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Analytical expressions are presented which describe the spin dynamics of random ensembles of
pairs of molecules, the partners being either of doublet (2D ) or of triplet (*T') type. The spin
dynamics are induced either by the hyperfine coupling (2D ) or by the zero-field splitting {*7"). The
three spin transitions '(*D, + 2D,)—*(D, + D,), “CT, + 2D,)—**T, + *D,), and

*3(T, 4 *T)—'T, + *T,) are considered at low and high magnetic fields. The ensemble average
is taken over all nuclear spin configurations (2D ), over all molecular orientations {*T) and over
possible histories which may include nuclear spin realignments by paramagnetic—diamagnetic
exchange (°D ) or molecular reorientations by rotational diffusion or exciton mi gration in random

~matrices (*T"). The results obtained demonstrate that magnetic fields influence the processes of

triplet quenching by radicals and triplettriplet annihilation and thereby can provide information
on the rotational diffusion of triplet molecules, exciton migration, and paramagnetic—
diamagnetic exchange. Such effects predicted earlier by us for processes involving doublets [J.
Chem. Phys. 71, 1878 (1979)] and discussed here, were recently demonstrated experimentally [F.
Nolting, H. Staerk, and A. Weller, Chem. Phys. Lett. 88, 523 (1983)]. The results presented are
also of general interest as the spin systems considered provide a solvable model to describe the
degree of randomization in ensembles of quantum systems.

. INTRODUCTION

In this article we consider three bimolecular processes
which are influenced by external magnetic fields in the range
of a few Gauss to a few Tesla: radical pair recombination,’
triplet quenching by radicals,” and triplet-triplet annihila-
tion.®> These processes involve molecules with an electron
spin of doublet or triplet character.

Ordinarily one does not expect that molecular pro-
cesses in condensed matter at higher temperatures will be
influenced by magnetic interaction energies which are much
smaller than thermal energies. If, however, a molecular reac-
tion at a decisive intermediate stage is not subject to fast
thermal relaxation, i.e., if the reaction proceeds by a coher-
ent quantum process, then magnetic interactions can indeed
play a role. For this to be true, the magnitude of the Zeeman
interaction between electron spins and external fields of 10—
10* G implies that the intermediate quantum process should
last between 1078-10~'?s. This is the time range over which
a pair of molecules after an encounter in a liquid, remains in
proximity and either reacts or separates irreversibly.* Detec-
tion of magnetic field effects may therefore provide informa-
tion on pair processes in liquids involving doublet or triplet
molecules. Magnetic field effects on radical reactions are clo-
sely related to the effects of nuclear spin and electron spin
polarization.” These effects are, in fact, based on the same
physical mechanism.

Any realistic pair process involves an ensemble of mo-
lecular pairs with a certain distribution of magnetic interac-
tions. This distribution results from random nuclear spin
polarizations in doublets and random molecular orienta-
tions in case of triplets (see below). We have demonstrated
earlier® for processes between doublets, that this statistical
aspect results in a simplification of the theoretical descrip-
tion. In this paper we will extend the previous analysis® to
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triplet molecules. The results on doublets will be reiterated
here to demonstrate the close formal relationship to the tri-
plet case. v

The spin dynamics of molecular ensembles with a dis-
tribution of interaction parameters is also of obvious interest
as a model system for statistical mechanical behavior. One
may ask whether an ensemble initially prepared in a pure
quantum spin state will achieve an equilibrium between all
degenerate states on account of the distribution of its ran-

- dom degrees of freedom. The answer which emerges from

our investigation is that the asymptotic behavior of such en-
sembles depends very much on the degree of relaxation of the
random degrees of freedom during the spin dynamics. In
some instances equipartition among degenerate states is

achieved asymptotically, in other instances only phase ran-

domization is achieved. In cases of static ensembles, i.e.,
those with slow relaxation, a memory of the initial quantum
state can persist for a long time. These phenomena are by no
means novel. However, we feel that the spin dynamics of
doublet and triplet molecules combines these facets of ran-
dom behavior in an interesting way.

We will briefly summarize three sample bimolecular
reactions to which we will then apply the theory.

