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1, Introduction

Many bfological processes are controlled by the time that the participating bio-
molecules need to diffuse around and encounter each other. Nature has devised,:
therefore, a variety of ways to shorten this time by gquiding biomolecules into
lower dimensional spaces, e.g., into the plane of membranes. Still the time spent
on Brownian motion before the actual molecular reactions is exceedingly long com-
pared to the time scale of the single diffusive displacements. Brownian transport
processes also play a role in elementary biological reactions lasting as short as

107125 since even on this time scale the motion of molecules and molecular frag-
ments in the dense biological media at physiological temperatures is of a Brownian
- nature. One may envisage that in such sitvations the fastest Brownian relaxation
processes govern the reaction dynamics. This is not.the case as is shown by a typ-
ical biochemical reaction proceeding along a reaction coordinate with a potential
barrier. Diffusive barrier crossing is a very slow process and occurs only in the
long time tail of Brownian relaxation. In recent years it has become apparent that .
proteins,the main carriers of biological function, exhibit an intrinsic dynamic
disorder. The disorder originates from a local Brownian motion of the ccnstituent

atoms‘. Fluctuations of the protein conformations which contribute to the protein
function again occur very slowly compared to the time scale of local Brownian mo-
tion. All the processes described which last as long as 1 min and as short as

10"25 require a description which accounts properly for the long time behavior of
the intrinsic stochastic dynamics. In this article we will provide such a mathemat-
fcal description. The mathematical derivation is based on 2-sided Padé approximants
which reproduce the long-time behdvior as well as the short-time behavior, i.e:,the
initial state. The description is applied to three sample situvations: linear diffu-
sive transport, lateral diffusion in membranes, and protein dynamics.

2. Observables

" In this Section we define formally a class of observables which allow the moni-
toring of stochastic processes as they occur in biological systems. In the follow-
ing section we will provide examples of such observables. . :

A particle under the influence of a potential U(x) and a random force F(t) and
fr;ction Y is described by the Langevin equation (for the general theory see Ref.

. ,

mi = -3, U(x) - yx + F(t) . (1)

In the case of white noise and strong friction conditions which apply in1§6ndensed
biological media at physiological temperatures, after times of about 107 '¢s the
distribution p(x.tlxo) for an ensemble of biological particles initfally (t = 0)

at position x, satisfies the Fokker-Planck equation (g = 1/KT)

apix,tlx) = Lx)p(x,tx_) faan




‘p(x,t=0|x°) = é(x-xo) , . (2b)
L(x) = 3 .D(x){3,  + B[3, U(x)])} - kix) . (2¢c)

These equations.have to be complemented by two spatial boundery conditions at
X =X:, 1 21,2 :
" L)

D(x) {3, + BIQXU(x)])p(X.tlxo) = xy plx,t]xy) ~(2d)

in case the diffusion space is confined to the interval [il,le.4

In €q.(2c) the first term describes- the diffusive displacements of particles,
the second term the drift in the force field -3_U(x), and the last term the occur-
rence of a possible first-order reaction with a'rate constant k(x). The Fokker-
Planck equation (2) assumes a one-dimensional stochastic motion. The following
theory is not restricted to this dimensionality.

We will consider the following class of observations: Particles are initially
prepared in a distribution v(xo), most commonly a Boltzmann distribution. The

particles propagate then according to Eq.(2) and are observed at time t at positio
x with a weight w(x). The resulting observable is o .

J(t) = fax fdx_ w(x) p(x,t]|x,)vix,). — (3)

This can also be expressed in terms of the Fokker-Planck operator L{x). It is ac-
tually most convenient to consider in the following the Laplace transform of (3)
‘expressed by L(x) . - o

J(w) = fdx w(x){[w - L(x)]_1]b v (x) . . (4)
Here {....}, denotes that the operator .... is restricted to a function space in

which all functions obey (2d). . ..
In some instances an expression in terms of the adjoint Fokker-Planck operator

L) ,
L ix) = 3,D(x)3, - B3, U(x)13, - k(x) i (5)

may be preferred' )

Ty = sax via(le - 6017, W) .o 6y

In this expression {...} _ denotes that the function space is restricted to func-
s ) b .

tions which obey:the boundary condition adjoint to (2d)
D(x) 3, pix,tix]) = &, p(x,tlxdp . '(7)

The derivation of this condition involves a generalization of Green's theorea and
the requirement that the concomitant of L{x) and L*(x) vanishes on the boundary.
Equations (4) and (6) provide the most concise representation of the observables

of interest and will be employed to construct proper approximations. J(w) as given
by (4) and (6) are commonly referred to as correlation functions.

