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We show that magnetic field effects observed on reactions between two paramagnetic end groups
of a polymer can be explained through the folding motion of the polymer. This folding
stochastically alters the exchange interaction between the paramagnetic end groups and, thereby,
affects their spin dynamics. We describe the resulting stochastic quantum system by a (Monte
Carlo) computer simulation as well as by a new approximation which involves the spectrum of
the stochastic interaction. This approximation can be of general use for the description of
stochastic quantum systems when a diagonal stochastic interaction originates from an arbitrary,

i.e., nonlinear and non-Gaussian, stochastic process.

1. INTRODUCTION

The effects of magnetic fields in the range 10-1000 G on
reactions between paramagnetic molecules have provided
important insights into the dynamics of chemical processes
in the condensed phase.!-? In view of the fact that interaction
energies guBh for fields in this range are well below thermal
energies, the existence of such effects may appear surprising.
However, the time scales over which thermodynamic argu-
ments apply is determined by the relaxation times of the
paramagnetic materials which can be much longer than the
short lifetime 7 of paramagnetic intermediates during a
chemical reaction. In this case magnetic fields of the order
B~ 1/gur can have an influence on the reaction products.
For this to be the case the paramagnetic intermediates must
be “born” in a pure spin state.

An example of a reaction which is influenced by weak
magnetic fields is the light-induced electron transfer reac-
tion>* involving molecules *A (electron acceptor, €.g., py-
rene) and 'D (electron donor, e.g., dimethylaniline) which
yields “fast” (ns) triplet molecules *A*:

'A + 'D + photon—'A* + 'D—!(?°A~ 4+ °D")

«(CAT +D*)-3A*+ 'D. n
Without the partner molecules 'D being present “slow” tri-
plets *A* are produced due to spin orbit coupling by the
conventional singlet-triplet crossing 'A*—>A*. The fast
route to triplet molecules Eq. (1) involves the intermediate
doublet pair 2A~ + D™ which is born in an overall singlet
state denoted by ! (2A~ + 2D™). This pure spin state is per-
turbed by the interactions collected in the Hamiltonian

H=H,+H,+V({J)), 2)
N;

Ho=gB-S + 3 aly S5 i=12, 3)
k=1

V() =J(I[1+2S, -Sa] )

H, describes the interaction of the electron spin S; of the
paramagnetic (doublet) molecule i with the external mag-
netic field B (Zeeman interaction) and with the N, nuclear
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spins I, (hyperfine interaction). In this article we assume
that the g values entering in the Zeeman interaction are both
identical and that the hyperfine coupling is isotropic. The
hyperfine coupling constants assumed for the compounds
2pyrene™ and 2dimethylaniline* are® (in G)

pyrene 4. (ay =2.3); 4:(ayg =5.2), (5a)
dimeth. 6- (agy = 12.0); 1. (ay = 12.0);
3. (ay =6.25). (5b)

V(J) represents the exchange interaction which is as-
sumed to act “through space.” The coupling strength J de-
pends on the distance between the paramagnetic molecules.
Since the exchange interaction acts through the solvent the
distance dependence could be influenced by the electronic
properties of the solvent molecules. In this article we will
adopt the following distance dependence which has been
suggested by deKanter et al.5:

J(r) =J, exp( —ar), (6a)
Jo=9.46X10° G; a=2.136A""'. (6b)

This dependence will play a cruical role in the following
and will be further discussed below. For an observation the
molecules 'A and 'D are solvated in a polar organic liquid,
for example, methanol.? 'A is excited electronically by a ns
laser flash and the formation of >A* is monitored by a second
light beam. The transient concentration of *A* is found to
depend strongly on the strength of the external magnetic
field B. The magnetic field effect can be explained by means
of the probability p(#,B) that a singlet pair '(’A~ + ’D*)
assumes triplet character at time ¢, i.e., reaches the state
3(2A + 2D™). This probability is given by'>

pr(t.B) = (1/Z2)Tr[Q-UNQs] , (N
where

Os=1-5,5;, (8)