A. A doublet-doublet process

The first example involves doublet molecules (radicals)
2D, and %D, Such pairs can be generated thermally or photo-
chemically and will be born in a pure two electron spin state,
either singlet ‘D, + 2D,) or triplet *(>D, + 2D,). Since the
recombination products also assume a singlet (S') or triplet
(T') spin state the radical recombination is usually selective
with respect to the spin alignments '(*D, + ?D,) and
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3(2D; + %D,). The overall reaction is schematically:
l:;# 3]~*

singlet precursor triplet precursor

! magnetic interaction !
"D, + *D,) “« D, +%Dy) (1.1)
singlet alignment triplet alignment
v N e N
S D, +2D, T
singlet product separated pair triplet product

We want to consider the case that a radical pair born in a
singlet alignment produces fast (ns) triplet products by
means of magnetic interactions*”#

"Dy + *D)}-*(°D; + *Dy)-T. (1.2)
The reaction depends on the probability p, (¢ ) that the initial
singlet pair assumes triplet character after time ¢ before the
end of the bimolecular encounter. The dominant magnetic
interactions of organic doublet molecules are the Zeeman
and the isotropic hyperfine interaction. These interactions
are collected in the following spin Hamiltonian

HDD=H(I;)+H(I§’3 (1.3)

HY = 3 a,10S, +gus BS,. (14)
The sum in Eq. (1.4) extends over the nuclear spins I{ of
molecule / with hyperfine coupling constants @, and elec-
tron spin S;, x5 is the Bohr magneton of the electron, and B
the external magnetic field. We will assume identical g val-
ues for the doublet and triplet molecules considered here. A
difference in the g values can give rise to additional effects at
high fields which have been described for example in Ref. 9.
The process monitored in any observation involves an en-
semble of molecules with all possible initial nuclear spin ori-
entations. The ensemble average can also include a stochas-
tic dynamic situation in which electron spins visit several
molecules and, thereby, randomly alter their nuclear spin
environment. In Ref. 6 has-been derived the approximate
expression

pr(t) = (trQr(£)Qs(0)), (1.5)
where ( ) stands for the ensemble average over nuclear spin
orientations (static ensemble) including a possible history of
nuclear spin reorientations through random site visits (dy-
namic ensemble), tr denotes the trace over the electron spin
states of the pair, and QO5(Q) denote the operators which
project onto the singlet (triplet) subspaces

Os =1-5,S,, (1.6)

Or = 3+S,8S, (1.7)
Evolution of the average gives

prit)=3—,UsU (1.8)

where ;U describes the motion of the electron spin of the
individual doublets

U = (tr 5,()S,(0)).

The tensor product in the representation S, , S_, and S, of

(1.9)
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the electron spin operators is defined as

WUnU=4(U, U __+ U, _,U_, +,U_, U, _
+ IU——- 2U++) +i(lU—+—z 2U—z + lU—z 2U+z
Uy U, + U, _ U, ) +,U, ,U,,.(1.10)

The evolution of the triplet probability of the pair has there-
by been reduced to an evaluation of the ensemble averaged
electron spin tensor ;U for individual doublets. It has been
demonstrated® that the averaged spin motion yields a simple
analytical description and a simple interpretation whereas
the spin motion of individual doublet pairs require elaborate
numerical calculations.® We will show in this paper that the
simplicity introduced by the ensemble average in the case of
doublet pairs is also manifested by processes involving triplet
molecules. :

B. A triplet-doublet process

The second example we consider concerns triplet
quenching by radicals and involves the encounter of a triplet
molecule °T, and a doublet 2D,. The encounter pair is either
in a quadruplet %°7), + ?D,) or in a doublet 2T, + 2D,)
overall spin state. The quenching process to the ground state
'S, + 2D, which is of overall doublet character proceeds
only from the doublet alignment (T, + 2D,) and, hence, is
selective with respect to the overall triplet-doublet spin
state. The reaction scheme is