3. Examples .

In our first éxample of observables of the type (4) or (6) we consider particles
which diffuse freely £ U(x)z0_7 in the interval [’x1,x2_7. The diffusion is a proto-

type transport process which occurs intermediately between biochemical reactions..
Of interest is the time which a biomolecule needs to arrive at its target. In our
example the particles are initially positioned at x = x, and become absorbed if they
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reach the tarcet positioned at x = Xg. The process is characterized by L(x) = Dai
and by boundary conditions with Xy = 0 and Ky = The latter corresponds to

pix,t Ixo) =0 at x = x, . (8)

The observable of interest is the rate r(t) of absorption by the'target and can be
expressed as the time derivative of the number of particles N(tlxo) not absorbed

yet at time t. N(tlxo) is of the type (4) with v(x) = c(x-xo) and w(x)z1. The rate
can be evaluated exactly by means of a spectral expansion . '

® . ) . ST,
r(t) = I (-1)"((2n+1)nD/a?] exp(-(2n+1) 2x®Dt/422] (9)
. n=0 . .. )
This result furnishes a test of the approximation developed in Section 4. It should
be pointed out, however, that the approximation to be developed can deal with more
general situations than those considered in this example. For example, it can deal
with a diffusion process with potential barriers 1ying between the initial position
X, and the target position Xpe NI : T ’

The second example concerns an experimental method to measure the lateral diffus
sion in biological membranes, the "continuous fluorescence microphotolysis® method”.
- In an observation a laser beam with profile k(r) is.focused through a microscope

to irradiate a small spot on a biological membrane with diameter of about fym, The
-membrane constituents that one wishes to study, i.e.,proteins or lipids, are Jabeled
with dye molecules which are partially damaged by the irradiation.-The undamaged
dyes fluoresce the incident 1ight. The fluorescence is observed and provides infor-
" mation on the mobility of the dye-labeled membrane constituents. If one assumes a
rotationally symmetric laser profile k(r), the relevant radial Fokker-Planck opera-
. tor-for the distribution of the dye-labeled molecules is for flat membranes

L(x) = (D/x)3,x3_ - k(r) N S

where the second term accounts for the photoreaction (damage) of the dyes, a process
which is assumed to be first order. The observed fluorescence intensity is then de-
scribed by an cbserveble as given by Eq.(4) with v{r) = 1. Since the fluorescence
of the dyes is proportional to the laser intensity, the weight function is given by
the laser profile, i.e.,w(r) = k(r), except for an overall unimportant factor. The
observable can be written ‘

3w = sa%r k(o) - LI 1

The third example concerns the dynamics of proteins as observed thrbugh MoBbauer

spectra of 57Fe. Fe is a constituent of heme grouns and iron-sulfur redox centers
in proteins, and hence, the observation of the dynamics of this atom is of obvious
interest. Mofbaver spectra result from a resonant scattering of y quants involving
a suitable metastzble state of the MoBbauer atom. The spectrum entails information
about the motion of the atom during the lifetime of the metastable state. In the

case of 57Fg the spedtrum is sensitive to the atomic motion in the time window
ins - 100ns®. ' ' ’
The observable, the spectral line shape function I(w), is given by the expression7
I(w) ~ Re J(iw) (11a)
where : ]
J(1w) = fdx exp(ikx)[iw - L(x))™ " exp(-ikx) p,(x) .  (11b)

In this expression « = 7.3 & ~ ! is the momentum of the y quantum, ﬁo(x) the Boltz-

mann distribution of °’Fe in a potential U(x) and L(x) as given in £q.(2c) with
k(x) = 7/2 where T = 7.106s-1 is the natural linewidth of the metastable state.
Obviously the shepe of the MoBbzuer spectrum is related to a correlation function
of the type (4). .
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4, Asoroximation

The starting point for an evaluation of the observables discussed in Section 3
are £qs.(4) and (6). These expressions are expanded for low and high frequencies

Jw) v~ Eu_ (-w) " (12a)
w+0 ne=o ~(P*1
oo . 1, n+l (12b)
. SJ(w) v~ L ug -3 . e e
wre n=0
The expansion coefficients are in the case of (4)
wo = -1 fax v L) )y vix) - " (13a)
and in the case of (6) - ‘
= 0T Jax v(s:){[L*(x)]")b+ w (x) . (13b)