Qq=3+5:5; (%9

are the projection operators on the singlet and triplet states
and U(¢) describes the propagation of the density matrix of
the system. The system is initially in the singlet state as de-
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FIG. 1. Magnetic field dependence of the triplet yield ¢, (B) of a 2( pyr-
ene)~ + *(dimethylaniline) * pair with a lifetime 7 = 1 ns; (a) J=0 G,
(b) 27 = 300 G. The triplet probability has been calculated by spectral ex-
pansion of the Hamiltonian H. However, we have adopted the approxima-
tion suggested by Eq. (22), with n, =1

scribed by Qg and one is interested in the triplet character at
time 4, i.e., applies Q- after the propagation of Qg from ¢ = 0
to time 2. U(¢) corresponds to the superoperator discussed in
detail in Secs. ITI and IV. The trace involves all electron-
nuclear spin states and Z = Tr Qg is the number of all nu-
clear spin states. The yield of triplet products 4 * is then
given by

¢ (B) = fw dtexp( —t/70)pr(1,B), (10)
0

where 7, is the lifetime of the doublet pair 24 ~ + 2D *+. This
observable is shown in Figs. 1(a) and 1(b) for situations
with fixed exchange interactions J(r) = 0 and 2J(7) = 300
G. The observable has been calculated as described in Ref. 5
and below Fig, 1. .

In the case J = O the triplet yield (9) decreases mono-
tonically with increasing magnetic fields and reaches a con-
stant value for fields By =, a, . This behavior is well under-
stood."”® In the case of a nonvanishing exchange interaction
the singlet and triplet levels are energetically shifted with
respect to each other by 2J. For J> 2, a;, singlet and triplet
transitions cannot be induced by the hyperfine coupling ex-
cept at fields B~2J when (for /> 0) the triplet state T"_,
becomes degenerate with the singlet state S,. This degener-
acy causes the maximum of the triplet yield ¢,.(B) in Fig.
1(b).

The yield in Fig. 1(a) calculated for a vanishing ex-
change interaction agrees well with the observations when
'A and 'D are separate molecules which diffuse freely (ex-
cept for the Coulomb attraction of the doublet pair) in the
solvent. A detailed description which accounts for the diffu-
sive motion of the reaction partners 2A~ 4 2D+ showed
that during most of the lifetime 7 the partners are separated
rather far and, hence, the exchange interaction between
them is negligible.**

Recently, the formation of fast triplets has been studied
for the compound 'A-(CH, ), —'D where 'A and 'D are con-
nected by a short aliphatic polymer chain (7 = 7-16).1%1!
In this case the magnetic field dependence appears more like
that in Fig. 1(b), i.e., indicates a nonvanishing exchange
interaction.

However, the observations in Refs. 10 and 11 show also
important differences compared to the yield as shown in Fig.
1(b). First, the maximum value of the yield Gr (B ) is
only about 20% larger than the yield ¢, (B =0) at zero
field. Second, the observed maximum is much broader.
These features point to the possibility that the doublet pair
’A~~(CH,),-*D* formed as an intermediate experiences a
distribution of exchange interactions. In this paper we want
to demonstrate that this is, in fact, the case. However, the
distribution of exchange interactions which explains the ob-
servation does not reflect the static folding pattern of the
polymer but rather originates from the dynamics of the fold-
ing polymer. The exchange interaction (2) has to be consid-
ered a stochastic variable for the doublet pair
*A™-(CH,),-*D™*. We will demonstrate that this com-
pound establishes a prototype stochastic quantum system
which is both amenable to a theoretical description and to an
experimental observation.