3T, + 2D,
random encounter
4 4 N 3
magnetic interaction
CT, +7Dy) ‘CTy +D,) (1.11)
doublet alignment quadruplet alignment
l N 4
'S+, T, +°D,

ground state separated pair

The reaction scheme involves the partitioning of a random
encounter pair into a doublet and quadruplet alignment. The
branching is determined statistically by the number of doub-
let substates (two) and the number of quadruplet substates
(four). The fraction of pairs initially in a singlet state popu-
lates the ground state very fast. The remaining fraction of
quadruplet pairs has to acquire doublet character by means
of magnetic interactions before they can engage in the actual
quenching process

uenchin
PT 42D, +7D) — 'S+7D, (L1
The dominant magnetic interactions are the zero field split-
ting, i.e., the fine structure interaction of the triplet mole-
cule, the hyperfine interaction of the doublet and the Zee-
man interaction acting on both molecules. The interactions
are collected in the following Hamiltonian

HTD=H'7U+H(1.2>)» (1.13)

where H ) is given by Eq. (1.4) and

HY =DS% —E(S% —S?)+gusS;B. (1.14)
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Here D, and E; are the zero field splitting constants and S, is

the electron spin operator in the molecular frame. In the

“laboratory frame rotated by the Eulerian angles 2 = (¢,6,¢)
relative to the molecular frame the triplet Hamiltonian is'®

; 2
H(T)'L=‘—'

3 i+ Y A D0 (2) s + 815S:°B,

(1.15)

where hg= [ D,h,, =0,h,, = — E,D?,, arethe ele-
ments of the rotation matrix and 7, second rank tensor
operators.

Equation (1.15) shows that the triplet spin motion de-
pends on the orientation of the molecule. The process (1.12)
‘monitored in any observation involves an ensemble of pairs
with all possible orientations of triplet molecules. The prob-
ability p, (¢ ) for the transition within time ¢ of the overall spin
state of the pair from quadruplet to doublet, i.e., the prob-
ability relevant for process (1.12), has to be averaged over all
orientations of the triplet molecule. Actually, in case that
rotational diffusion plays a role on the time scale of the bimo-
lecular reaction one also has to average over all stochastic
reorientation processes. Another realization of orientational
relaxation is triplet exciton migration in matrices of random-
ly oriented molecules. This situation may apply in the light
harvesting systems of photosynthetic membranes.!! How-
ever, in this case an anisotropic exciton interaction may also
contribute to the spin dynamics.

The probability that an initial quadruplet pair assumes
doublet character after time ¢ can be written by analogy with
Eq. (1.5)

Polt) =1<trQp(t)Q0(0)). (1.16)
{ ) denotes the average over the nuclear spin distribution of
the doublet 2D, as well as the average over the orientations of
3T,. The average may include a history of relaxation pro-
cesses for nuclear spin orientations or molecular orienta-
tions. tr denotes the trace over all electron spin states. 9,
and Q, are the projection operators onto the manifold of
doublet and quadruplet pair states, respectively. One can
derive

Op =4{—1%5,S, (1.17)

Qo =%+35:S, (1.18)
The prefactor } in Eq. (1.16) takes account of the fact that
there are four initial quadruplet states. The doublet probabil-
ity can then be expressed again through the tensor operators
in Eq. (1.9). With (tr S;°S,) = 0 one obtains

Polt) =3 —4§,UU. (1.19)
In this case ;U represents the spin correlation tensor of the
triplet molecule 3T, and ,U the spin correlation tensor of

2D,. The tensor product in Eq. (1.19) is as defined by Eq.
(1.10).

J
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C. A triplet-triplet process

Our third example concerns the triplet-triplet annihila-
tion proceeding from the random encounter of two triplets
T, and *T,. The triplet pair is initially in either a singlet
13T, + 3T,) or a triplet >*T, + >T,) or a quintet 5(*T, + T5)
overall spin state with relative populations 1:3:5. The anni-
hilation results in the product 'S, + 'S ¥ with overall singlet
character. Hence, the reaction route selects pairs in the
3T, + T,) singlet spin alignment. The scheme for the over-
all reaction is

T +3°T,
random encounter
b/ N§
magnetic interactions
CTy 13T (1.20)
triplet + quintet alignment

