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Molecular dynamics simulations investigate local and global motion in molecules. Several
parallel computing approaches have been taken to attack the most computationally expensive
phase of molecular simulations, the evaluation of long range interactions. This paper reviews
these approaches and develops a straightforward but effective algorithm using the machine-
independent parallel programming language, Linda. The algorithm was run both on a shared
memory parallel computer and on a network of high performance Unix workstations. Perfor-
mance benchmarks were performed on both systems using two proteins. This algorithm
offers a portable cost-effective alternative for molecular dynamics simulations. In view of
the increasing numbers of networked workstations, this approach could help make molecular
dynamics simulations more easily accessible to the research community. © 1992 Academic
Press, Inc.

INTRODUCTION

Molecular dynamics, the study of local and global motion in molecules,
has become increasingly important for the investigation of structure—function
relationships in biological molecules (I). Typical local motions include move-
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Fic. 1. Sequential molecutar dynamics algorithm. This figure gives an overview of the computation
for a typical molecular dynamics algorithm. The majority of the computation time is spent in the
calculation of nonbonded forces and energies.

ments of an amino acid or groups of amino acids in the binding site of a protein,
while typical global motions include movement of globular domains about hinge
regions. Since the direct experimental measurement of dynamic behavior is
extremely difficult, molecular simulations have been employed to study these
problems.

A number of algorithms have been proposed to allow molecular dynamics
simulations to run on parallel computers. In this paper, we review the computa-
tional strategies for parallelizing molecular simulations and describe a portable
algorithm for parallelizing these simulations. This algorithm has been imple-
mented using Linda, a machine-independent parallel programming language, on
both a network of Unix workstations and on a shared memory parallel computer.
The network implementation gives molecular dynamics simulations easy access
to a very powerful computing resource available at many academic institutions,
a network of high performance workstations.

MOLECULAR DYNAMICS SIMULATIONS

Molecular simulations involve the iterative computation of the total potential
energy, the forces and updated coordinates for each atom in the molecule. A
schematic overview of the sequential steps for a molecular dynamics simulation
is shown in Fig. 1. The total potential energy typically includes bond energy,
angle energy, dihedral angle energy, and nonbonded energy which includes van
der Waals and electrostatic terms. Each of the energies can be relatively rapidly
calculated except nonbonded energy. Updating the coordinates is performed
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by numerically solving the Newtonian equations of motion, which is a relatively
inexpensive computation.

The calculation of nonbonded energy and corresponding force terms (long-
range interactions that-occur between pairs of atoms) is extremely computation-
ally intensive since contributions may have to be calculated for each pair of
atoms. Nonbonded interactions are usually not calculated for atoms that are
covalently bonded to each other or that are separated by only two covalent
bonds. The atoms that do interact via nonbonded forces are typically indicated
in a matrix, the nonbonded matrix. Since the force of atom i on atom j is the
exact inverse of the force of atom j on atom i, the interaction matrix is symmetric
and can be stored as a triangular matrix. One approach to reducing the computa-
tion time is to exclude the calculation of nonbonded forces if the distance
between a pair of atoms is greater than some cutoff distance, although some
error is introduced when a distance cutoff is employed. The information on such
exclusions can also be encoded as part of the nonbonded matrix which may
then require periodic updating as the atoms move relative to each other.

Several parallel computing approaches have been taken to attack the most
computationally expensive phase of molecular simulations, the evaluation of
long-range interactions. Vector supercomputers are frequently employed for
these simulations (2). These computers gain their speed by performing opera-
tions on a vector of data in parallel. For example, the difference between two
vectors, (X, X;,X;3) and (Y},Y5,Y;), can be calculated by having X, - 1), (X~
Y;), and (X5 — Y3) calculated simultaneously rather than sequentially calculating
the difference in the first, then second, and then the third components on one
processor. This approach is effective for molecular simulations where many
vector calculations with atomic coordinates, velocities, and forces are per-
formed. Although parallelized vector calculations on supercomputers are very
fast, supercomputers are expensive to use and may not be easily accessible to
the general biologic community. '