The approach taken below follows two roads: (a) We
determine the spin dynamics of the doublet pair by a com-
puter simulation describing as realistically as possible the
polymer folding (Sec. II) as well as the spin dynamics (Sec.
III). (b) We develop an approximate description (Sec. IV)
which involves the spectrum of the stochastic exchange cou-
pling J [7(#) ]. This latter approach yields a simple interpre-
tation of the behavior of the stochastic quantum system at
least for the case that the lifetime 7 of the paramagnetic inter-
mediates is short. Both descriptions explain the observed
quantum  yield @,(B) of the triplet molecules
’A*-(CH,),~'D originating from the paramagnetic poly-
mer intermediate.

The mechanism which leads to magnetic field effects on
the reaction (1) is closely related to the mechanism of
“chemically induced dynamic polarization” which is ob-
served through changes in the intensities of NMR and ESR
spectra of reactants.'? The influence of the folding of a poly-
mer with paramagnetic ends on NMR spectra has been stud-
ied in an important series of papers by de Kanter et ¢/.6 and
by Closs."® The papers by de Kanter et al. which provide an
explanation of nuclear spin polarizations observed by NMR
corroborate our findings presented below. The principal ad-
vance achieved in our work is the approximation developed
in Sec. IV which leads to a better understanding of the obser-
vations. Our theory also addresses an observable different
from that in Ref. 6, i.e., the triplet yield é+(B) which is
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produced by transitions involving all four electron spin
states. However, an important issue of this work has been to
reexamine the theory of deKanter et al. as it is based on the
assumption that the exchange interaction J between the
paramagnetic end groups of polymeres acts “through space”
rather than “through bond,” the distance dependence of J
being governed by Eq. (6).

The approximation in Sec. IV provides a description of
time-dependent stochastic quantum systems in terms of a
distribution of time-independent quantum system employ-
ing the spectrum of the stochastic interaction. This result is
based on the work of Kubo,!* Johnson,'> and Blume'¢ and
allows to describe the influence of nonlinear non-Gaussian
stochastic processes on quantum systems, i.e., constitutes a
generalization of the description suggested by Anderson and
Weiss'” and Kubo and Tomita.'® We believe that this ap-
proximation is useful beyond the special quantum system
considered here.

Il. COMPUTER SIMULATION OF THE POLYMER
FOLDING

The origin of the stochastic variation of the exchange
energy between the paramagnetic end groups of
2A~—(CH,),-*D* is the folding of its polymer moiety
—(CH,),—. The relevant stochastic variable is the distance
r(t) between the two polymer ends. In a “mean field” de-
scription the time-dependent distribution of end—end dis-
tances p(r,t) satisfies the Fokker—Planck equation in the
strong friction limit'®

a.p(rt) =L(r)p(rt), (11)
L(r) =D03,py(r)3, [po(r)17". (12)

Here py(r) denotes the equilibrium distribution function of
the end-end distances and D is the effective diffusion coeffi-
cient the value of which should be somewhat smaller than
the sum of the diffusion coefficients of the separate groups
2A~ and 2D™. The static distribution Do(r) entails informa-
tion on the sterical interactions of the polymer chain
~(CH,),—-. However, Egs. (11) and (12) do not correctly
describe the effect of the sterical interactions on the polymer
dynamics and actually underestimate the longest relaxation
times of the system. However, since the life time of the para-
magnetic species 2A "—(CH,) ,->D* of a few nanoseconds is
much shorter than the longest relaxation times of the poly-
mer the mean field description adopted here should be suffi-
cient.

In lieu of available information on p,(7) we have gener-
ated this distribution by a computer simulation which mod-
els the force field between all atoms of the system and inte-
grates the Newtonian equations of motion for all degrees of
freedom. The simulation program employed has been devel-
oped by Karplus and co-workers?? for the description of the
dynamics of biological macromolecules. In our simulation
we added random forces and friction to all atoms?! in order
to describe the effect of a solvent. The distribution resulting
from sampling the r(¢) values of a long-time trajectory of the
polymer is presented in Fig. 2. The diagram shows the actual
end-end distribution as it results from the simulation as well
as a smooth fit to this distribution in terms of the analytical
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function
P(r) =P (r—ruu)?exp[ — (1 —1/r)?] (13)

with 7., = 11.5 A and 7, = 25 A. For convenience this lat-
ter function was used as p,(r) in all further calculations.
The random motion of the end—end distance r(¢) was
generated by a Monte Carlo algorithm applied to the sto-
chastic differential equation analog of Egs. (11) and (12),

dr = D3, In[p,(r)]dt +VDdW,, (14)

where d W, describes white Gaussian noise.