'CT, +°T)
singlet alignment
/ N e
's, + s T, +°T,
product of annihilation separated pair
The initial fraction § of random encounter pairs in the singlet
state proceeds very fast to the annihilation products. The
remaining fraction § of triplet and quintet pairs can annihi-
late only after change of the overall spin state

annihilation

BT, 4 °T,)-'CT, +3%T,) — §,+'S% (1.2])
The spin motion is due to the interaction
Ho,=HY+HY ' (1.22)

with H') as defined by Eq. (1.14). The process (1.21) is then
governed by the probability pg(f) that the pairs initially in
either a triplet or quintet state assume singlet character after
time #:

psit) = (trQs(t)Qr 0(0))- (1.23)

" In this case the average { ) extends over all orientations of

the triplet molecules T, and *T;, including again a possible
history of random reorientations. The projection operators
onto the singlet and (triplet 4+ quintet) substates are, respec-
tively,

Os = —4 + {(S:'S)) (1.24)
Orio=4%—1 (S1S2). (1.25)
With
(tr[S,()S,(2)]1%) = 12
one obtains
Pslt) =1 — 4 ViV, (1.26)

The tensor product ,V::,V is defined by

lv::szi(lV-i— —zz 2V— + 2z + lV— + 2z 2V+ — 2z + ll/zz+ - 24V -+ + ;sz— + 2sz+ -+ le+Z— 2Vl—2+ + 1V2—2+
X 2Vz+z— + 1V+z—z 2V——z+z + lV—z+z 2V+z—-z + le+ —z 2V —_ 42z + le— +z‘2Vz+ B 1 + lV+zz-—-
XZV—zz+ +1V——zz+ 2V+zz—~)+]!5(lV++——— 2V——++ +1V——++ 2V++--— +1V+—+— 2V—-+—+

+|V—+—+ 2V+—+— +1V+——+ ZV—-++— +1V—-++— 2V+‘———+)!

(1.27)
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where
Vesys = (S, (t)S5()S,(05:0) aByd= +,—,z

In the following we will derive expressions for the tensorial
elements for doublet and triplet molecules appearing in Egs.
(1.10) and (1.27). Section II considers spin dynamics of static
ensembles without relaxation by paramagnetic~diagmagne-
tic exchange or by rotational diffusion. Section II1 extends
the description to dynamic ensembles in which such relaxa-
tion influences the spin dynamics.

11. SPIN CORRELATION TENSORS FOR STATIC
ENSEMBLES

We have shown above for the three sample bimolecular
processes (1.2), (1.12), and (1.21) that the relevant spin proba-
bilities [see Eqgs. (1.8), (1.19), and (1.26)] are determined by
the elements of the spin correlation tensors for doublet and
triplet molecules

U,s(t) = (155, (£)S5(0)), 2.1
Vuspst) = (155, (£)S5(2)S, (0)S5(0)). 22)

The tensor elements (2.1} had been derived for doublet mole-
cules in Ref. 6 in the approximation that the nuclear spin
degrees of freedom are treated classically. This approxima-
tion applies as long as a large number of nuclear spins con-
tributes to the hyperfine interaction in Eq. (1.4). The ensem-
ble average which involves all orientations of the nuclear
spins can then be carried out explicitly. The result in the case
of vanishing external magnetic fields is

lforaf= + — or — +

iUnglt) = 2¢Ot /7;)-{} for aff = 2z, (2.3a)
! 0 else
%) = §[1 + 2 exp( — x?) — 4x exp( — x%)].  (2.3b)

In the case of large external fields such that the Zeeman
interaction greatly exceeds the hyperfine interaction the
nonvanishing elements of the spin correlation tensor are

U, _ = expliwgt ) 2Ct /7,), (2.4a)
JU_ . =exp(—iwgt)2Ct /1), (2.4b)
Uz =14, (2.4¢)
2C(0)(x) = exp( — xz)' {2.4d)

The time scale of the spin dynamics 7, is related to the hyper-
fine coupling constants through :

a1 -
7= ?ga?kl WY+ 1). (2.5)

We want to derive now exact analytical expressions for
the spin correlation tensors (2.1) and (2.2) describing triplet
molecules. In this case the ensemble average is to be taken
over all orientations of the molecules. We will again consider
only the two limiting cases of weak and large external mag-
netic fields. In the zero field case the derivation of U,4(¢ ) and
Vagys(t) starts from the observation that the spin operators
S, and S, S, can be expressed by spherical tensor operators
T,, of rank k = 0, 1, 2. Representing S, in the basis of triplet
states |1,a)(a = 1,0, — 1) by the matrices