" These coefficients, the so-called generalized moments , can be constructed recur-’
sive]y'in the order Pos Py Pgs woeee and u_1, Mogs seeee = The determination of

the moments with positive index is trivial. The coefficients with negative indices
can be expressed by simple quadratures or evaluated numerically. For this purpdse

we consider the function f_1(x) = { [’L*(x)‘J'ilb*w(x) which is defined equivalently

by 1t (x) £_;(x) = wix) ' (14)

e

complemented with the boundary conditions specified by { },. If an algorithm to
: b

obtain f_i(x) for arbitrary w(x) exists, one can evaluate y_4 in (6) and also recur-

sively u_ o, ¥ g .-+ - _
The latter require the intermediate solution of - S -
tY(x) £_,(x) = £_,(x) , ete., (14')
(complemented ‘again with the proper boundary conditions) which is equivalent to (14).
The solution of Eq.(14) can be expressed by a quadrature in the case that L* is

givenr by (5) with k(x)z0. The solution depends on the boundary condition. In case
X4< Xy and Ky = 0, Kyt which corresponds to example 1 of Section 3, the $olution is

x b 4
2 - '
£ ) = =1 dy (DR, J dz polwiz) (15)
. X X
1

Solutions for other boundary conditions and for moments eipressed by (13a) can be
constructed by means of the identities
LY (x) = exp[BU(x)] 3, exp(-BU(x)]D(x) 3, (162)

Lix) = ax'exp[-BU(x)]D(x) 3, exp[BU(x)] . (16b)

The reader may also consult Gardiner3 who solves this problem in the framework of
the mean first passage time approximation.

In the case k(x) # O one can solve (14) by employing a discretization scheme for
the Fokker-Planck operator which results in 2 tridiagonal matrix for L or L*. For
the inverse of a tridiagonal matrix one can apply the well-known Gaussian elimina-
tion procedured and thereby determine f_1(x). The computational effort of the

Gaussian elimination grows only linearly with the matrix dimension and,. therefore,
can be applied to dimensions of a few thousand. Below a certain mesh size the mo-
ments have been found to be independent of the discretization scheme. Hence, the
_moments can be constructed to include any desired features of the model potential

surfaces.
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We will now construct an approximate observable S(u) which reproduces the N,
leading terms of the low-frequency expansion (12a) and the N, leading terms of
- the high-frequency expansion (12b) where Nl + Nh = 2N is even. The functional

form of j(u) should be such that the corresponding time-dependent function ()

entails a series of exponentials. This implies that j{u) can be expressed by the
(N+1,N) Padé approximants, i.e.,fractions of polynomials in w of degree N+1
(denominator) and N (numerator). Such Padé approximants have been constructed

’ befo‘fe9 for one-sided conditions only, namely to reproduce the leading ‘terms of
the high-frequency expansion in u". However, so-called 2-sided Pade approximants

can be constructed10 which reproduce a desired behavior in w and u". We have de-
rived a representation best suited for numerical applications which reproduces the
desired terms of both (12a) and (12b). The approximant, later on referred to as

(Nh.Nz),is

N-1
3w =z " 2" @b ™A vt 2! (17)
_where: n=0 * :
j "" . = - e .=

(9_; )1 _u“’Nz""i‘i'j 10,....,N 1, )O,...,N
as ; = 2?1/2 ' ( Nl.even )

. ) | ' (18)
a=a®y /2, 5o 08,4072 (¥, oda y
A= (§°..-.,3F") . ({ N x N matrix )

" . and where A, and bn are the eigenvalues and eigenvectors, respectively, of the Fro-
benius matrix

000 LI Yo

100..0 Y] . '
F= JO1o0 ... Y, . . . (19)

o ... 1YN—1J.

\

Here, the vector y is the solution of

Ay=a2a. (20)
.The eigenvectors may be obtained recursively by means of
n n n
(9, = Yolln: (b ); = [(b )i_1+Yi]/ln L. (21)

An equivalent representation of wa) is furﬁished by expressing the (N+1,N) Padé
approximant in terms of a partial fraction expansion .