A second parallel computing strategy involves building application specific
hardware for performing molecular simulations (2-5). A popular approach uti-
lizes transputers, parallel computers whose the processors can be connected in
various topologies such as rings (Fig. 2). Here worker processors are arranged
in a ring and can communicate with their neighbors. Each worker processor is
assigned an equal number of atoms from the protein. All information required
for calculation of nonbonded forces and energies on these atoms, such as
position, mass, and charge, is sent to the workers. Each worker computes
the nonbonded forces and energies between its local atoms. The nonbonded
interactions between atoms assigned to a given worker and atoms assigned to
its neighbor in the clockwise direction are computed by passing a copy of the
atomic information to the nearest neighbor which then computes the contribu-
tion of its local atoms with the atoms passed to it. Each copy of atomic informa-
tion visits each processor in the ring with nonbonded interactions being calcu-
lated at each step. The forces are then collected by the master process and
used for computing updated atomic coordinates. This algorithm implements
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F1G. 2. Parallel molecular dynamics algorithm with processors distributed in a ring. Each worker
processor is assigned an equal portion of the molecule. A copy of the data describing atoms in each
worker is made for communication around the ring. First the interactions of the atoms within that
copy are computed. The copies are then rotated to the next processor (step 2) and the nonbonded
interactions are computed with the local atoms of that worker. This process is continued until the
copies traverse the entire ring. The algorithm includes provisions for avoiding duplicate computa-
tions as the copies traverse the ring.

parallelization at a higher level than vectorization by decomposing the main
problem into several similar tasks, each of which is allocated to a different
processor. Transputers connected in a ring topology have been shown to be
extremely competitive and cost effective relative to supercomputers; however,
the computer itself must be constructed and links must be physically configured
by hardware specialists thus limiting broad accessibility of the approach.
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General purpose parallel computers have also been utilized for molecular
simulations. Hypercubes are distributed memory parallel computers which can
be configured with the processors in a ring. These parallel computers have been
used with algorithms comparable to that used on transputers [6]. The logic to
coordinate parallel computation on a hypercube is programmed with low level,
machine dependent, function calls, thus making the code difficult to transport
to other platforms. A modified ring algorithm, the replicated systolic loop algo-
rithm, has also been implemented on the Connection Machine, a parallel com-
puter with a large number of very simple processors {7].

Shared memory parallel computers offer the potential for a different algorith-
mic strategy [8]. Global information about the molecule such as the current
atomic coordinates can be stored in shared memory which is accessible to all
processors. This architecture also facilitates the use of a nonbonded exclusion
matrix which can also be stored in shared memory.

A schematic representation of the shared memory algorithm is shown in Fig.
3. The shared memory algorithm includes a master process which sets up the
computation, starts workers, and collects results from workers. Each worker
calculates the nonbonded interactions on portions of the molecule. The atomic
coordinates and nonbonded matrix are globally available, therefore this data
does not need to be passed from processor to processor. The partitioning of the
computation must take into account the fact that different portions of the
molecule require varying amounts of computation to prevent some workers
laying idle while others are still working. This ‘‘load balancing’’ can be accom-
plished dynamically by dividing the molecule into many small tasks relative to
the number of workers. Workers then accept and perform tasks until all the
tasks are completed. After calculating the bonded forces, the master may also
be employed on worker tasks. Another approach, static load balancing to be
discussed below, involves preallocating nearly equal amounts of computation
to each worker.

Portability is again an issue with shared memory programs because they are
highly dependent on machine architecture. Machine dependent subroutines for
allocating shared memory, starting, synchronizing, and terminating workers
also create portability problems. Molecular dynamics simulations could be made
available to a wider research community if a portable, hardware independent
strategy could be employed. A promising approach is the implementation of
these simulations in Linda.

LINDA FOR MOLECULAR DYNAMICS

Linda is a computer language for implementing machine-independent parallel
computations (9, 10). It is portable and runs on several different architectures
including shared memory and distributed memory machines. The idea behind
Linda is conceptually very simple. The main features include an abstract object,
““tuple space,” where data that is accessible to all processors can be placed.
Access and modification on data in tuple space is possible with four operators,
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F1c. 3. Parallel molecular dynamics.algorithm on a shared memory computer. This algorithm uses
shared memory for global data access. The double headed arrows indicate bi-directional flow of
data. The workers independently calculate nonbonded forces and energies using the nonbonded
matrix and coordinates in shared memory. Nonbonded forces and energies are communicated back
to shared memory. Inmplementations that employ.a cutoff for calculating nonbonded forces, the
nonbonded matrix may require updating as the simmilation progresses. This figure is adapted from
Fig. 1 of (8).

in, out, rd, and eval. Data intuple space are organized as ordered tuples much
like data in a relational database table. Data tuples are added to tuple space via
the out operator. Data-are requested -and removed from tuple space by using
the in operator. The tuple requested by an in operation must match a tuple in
tuple space. If a matching tuple is not available, the requesting process waits
until one is available. The rd operation is comparable to the in except the
matching tuple is not removed from tuple space, i.e., a carbon copy is given
to the requesting process.: Finally, new processes are created with the eval
operator.

The Linda paradigm, which.is-implemented by integrating the four operators
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into a conventional language such as C or Fortran, fosters high level problem
decomposition into parallel components. Tuple space can be used as both a
highway for message passing and as a globally accessible data store.