0420 000 100
S.=|o0y2} S-={\200} s§,= ooo)
000 0420 00 —1

one can derive the following relationships:
S, = — 2T, S, = %2, (2.7)

1
S1= — (V2Ty — Ty), (2.8a)
V3
S8, =T\,  FToyrs (2.8b)
S8, =T FTh (2.8¢)
S% =2T,,,, (2.8d)
2 2
S8_=— —Ty— —Tu—V2T (2.8¢)
V6 3
2 2
S8, = — =Ty~ —=To+\2To (2.8f)
V6 V3

In order to evaluate the expressions (2.1) and (2.2) one has to
consider then the tensor operators T, in the Heisenberg
picture

T, (t) = expl(iHt /AT, exp( — iHp t /%), (2.9)
where H, denotes the triplet Hamiltonian in the laboratory
Jrame as given by Eq. (1.15). This time-dependent operator
can be evaluated in three steps: (1) transformation into the
molecular frame according to ‘

Tiw = ;Dg‘;wﬂ,w%,

where D )(4,6,¢) denotes the elements of the rotation ma-
trix {see for example Ref. 10)and where © denotes the opera-
tors defined in the molecular frame; (2) time development of
T,z in the Heisenberg picture and reexpansion in terms of
tensor operators 77, :

(2.10)

expliH 1 /M)y expl — iHpt /8) = 3 ci(t)T,; (2.11)
Ly

(3) back transformation into the laboratory frame according
to

T, = X DY~ —6,—$Ts (2.12)
I
The overall expression for Eq. (2.9) is then
Tiolt) = 2 Dg,’,(—¢,—9,—¢)
1.B,v,6
XD 5 (#.0.9)cif(t)Tis. (2.13)

This expression is most convenient for the ensemble average
over all orientations ¢, 6, ¥ of the molecular frame. The
average leads to the expressions
(DU~ — 6, —$)D)(8.6.9)
which can be evaluated readily'?
1
DP(—o,— 0, — D %)N$,6,¢) = 8185,6,6 ——— -
< 67/( '/’ ¢) B(¢ ¢)> kiYByY ab 21+l
(2.14)

One obtains
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- Tg(t) =), (0), (2.15a)
where

3 ,(0)( 1 o kB8

i t) = 2k+152k0kﬂ {t). (2.15b)
With

Ty = — _\/2.3_. 1 (2.16)
one can state immediately

0ty =1 (2.17)

The evaluation of *{*(t ) requires the functions c!5(t) as de-
fined in Eq. (2.11). The evolution operator is given by

z0Z
Ult)=expliH,t/)=} 010}, (2.18a)
Z0z
where
z =} [expliw  t)+ expliw_t)], (2.18b)
Z' = } [expliw t) — expliw_t)], (2.18¢)
o, =D+ E)/% (2.18d)
One can then derive ,7\110 in the Heisenberg picture
. lzZ2—z]> o 27 — 27
Ut)T, o Ut)= 0 0 0
2Z—27 0 12'|? — 2|2
This result implies
ciolt)=|z|> — |Z|* = cos(w, —w_)t. (2.19)

Similarly one determines
c5(t)= cosw, t+ jcosw_t, B= + 1.
Equation (2.15b) provides then the correlation function
3c0t) = ;cosw+t+ jcosw_t+ Jcos(w, —w_)t.
(2.20)
In order to evaluate ¢t ) we consider the time development
“of Tzﬁ, ie, Ult }Tzﬁ U|t), and obtain

L, =0
cplt)=1{lcosw, t+ jcosw_t, B=1. (2.21)
i+ lcosw, —w ), B= +2.
]
[3+ 1) 0
Vaplt)=t] O §— 3 0
0 i+ 1)

This example shows that our algorithm for the spin correla-
tion tensors (2.2) can be easily applied. The nonvanishing
tensorial elements are found to be

Vize = §+ 3%, (2.27a)
Vae - =V . =V, _,
=V_,.=%-3%D, (2.27b)