-~ N"1 . :
jw) =2 £ /(v + a) . . (22a)
n=o 0 n
The amplitudes f_and relaxation constants o, must obey
N-1 : . . - .
I f a" =y eomo= =Ny, =No41, L.l N -1 . (22b)

n n- m : 2



" The algebraic solution of (22) is only feasible for N = 1,2. For larger N ore should
solve for f_and oo from £qs.(17)-(21). '

The S]gorithm pfesented is closely related to the well-known moment expansion

of correlation functions“ which reproduces systematically only the high-frequency
dependence (12b). The approximent is commonly provided in terms of a continued frac-
tion expansion which, however, is equivalent to a representation by means of the
Pad¢ approximant given here. The low-frequency dependence is accounted for by a
“memory_kernel" for which no systematic representation exists. In our description
the "memory kernel" is disposed of in favor of 2-sided conditions enforcing the
correct low-frequency behavior (12a). The reason why this route had not been tried
before is connected with the need for the moments Moy Mogo eeee 1t had probably

not been realized that algorithms for these moments do exist at least for problems
which are essentially one-dimensional, e.g.,three-dimensional transport with spher-
ical symmetry. We have succeeded in generalizing the construction of the moments
M_gs Hogs oooe also to situations which deviate from a one-dimensional linear struc-

ture of L(x). Representing a tridiagonal L by a linear graph » the generali-
zation applies also to nontridiagonal L corresponding to graphs with a finite

number of structures — f> and - and reactions at the graph end

pointi. The moments Y_y, "-2:"" are related to mean first passage times as shown

in the following section. One can therefore expect tﬁat the current work on mean
first passage times. for higher dimensional problems will contribute also to the
evaluation of pn‘s for a wider class of problems.

5._Re1ationship to the 'Mean First Passage Time' Approximation
The méan first passage time 1(xo) describes the mean time which particles, star-
ting at some position x=x, need to pass the position x=x, for the first time. It is

assumed that the particles are described by Eqs.(Za)-(Zc). Particles which arrive at
X=X, are taken out to achieve measurement of first passage. This corresponds to the

boundary condition (2d) with K re, i.e.,(8). The second spatial boundary condition
at X=X is dicta}ed by particle number conservation and requires ¢‘=0 in (2d). How-

ever, there are also more general boundary conditions possible. The mean first pas-
sage time 1(xo) is accessible through the particle number correlation function

N(t]x_) = Jsax plx,t[x) . -. (23)
by means of the exponential approximation
N(t|x_)) = N exp[-t/t(x )]. (24)

This approximation implies the identity
. [}
N T(x,) = édt N(t]x ). ’ (25)

In order to determine r(xo) one starts from the adjoint equation to (22)

+ :
3tp(x,t|xo) =L (xo)p(x:tlxo). (26)
Equations (23), (25) and the appropriate boundary conditions yield
+
L7 (x,) t(x,) = -1 (27)
3xr(x? = 0 at X=X, ; rtxz)‘= 0.
This is the well-known differential equation for the mean first passage‘time3’4.

ee



In order to derive the relationship to the approximation in Section 4 we apply
the algoritha derived to an observable with v(x)=6(x-xo), w(x)z1 and Nl=l. Nh=1.

The leading terms of the low-frequency and high-frequency expansion are
A +, -
N(w]x,) ~ N_faxé (x-x_) { (L) ‘)b+(-n

u_y (x)) (28a)

and .

ﬁ(u]xo) ~ Nofdxé(x—xo)(Ilw).1 =N /u M/ o "(ééb)

where we have introduced the above definition of the moments Moo Q_,.-If we now
set f(x)=N°{(L*)"}b+(-1) or rather . i
L*(x) #(x) = -N
3pplying the adjoint boundary conditions, a comparison with (27) shows
f(x)ft(x)No. It follows M,=N, and ”—l=’(xo)No‘ If one now applies the algorithm
of Section 4 one obtains according to £q.(22b) foa:=u° R fb°; =y_, and, hence,
fombo=Ny u;1=1(x6). Altogether, the algorithm yields '
. »~ . _1
. N(wlxo) = N /lwtt ' (x))
or rather £q.(24). ’ :

In Ref. 12 the mean first passage time monoexponential aﬁproximafion had been
generalized to a biexponential approxipation reproducing correctly Mys Hos Uy

"and M, of 2 particle number correlation function. In this article we have gener-

alized the theory to arbitrary correlation functions and to an arb%trary number
of exponential contributions. .

