ �Dy

2

nm

R
2 Jn ynm

r

R

� �
e
inf
;

n ¼ 0;61;62; . . . ; m ¼ 1; 2; . . . (7)

as one can readily verify using the well-known properties of the regular

Bessel functions JnðzÞ ¼ J�nðzÞ; n ¼ 0; 1; 2 . . . (Abramowitz and Stegun,

1968). The eigenfunctions have been chosen such that they also obey the

boundary condition, Eq. 2; this is realized if ynm are chosen as roots of the

equation

J#nðynmÞ ¼ 0; m ¼ 1; 2; . . . (8)

One must also choose y00 ¼ 0 in Eqs. 6 and 7. The coefficients cnm are

determined through the initial condition, Eq. 4. Using the theory of the

Fourier-Bessel series and of Fourier transforms, one can derive (Jackson,

1975)

pðr~; tjr~0; t0Þ ¼ +
n;m

anmJn ynm
r0
R

� �
Jn ynm

r

R

� �
e
inðf�f0Þ

3 exp �y
2

nm

Dðt � t0Þ
R

2

� �
; (9)

where

anm ¼ 1

pR
2

1� n
2

y2nm

� �
J
2

nðynmÞ
: (10)

Expression 9 permits one to determine readily the right-hand side of Eq. 5.

For this purpose we note

ðr~� r~0Þ2 ¼ r
2
1 r

2

0 � 2rr0 cosðf� f0Þ: (11)

Using Z
dr~pðr~; tjr~0; t0Þ ¼

Z
dr~0 pðr~; tjr~0; t0Þ ¼ 1 (12)

one can write after a little algebra

ðr~ðtÞ � r~ðt0ÞÞ2
� �

¼ R
2 � Iðt; t0Þ; (13)

where

Iðt; t0Þ ¼ Æ2r~ðtÞ � r~ðt0Þæ (14)

is given by

Iðt; t0Þ ¼
1

pR
2

Z R

0

r
2
dr

Z R

0

r
2

0dr0

Z 2p

0

df

Z 2p

0

3 df0 e
iðf�f0Þ 1 e

iðf0�fÞ
� �

pðr~; tjr~0; t0Þ: (15)

Using Eqs. 9 and 10 and the orthogonality of the functions exp(inf), one

derives

Iðt; t0Þ ¼
8

R4 +
N

m¼1

1

1� 1

y
2

1m

I
ð2Þ
1m

J1ðy1mÞ

" #2

exp �y
2

1m

Dðt � t0Þ
R2

� �
;

(16)

where

I
ð2Þ
1m ¼

Z R

0

r
2
dr J1 y1m

r

R

� �
: (17)

Exploiting known identities of Bessel functions (Lebedev, 1965), one

obtains

I
ð2Þ
1m ¼ R

3

y31m

Z y1m

0

z
2
dz J1ðzÞ ¼

R
3

y1m
J2ðy1mÞ (18)

and using J2ðy1mÞ ¼ y�1
1mJ1 ðy1mÞ � J#1ðy1mÞ together with J#1ðy1mÞ ¼ 0

I
ð2Þ
1m ¼ R

3

y
2

1m

J1ðy1mÞ: (19)

It follows

Iðt; t0Þ ¼ R
2 +

N

m¼1

8

y
4

1m � y
2

1m

exp �y
2

1m

Dðt � t0Þ
R

2

� �
: (20)

Altogether, our derivation results in the identity

ðr~ðtÞ � r~ðt0ÞÞ2
� �

¼R
2 � R

2 +
N

m¼1

8

y
4

1m � y
2

1m

exp �y
2

1m

Dðt� t0Þ
R

2

� �
:

(21)

Given the values of ynm, which are in the order m ¼ 1, 2, 3,. . . according to

Abramowitz and Stegun (1968),

1:84118; 5:33144; 8:53632; 11:706;

14:8636; 18:0155; 21:1644; . . . ; (22)

one can recognize that the series in Eq.21 is rapidly converging and, in fact,

reaches zero for t ¼ t0 due to the identity +
m
ð8=ðy41m � y21mÞÞ ¼ 1: This

identity follows from Æ2r~ðt0Þ � r~ðt0Þæ ¼ R2 ¼ Iðt0; t0Þ: For the overall shape
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of Eq.21, only the leading term needs to be included, which is approximated

closely by

Æðr~ðtÞ � r~ðt0ÞÞ2æ � R
2½1� expð�3:39Dðt � t0Þ=R2Þ�: (23)

This expression is inaccurate near t ¼ t0, where one can approximate the

curve, however, by 4D(t � t0). This linear curve has been fitted to the

experimental data in Fig. 5 c, resulting in a D value of 1.5 nm2/ms.

Expression 23 reaches 90% of its saturation value at t � t0 ¼ 0.68 R2/D. For

R¼ 3.9 nm, this is 7 ms; the relaxation time t ¼ R2/(3.39D) arising in Eq. 23

is ;3 ms.
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