This yields then the correlation function

P(t)= 3 + fcosw,t+ jcosw_t+ }coslw, —aw_)t.
(2.22)

This result shows that 3 of the second rank tensor remains
constant in timie, while the remaining  undergo oscillations.
Equation (2.21) implies that the constant part of the correla-
tion function originates from the fact that in the molecular
frame T, as well as half of T, , remains constant. This
proves that the constant contribution to 2¢{(¢) originates
from molecules in a certain orientation. If the molecules are
subject to reorientations this constant contribution will be
diminished successively with each reorientation event, fol-
lowing the geometric progression 2/5, 4/25, 16/125, etc.

The time development of the tensors described by Eq.
(2.15) together with the explicit spin correlation functions
(2.17), (2.20), and (2.22) constitute a main result of this paper.
These equations identify the three functions 3¢t ), which
account for the spin motion of randomly oriented ensembles
of triplet molecules.

The spin correlation tensors (2.1) and (2.2) can now be
readily determined. From Eq. (2.7) follows for the vector
operator S(¢) with components (2.6)

S(t) = 3c2(£)S(0) (2.23)
and, hence, for the elements of the spin correlation tensor

U, g(t) =t )tr(S,S,), (2.24)
where tr(S,,S;) has to be determined according to the defini-

tion (2.6). Similarly, the tensor elements ¥, «pysit) are ob-
tamed by means of Egs. (2.8), the inverse relationships

Ty = 7’5 (357 —2), (2.25a)
Ty =F LSS, +5.8.), (2.25b)
Thu2=148%, (2.25c¢)

and Egs. (2.7) and (2.16). For example, incaseof V(¢ ) one
obtains from

Sir)= — [Ji et Tz0 — Too ]
= | [3c<°)(z)(2sg — 18,5_—15_S,)+21]
and, hence, by means of Eq. (2.6) -
Sy S5+ (2.26)
1
Vz+z— = Vz—z+ = V+z—z
=V_,, =3P -3, (2.27¢)
I,z+ -z T Vz— +z = V+zz—
=V_,, =%0+39 (2.27d)
Viwoo=V_o_ o, =4, (2.27¢)
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Vio_w_=V__ =%+2 e + 3%, (2.276)
Ve _ o =V_,,_=%-2 e’ 4 3%P.(2.27g)
We will consider now the case of large magnetic fields

when the Zeeman interaction is dominant. In this limit the
evolution operator in the laboratory frame

U, (t) = expliHp, t /%) (2.28)

assumes a simple form since in the basis of triplet states | 1)
the Zeeman term in the Hamiltonian Hy, defined by Eq.
{1.15) is diagonal and the weaker zero field splitting can only
contribute to the diagonal. One derives

exp(if2,t) 0 0
Upit)= 0 exp(if2yt) 0 ,(2.29a)
0 0 explif2_,t)

where
2, =wy+ (D /2#)1 + cos® §) — (E /2#) sin® @ cos 2¢,
(2.29b)
= (D /#)(1 — cos® ) + (E /#i)sin? @ cos 2¢. (2.29c)

@y = gupB /% is the Larmor frequency of a triplet and 6, ¥
aretwo of the Eulerian angles. A straightforward calculation
yields then the nonvanishing tensorial elements

U, _ =4expliwg )Re[>}C¢)], (2.30a)
U_ . =4exp(—iwg)Re[>3COt)], (2.30b)
U, =2, | (2.30¢)
Ve = Vu+“=Vu_+=V+_z=V_+zz=2,
(2.31a)
V., _. =2expliogt) *Ct), (2.31b)
V, . =2expling)°C 3CYt), (2.31¢)
V,_ +:=2exp(—iwgt) *Ct), (2.31d)
V_ oy =2exp(— ingt) 3T, (2.31¢)
V., .__ =d4expliog), (2.31f)
V_ _ . =4exp(— 2iwyt), (2.31g)
Vi v =V_,_, =58, (2.31h)
Vi o—v=V_,,_ =4 (2.31i)
where

30 D 3D >
Co%)= (exp[zt(— 73 + = T het 0

- 3—§- sin? 6 cos 2¢)]>. (2.32)

These expressions show that in the high field case a single
correlation function accounts for the statistical aspects of the
triplet spin motion. Only the tensor elements (2.30a), (2.30b),
and (2.31b)—(2.31¢) exhibit a decay of the spin phase, the
remaining tensor elements are either completely coherent or
constant. The reason for this conservation of the coherence
properties of the spin correlation tensor is the symmetry of
the Hamiltonian which endows the triplet states |1 + 1)
with identical phase factors.