6. Results . : )
Figure 1 represents the observable of the first example of Section 3, the rate

"ﬁ(t) of absorbance of a particle diffusing freely from Xy to x,. The figure com-
pares the exact rate with the approximants (Nh’Nz) reproducing the Nh (Nz) leading
terms of the high (low)-frequency expansion. In this example the moments Mogs Moo

... which correspond to R(0), N{0), ... all vanish. The rate exhibits a typical
threshold behaviour, i.e.,the rate is completely flat and vanishes atoghogt times
and assumes nonzero.values rather suddenly at later times. Such behavior is .
difficult to reproduce by a series of exponentials exp(ant) and leads to spurious
oscillations. ‘
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Fig. 1: Comparision o} exact and approximate absorption rates for a particle
diffusing linearly from x, to x, [1) = (x, - x,)2/20)




Ficure 1 shows thet the most simple nontrivial approximation (2,2) which entails
two exponential contributions describes rather correctly the overall increase,

the maximum and the decay of the rate. Including more exponentials by way of (2,4)
and (2,6) approximants leads to an improvement of the short-time behavior, albeit
at the cost of the aforementioned spurious oscillations. The oscillations are
connected with complex eigenvalues of the Frobenius matrix (19). In this respect
this seemingly simple example actually constitutes a particularly difficult case,
for in many other applications one can prove that oscillatory contributions do not
arise. *

The second .example in Section 3 is concerned with the decay of fluorescenge inten-
sity as observed in a fluorescence microphotolysis experimentS. Figure 2 presents
the fluorescence signal as observed in an actual experiment. The figure also dem-
onstrates that the observed signal is described well by the evaluated fluorescence
decay, proving thereby the validity of the theoretical description. The matching
of the observed and calculated fluorescence signal yields the diffusion coefficient
of the dye-lzbelled membrane constituents involved in the system investicated. In
order to analyze the observations routinely a fast numerical procedure for the
theoretical signal is desirable. The algorithm of Section 4 provides such procedure.

100 —
3‘u7.
3 025
<
g 050
g.ozs . Fig. 2: Decay of the quorescence intensity
ol ! : ~as observed in a Continuous Fluorescence

o Microphotolysis experiment and as calculated
. 0 3 6 (] 22 numerically (for details see Ref. 5)
Time /s .

Figure 3 compares the exact observable with the (8,0) and (0,8) approximants. The
latter approximant yields by far the better description proving that the low-fre-
quency expansion {12a) accounts for most of the fluorescence decay. Figure 3 also
shows that a (2,6) approximant reproduces the fluorescence signal essentially
exactly. 57 13.14
The third example considers the MoBbauer spectrum- I (w) of “Fe in proteins ~* .
The 2ccuracy of the observed spectrum is significant only in the central, low-fre-
quency part of I{w) and covers a time window of 1ns to 100ns. On this time scale the
motion of a single atom in a protein is actually part of a concerted motion in-
volving a larger protein fragment and, therefore, a large effective mass. One can '
safely describe this motion by the Fokker-Planck equation (2). In order to demon-
strate the value of the algorithm developed here we consider the model of an

57Fe atom diffusing in a harmonic potential.
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Fig. 3: Comparision of the exact and approximant fluorescence intensities




" Figure 4 presents the exact spectrum obtained from the spectral expansion
©

J(WV) = exp(-a) I an/ n![iw'}anz/a2 +I/2)} (29)
: . n=o
where a = -<2<x2>T » <2 denoting the thermal average. This exact result is com-

pared with various 2pproximations, the moments reproduced in each case being in-
dicated in Fig. 4. The eomparision shows that the approximants reproducing 6 mo-
ments provide a satisfactory description of the MoBbauer spectrum. The central
part of the spectrum, however, is described best if one chooses to reproduce the
moments y_c - M. The algorithm can be applied to essentially arbitrary potentials.

Studying a variety of potential shapes we have found that the observed FoBbauer
spectra of proteins, in particular their temperature dependence, can be explained
well with potentials exhibiting many minima. These minima correspond to metastable
conformations of the proteins. The existence of such conformations had been pre-
viously suggested by Frauenfelder et al. The dynamics of proteins as monitored
through MoBbauver spectra appears to originate from fluctuations between such meta-
stable conformations.

absorption in arbitrary units

“Fig. 4: Comparison of MoBbaver line shapes
for Brownian_motjon ig a harmonic oscillator
(D=3.106 A2 s-1, <xZ>1 =0.1 A?) resulting
from £q.(29) (——) and from approximations

0 reproducing the moments as indicated {----)
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