Recently, an implementation of Linda, Network Linda, has been developed
to run Linda programs on networks of high speed Unix-based computers such
as Sun desktop workstations (/7). Many institutions have large networks of
powerful workstations many of which spend much of their time either com-
pletely idle or being used for light computational tasks such as text editing.
Network Linda makes this massive computing resource available for parallel
attack on computationally intensive problems such as molecular simulations.

The purpose of this study was two fold, to develop a new platform independent
algorithm for calculating long range force interactions and to investigate the
feasibility and utility of this algorithm implemented in Linda and on Network
Linda.

. DESCRIPTION OF ALGORITHM

One standard approach to parallelizing computation using Linda includes one
master process and multiple worker processes. Generally, the master sets up
the computation, starts the workers, parcels out tasks, and collects the final
results. The workers perform their tasks and send results either to the master
for tallying or to other workers for further processing. The challenge is to
balance the work so that the workers are kept busy while minimizing the amount
of interprocess communication among the workers and the master.

The current algorithm uses their master—worker paradigm to parallelize a
C language molecular dynamics package, MD, developed by the Theoretical
Biophysics Group at the University of Illinois. A schematic representation for
the parallel algorithm is shown in Fig. 4. The master starts the workers, reads
from the disk files the structural information and initial coordinates for the
macromolecule, and sends out global data such as parameters for calculating
van der Waals interactions. The master then uses a simple heuristic, described
below, to balance the workload and sends out partitioned data to each worker
for calculating the nonbonded interaction matrix. The workers each read in the
global parameters and build their portion of the nonbonded interaction matrix.
Each worker only requires a small portion of the nonbonded matrix which is
calculated locally.

A round of calculation begins with the master calculating bond, angle, and
dihedral energies. These energy terms are calculated so rapidly that paralleliza-
tion is not needed. Only 3—-5% of the time for the sequential algorithm is spent
in calculating these. The master then sends out the current coordinates of the
atoms to all workers. The workers calculate partial force and energy updates
for their portion of the molecule and send these back to the master where the
updates are collected and used for solving the equations of motion. The updated
coordinates are then used for the next round of the simulation.

The heuristic for load balancing involves giving each worker approximately
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FiG. 4. Parallel molecular dynamics algorithm in Linda. This algorithm is initialized by creating
workers and by communicating global parameters via tuple space to the workers. Each worker
builds the nonbonded matrix for their portion of the molecule. The master calculates bond, angle, and
dihedral angle energies which are relatively less computationally intensive. The workers calculate
nonbonded forces and energies after acquiring current coordinates for their portion of the molecule.
Nonbonded forces and energies are then sent back to the master which accumulates the updates
and calculates updated coordinates by solution of Newtonian equations of motion.
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F1G.5. Heuristic for load balancing. The nonbonded matrix is a triangular matrix for a 10-atom
simulation. A given pair, (i, ), indicates that a nonbonded interaction should be calculated between
atom i and atom j. For simplicity, all pairwise interactions are represented except self interactions.
(Atom i does not interact with itself.) The total number of atom pairs is (10 * 9/2) = 45. With three
workers the target value is therefore 45/3 = 15 pairs per worker. Consecutive rows are allocated
to a worker until the number of elements in a row exceeds the target. The last worker gets all of
the rows that are left.

the same number of pairwise interactions to calculate. If there are N atoms,
there are at most N(N-1)/2 pairs for which interactions must potentially be
calculated. (The actual number of pairs is smaller because covalently bonded
atoms are excluded.) The total number of pairs is divided by the number of
workers to obtain a target value of pairs per node. Rows of the triangular
nonbonded interaction matrix are consecutively allocated to a worker until the
accumulated number of pairs for the node exceeds the target value of pairs per
node. This approach to load balancing is quite effective when the number of
workers is much smaller than the number of atomic pairs. In fact, all workers
generally finish within 2-3 sec of each other, which is about 1% of the total
computation time. A simple example of this heuristic is presented in Fig. 5.

Our algorithm is conceptually similar to the shared memory algorithm except
the global data is passed through tuple space to the workers rather than being
read from shared memory. Our algorithm also uses static load balancing rather
than dynamic load balancing, but could easily be modified to perform dynamic
load balancing. The master would allocate tasks consisting of a portion of the
macromolecule with its associated coordinates and nonbonded matrix. The
workers would then acquire tasks and calculate the nonbonded interactions
until all tasks are completed. This algorithm is simpler than the distributed
algorithms, which pass portions of the macromolecule around the ring, and
involves much less interprocess communication.
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F1G. 6. Speedup vs. Number of Workers on a shared memory computer and on Network Linda.