The algorithm generated trajectories r(n7),n =0,
1,2,..., of end—end distances starting from initial values (0)
selected according to the equilibrium distribution p,(7). The
nth displacement, i.e., r[(n~1)7]1—r(nr) was chosen ac-
cording to Eq. (14). For this purpose the force term in Eq.
(14) was locally, i.e., around 7[ (n-1)7], expanded

D, In[py(r)] =a+B{r—rl[(n—1)r]} (15)

and the endpoints 7(nr) selected by means of a random
number generator from the Gaussian distribution®®

{ro=rl(n—1)71},

d(r) = (2m0®) " Pexp{ — }[(r —u)/0]?},  (16a)
o=[(1-6)/81"?, (16b)
T p=rf—all—6)/8, (16¢c)
O =exp(—p5t). (16d)

The resulting trajectories??> r(n7),n =0,1,2,..., yield the
fluctuating exchange interactions J [#(n7)] which, hence-
forth, will be denoted by J(n7). It should be noted that
J(n7) does not result from white Gaussian noise. A corre-
sponding approximation would be very poor since r(¢) var-
ies over several A and, hence, J(t) varies over several orders
of magnitude. Actually, the aim of the present paper is to
relate the observed ¢,(B) and the stochastic process J(z)
modeled as realistically as possible.
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FIG. 2. Distribution of end-end distances for the polymer
CH,-(CH,)y~CH, resulting from a molecular dynamics calculation in-
volving the computer program of Karplus ez al. (Ref. 20). The hydrogen
atoms in this compound were not explicitly described but only included
through an increase of the van der Waals radii of the carbon atoms. These
atoms were subjected to random forces and friction according to the algo-
rithm in Ref. 21, Superimposed is a smooth distribution which is a fit of
analytical functions of the type (13) to the simulated distribution.
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FIG. 3. Comparison of the triplet probability p(¢) as calculated exactly by

a spectral expansion of H(J) and as calculated invoking repeatedly the ap-

proximation (20) with 7 = 107 '%s; (a) J = 400 G (fixed), B = 800 G; (b)
J=1500G (fixed), B = 1000 G.

lll. COMPUTER SIMULATION OF THE SPIN DYNAMICS
In order to evaluate the propagator U(¢) for the density

operator in the representation of the electron—nuclear spin
states we employ the von Neumann equation

dp= —H[J()]p, (17)
where H[J(2)] = {H [J(2)],...,.}. Here H[J(¢)] denotes a
time-dependent superoperator, H [J(r)] the Hamiltonian
(2) and [, ] the commutator. The propagator can be for-
mally written

U() =exp_{ ——l'f dt’H[J(t')]} .

The exponential operator in Eq. (18) is time ordered and is
defined by the limit 7—0 of
exp{ — itH[J(N7)]}- - .exp{ — irH[J(27) ]}

Xexp{ — itH[J(7)]} (19)
with N7 constant. The ensemble average later denoted by ()
covers all histories of J [#(n7)] values when the system as-
sumes initially the distribution of end—end distances DPo(r).
For the computer evaluation we have replaced the exponen-
tial operators in Eq. (19) by

exp{ —itH[J(n7)1} =1 — irH[J(n7)] .