The speedup is plotted vs. the number of workers on both the Encore Multimax and on Network

Linda running on Sun SparcStations. Two proteins, lysozyme and a segment of the reaction center
of Rhodopseudomonas viridis, were studied.

METHODOLOGY, RESULTS, AND DISCUSSION

The original sequential C language program, MD, for calculating nonbonded
energy and force components was developed by the Theoretical Biophysics
Group at the University of Illinois. This program was parallelized by adding
Linda operations for the above algorithm described above (9, 10). The program
was then run on both the Encore Multimax shared memory parallel computer
and on a network of Sun workstations using Network Linda. Two proteins
were studied: chick lysozyme containing 1265 atoms and a segment of the
photosynthetic reaction center of Rhodopseudomonas viridis containing 3634
atoms. The number of processors was varied to determine the speedup and
efficiency of the algorithm on both parallel computer systems. The base time
against which all times were compared was the time for the parallel program
running with the master and one worker. This time for one worker was essen-
tially the same as that for the sequential program. (One iteration of the sequential
program using lysozyme took 56 sec on a Sun workstation vs. 54 sec with one
worker on Network Linda.) Each experiment was performed five times and the
runtimes averaged. Speedup was calculated by dividing the base time by the
time obtained with multiple workers. Efficiency was calculated by dividing
speedup by the number of workers (/0). Notice that this definition of efficiency
does not include the master process.

Figure 6 shows a plot of the speedup vs. the number of workers obtained for
lysozyme and segment of R. viridis protein on the Encore and on Network
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Fic. 7. Efficiency vs. Number of Workers on a shared memory computer and Network Linda. The
efficiency is plotted vs. the number of workers for both the Encore Multimax and for Network
Linda. Efficiency is calculated by dividing the speedup by the number of workers. The proteins are
the same as those in Fig. 6.

Linda. There is essentially linear speedup with increasing numbers of nodes on
both systems. Figure 7 shows the efficiency vs. the number of nodes for both
proteins. Both systems show a mild decrease in efficiency with increasing the
number of nodes. The performance of this algorithm is competitive with that
recently reported for a shared memory algorithm where the efficiency of 0.66
was obtained on a Hewlett-Packard/Apollo DN10000 with four processors (8).
Our efficiency on a shared memory computer with four workers was 0.99 and
0.83 for lysozyme and the segment the R. viridis protein.

A respresentation calculation for the segment of the R. viridis protein on the
Encore took 1862 sec with one worker. This time was reduced to 230 sec with
15 workers. This is a speedup of 8 and an efficiency of 0.54. On Network Linda
the times were 553 sec for one worker and 45 sec for 15 (speedup = 12, effi-
ciency = 0.81). The speed difference between the two systems with one worker
is due to the faster processor speed of the Sun workstation.

The loss in efficiency with increasing numbers of workers may have several
causes. Interprocess communication overhead is a major factor. The results
were quite similar on both a shared memory computer and Network Linda. This
is interesting since it implies the communication time on the ethernet is still
very small compared to the time of calculating the force components. The
simulation for the segment of the R. viridis protein on the Encore was moderately
less efficient than on Network Linda. This may be due to bus traffic and memory
management on the shared memory machine, since the memory requirements
were significantly larger for this protein. With Network Linda, each processor
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had 16 or more Mbytes of memory, thereby allowing each processor to handle
a large amount of data if necessary.

There are several advantages to our algorithm implemented in Linda. Portabil-
ity is clearly demonstrated since identical source code was run on both a shared
memory parallel machine and a distributed network of computers. Also, Linda
has been implemented on a variety of other parallel computers, including the
Intel Hypercube. Although parallelization strategy is relatively straightforward
and easy to understand, the performance is competitive with other published
algorithms.

Implementing molecular dynamics simulations on Network Linda is appealing
for several reasons. One has access to many very powerful processors, in theory
as many processors as there are workstations on the network. At our institution,
there are plans to incorporate well over 50 Sun workstations into the Network
Linda environment. As the number of workstations increases the potential
computational power of Network Linda will surpass the power of a supercom-
puter. Another advantage may exist for problems where the data structures are
too large to conveniently fit onto single workstation. These problems can be
easily partitioned and run on distributed workstations which collectively have
more memory than a single workstation or shared memory computer.

In summary, we have developed a platform independent algorithm for molecu-
lar dynamics simulations which incorporates parallelization for the computation
of long-range interactions. The Linda approach appears promising for ad-
dressing these computationally intensive problems. Furthermore, Network
Linda offers an accessible, powerful, cost-effective alternative for molecular
simulations.
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