(18)

(20)
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This latter approximation was tested for fixed J and was
found satisfactory for times long enough compared with the
assumed lifetimes 7 of the paramagnetic species.?® The read-
er should note that since Eq. (20) is applied repeatedly at
times? = 7,27,37,..., the approximation (20) is related to the
well-known relationship

exp(at) =lim,_, (1 +at/n)".
Figures 3(a) and 3(b) compare for two cases of fixed ex-

change interactions the triplet probability resulting from an

exact calculation with the triplet probability of a calculation
which evokes Eq. (20). The triplet probabilities are found to
be accurate up to ¢ = 10 ns, i.e., well beyond the lifetime
To = 1 ns assumed.

For an application to realistic nuclear spin systems like
that of ?(pyrene) ~—(CH,),~? (dimethylaniline) * with 18
nuclear spins and over 10° different electron—nuclear spin
states the calculation as outlined is too time consuming.
Therefore, we replaced the hyperfine interaction in Eq. (3)
by

g 3y I,-s,

ms==1
with a reduced number #, <N, of nuclear spins and all hy-
perfine coupling constants of one molecule identical. The
replacement was chosen such that the following sums are
kept invariant (i = 1, 2):

(21)

N,
> @il Iy + 1) . (22)

@ Y LU+ 1) =
m=1] k=1
This choice guarantees that the reduced nuclear spin system
for short and intermediate times reproduces the triplet prob-
ability p,(¢,B) of the complete system. This property can be
derived from the short time expansion®* and from the semi-
classical approximation® of p,(z,B) the latter of which
holds for intermediate times. These descriptions of p,(2,B)
show that the dynamics of the system depend solely on the
sums in Eq. (22) and not on the individual hyperfine cou-
pling constants. The time period over which the reduced
system reproduces the triplet probability of the complete
system increases with the number of nuclear spins 7, as dem-
onstrated in Ref. 23. For our present investigation it was
found sufficient to choose only one nuclear spin on each
molecule. The spin dynamics of the reduced system can be
simulated according to the algorithm suggested by Egs.
(18)—(20) if one exploits the additional simplifications re-
sulting from the fact that the reduced system has all hyper-
fine coupling constants &, at one molecule identical. >3
The magnetic field dependence of the triplet yield
$r(B)  resulting for a  %(pyrene) -(CH,),-
*(dimethylaniline) * pair of paramagnetic groups with an
end-end equilibrium distribution of Fig. 2 is presented in
Fig. 4. In our simulation we have assumed a value of
4X107° cm?s™! for the diffusion coefficient D. The yield
shown closely resembles the observation of Refs. 10 and 11
in that the maximum of ¢, (B) in Fig. 4 is assumed at the
field B,,,, = 300 G which compares well with the observa-
tion of B,,, =285G. The ratio ¢, (B,,.,)/d(B=0) is
found theoretically to be 1.1 and experimentally to be 1.3.
These latter values have to be compared with a ratio of §
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obtained if a fixed exchange interaction of 2/ =300 G is
assumed [see Fig. 1(b)]. The good agreement with the ob-
servation shows that one can explain the magnetic field de-
pendence of the triplet yield ¢ (B) in polymethylene-linked
donor-acceptor systems with the stochastic modulation of
the distance dependent exchange interaction (6b). This
finding provides a strong argument against an influence of a
“through bond exchange” along the aliphatic chain and ap-
pears to settle the dispute?® about the origin of the exchange
interaction in this polymeric system in favor of an exchange
straight through the space (solvent) between the end
groups. However, there exists still the possibility that the
stochastic variation of the dihedral angles of the polymer
contributes to the spin motion of the paramagnetic end
groups and that, for some fortuitous reason, the distance
dependence (6) effectively accounts for the coupling of the
through bond exchange interaction to the polymer folding
motion. An argument in favor of the latter possibility is the
fact that the distance dependence (6) is not based on a rigor-
ous derivation within the model of a “through space” ex-
change interaction but should be considered a phenomeno-
logical relationship which fits the observations in Refs. 6, 10,
11, and 13.

The computer simulation which yielded the results in
Fig. 4 is extremely time consuming and demanded a CPU
time of about 100 h on a VAX 11/750. This vast amount of
computer time is due to the Monte Carlo character of the
algorithm which requires large enough samples to produce
significant results. The simulation does not yield many in-
sights about the behavior of the stochastic spin system, e.g.,
does not provide an answer about the question why the maxi-
mum of ¢, (B) is observed at about 300 G. The computer
time of the theoretical description can be drastically reduced
and insight can be gained if one employs an approximate
description presented in Sec. IV.

IV. SPECTRUM OF THE STOCHASTIC EXCHANGE
INTERACTION

In this section we seek an approximation of the propaga-
tor (18). The fluctuating exchange interaction J(¢) and the
necessary ensemble averages can be evaluated formally best
if one considers the density matrix p(r,¢) to be a function of
the end—end distance r. The propagator U operates thenon a
space ¥, ® V,, where V, is the space of the spin density ma-
trix and ¥, is the space of appropriate functions to describe
the time-dependent end-end distribution. This operator sat-
isfies the Liouville equation'*'®

3, u() ={—MH[J(n] +L}U(®), (23)
where L denotes the Fokker-Planck operator (12). The op-
erators are defined here and in the following either in the
spaces V; or in the space ¥, ® V,. No difficulty should result
from this ambiguity. The Laplace transform of U(z) is

U(s) = [s+HJ) - L] 7. (24)

For the purpose of approximating U(s) we define the
spin operators

H[J(5)] =A[J(1)] + 1B, (25)
where A describes the diagonal part of H and B the off-
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FIG. 4. Magnetic field dependence of the triplet yield ¢, (B) of the poly-
meric compound ?(pyrene) ~—(CH,)¢~?(dimethylaniline)* resulting
from the computer simulation described in the text ( X ) and resulting from
the approximation presented in Sec. IV (—) (D =4X10"%cm?s™").

diagonal part. A is a parameter which will serve us to exa-
mine the approximation developed and is set to A = 1 later.

In the basis in which the electron spin pair is coupled to
overall singlet or triplet states the exchange and Zeeman part
of the Hamiltonian (2) and, hence, of the superoperator H
are diagonal. These interactions can be very large and give
rise to rapid phase oscillations. The hyperfine interaction is
constant and determines the time scale over which the prob-
ability for singlet—triplet transitions develops. Hence, we
adopt for our approximation a perturbation expansion with
A chosen as the (diagonal) unperturbed part and A B as the
perturbation. The propagator U(¢) defined in Eq. (18) will
be developed in powers of @;z. For this purpose we expand
U(1#) in powers of A.

Before we provide this expansion we note the following
properties of A and B. If we denote by P the projection oper-
ator onto that part of ¥, which entails the dlagonal elements
of the spin density matrix p,, then

PAP =0, PA=AP=0, (26a)
PBP =0. (26b)

Here the indices 7, refer to electron—nuclear spin states with
the electron spin in a singlet-triplet basis. We are interested
solely in the ensemble averaged PU (s)P part of the propaga-
tor. The corresponding A expansion is>’
(PU(s)P) =s""P+572 3 P(¥,(s))(—ilB)P,
n>1
” @n
¥,(5) ={—ilB[s+iA(J) = L] '}". (28)

We now introduce the approximation

<en(s)>zf°° djg(){ — A B[s +iA()H]'}",
o (29)

—L]17Y.

The approximation (29) is a key result of this paper.®® Its
value will be demonstrated by examining in how far it repro-
duces the exact evolution operator. We first note that the
approximation (27)-(30) is exact to order A *. This follows
up to order A 2 from the identity'*

(i) =L Re([i(2 — 23) (30)
m
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[* @atils +ita +p21

=([s+i(a+B2)-L]"") (31)
with B = 0, 4 1and from the fact thatJ(r) enters only in the
form 8 2J(r) in A(J). For A ? it follows from the fact that in
D;(s) the exchange interaction enters at most twice, how-
ever, always with the same prefactor.?® This observation
shows that the approximation holds exactly for short times,
the time scale being defined by the strength of the hyperfine
coupling, not -the exchange and Zeeman interactions. One
can expect that the approximation suggested results in exact
triplet yields #,-(B) as long as the lifetime 7 is only a few
nanoseconds. However, the approximation provides a qual-
itatively correct magnetic field dependence of ¢ - (B) also for
longer lifetimes.”® This is possible since the approximation
(27)-(30) does not correspond to a perturbation series in 4
terminated after A * terms, but rather entails partial infinite
sums, i.e., terms to all orders in A.

The infinite series contributions taken into account are
chosen such that the approximation (29) holds exactly for
long times in case of either very slow or for very fast stochas-
tic motion of (), i.e., for Fokker-Planck operators with
either very small or very large nonvanishing negative eigen-
values. This is trivial for the case of slow polymer folding.
The distribution of j values is in this case

, dr
q()) =po[r(J)]—d—,. (32)
For the case of very fast motion the distribution q(j) as-
sumes the motional narrowing limit, i.e.,

90 =8G— (T)); <J>=f°° drpo(NJ(r) . (33)

In this situation only a “single” exchange interaction affects
the spin motion, i.e., J is effectively time independent and
Eq. (29) holds exactly.

The approximation introduced in this section can be
cast into the form

U= f djg(Nexpl — it H( )],

where the propagator U(¢) with a time-dependent (stochas-
tic) superoperator H([J(#)] is replaced by a superposition of
propagators exp[ — it H( j)] with time-independent super-
operators H( j). Here H( j) denotes the same superoperator
as H[J(#)] except that the stochastic exchange interaction
J(¢) is replaced by the constant j. Equation (34) implies that
the spectrum ¢( /) defined in Eq. (30) can be interpreted asa
dynamical distribution of exchange interactions j of the
polymer system. This distribution is shown in Fig. 5 for the
four cases D =0,4X1075,4X 1075, and 4 X 10~* cm? s~ ",

(34)

J. Chem. Phys., Vol. 84, No. 9, 1 May 1986



K. Schulten and R. Bitti: A polymer with paramagnetic end groups 5161

The algorithm employed for the numerical evaluation of
g(j) from Eq. (30) involves the discretization of the opera-
torin Eq. (31) as described in Refs. 6 and 29 and application
of the Gauss-Seidel algorithm to determine the inverse of a
tridiagonal matrix.>®

The different distributions in Fig. 5 show that the fold-
ing dynamics shift the spectrum of exchange interactions
from small values for D = O to larger values for increasing D.
In case D = 0 and D— o the distribution assumes the limits
(32) and (33), respectively.

Figure 4 compares the magnetic field dependence of the
triplet yield ¢, (B) obtained by means of the approximation
introduced in this section with the results from the simula-
tion discussed in Sec. III. The agreement found is satisfac-
tory. This implies that an interpretation of the observed trip-
let yield (which also closely resembles the curve in Fig. 4)
should refer to the spectrum of exchange interactions ¢( j).
The maximum of ¢, (B) does indeed occur approximately at
the field B, = 2j,,., Which corresponds to the maximum
q(Jjmax ) of g(j) as can be seen from a comparison of Fig. 4
and Fig. 5(b). Therefore, the spectrum g( j) relates the mag-
netic field effect of ¢, (B) to the folding dynamics of the
polymer. The approximation (34) can be employed to study
the dependence of ¢, (B) on the polymer length. The results
of such calculations compare well with the available obser-
vations.?!

Finally we like to express our belief that the approxima-
tion (34) of the ensemble propagator can be applied to other
stochastic quantum systems as well. This application pro-
vides a description when the stochastic interaction is due to a
single fluctuating variable. The coupling to this variable
must not necessarily be linear and the variable must not
originate from a Gaussian process. The approximation in-
troduced is exact in the limits of fast and slow stochastic
motion but, in general, holds only exactly to order O[ (¢)°]
when ¥ is the coupling constant describing the strength of
the off-diagonal part of the quantum process under consider-
ation.
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