The correlation function (2.32) can be further evaluat-

ed. The relationship

27
Lﬁfo d¢exp(—i%sinzacos2¢)=Jo(%Eﬁfsin 6)

yields the generalization of the Fresnel integral
3C¢t) = exp( — iDt /2% 37Dt /4%
7/2
X f d0 cos 8 sin GJO( 3£t sin? 6)
o 24
3Dt 3Dt
K7 sn o) na( o)
(2.33)

In the special case E =0 an analytical expression can be
derived

3COt) = exp( — iDt /25N7h/ 3Dt

x[c( Eﬁ%’- +iS( /%)] (2.34)

Here C(z) and S (z) denote the Fresnel integrals'?

Cle) = fo " dt cos(t 2/2), S(z) = fo " dt sinme/2),
(2.35a)

which can be evaluated by virtue of

Clz) +iS(2) 1+‘ (1—erfe[(1 — iNx7Z 1}
(2.35b)
If one replaces D by the effective’* value
D*=\D?+3E? - (2.36)

Eq. (2.34) together with the D value of Eq. (2.36) should pro-
vide a good approximation also in the case E #0.

(Il. SPIN CORRELATION TENSORS FOR DYNAMIC
ENSEMBLES

In case of dynamic ensembles one needs to average the
correlation tensors (2.1) and (2.2) over the nuclear spin con-
figurations (doublets), over the molecular orientations (tri-
plets), as well as over the stochastic history of these proper-
ties. In case of doublets the nuclear spin configuration can be
altered due to diamagnetic-paramagnetic exchange pro-
cesses

D, +'M;—>'M,+%D}, (3.1)
whereupon an unpaired electron spin randomly visits several
molecular sites. In case of triplet molecules the orientation
can change due to rotational diffusion or triplet exciton mi-
gration in random matrices which induces a further rando-
mization of the zero field splitting interaction.

The case of doublet molecules had been treated in Ref. 6
and is shortly reviewed here. The reaction process (3.1} alters
the spin correlation tensor. At zero field the tensorial ele-
ments are

lforaf= + — or— +
(Uqp =7t /13 ) for aff = zz,
0 else

where the correlation function ¢z /7;) of Eq. (2.3) has been
replaced by®**

(3.2a)
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elt) = 3 e ). (3.2b)
n=1

 In this expansion c"(t ) describes the contribution of # — 1
exchange events (3.1). In case of 1st order kinetics for the
paramagnetic—diamagnetic exchange (3.1) with rate con-

stant 7, one has for n> 1:
2t ) = 2¢Ot /7. )exp( — t /7.),

t
2c(n)(t) — _1_f dt' 2c(l)(t —t l)c(n— 1)([ ').
Te JO

(3.2¢)
(3.2d)

Similarly, the tensorial elements for the high field case
(2.4) are altered. In this case the correlation function
2C 9% /1,) is replaced by 2C (¢), i.e.,

expliagt ) *C (t) foraf= + —
— exp( — iwgt) *C(t) foraf= — +,
anB(t) = i for afi = zz (3.3)
0 else
where 2C (¢ ) is to be determined in complete analogy to Eqs.
(3.2b)—3.2d).

The stochastic dynamics of an ensemble of tnplet mole-
cules involves rotational diffusion or trlplet exciton migra-
tion. These processes can induce an orientational redistribu-
tion resulting in an orientational equipartion with a certain
relaxation time 7,. We will not describe the underlying dy-
namics in detail but rather assume a Poisson process of re-
peated reorientation events. Each reorientation event is sup-
posed to induce complete orientational randomization. To
implement this model we notice that in Sec. II the spin mo-
tion of triplet molecules in the low field situation is account-
ed for by three correlation functions 3¢z ) in Eq. (2.15). In
the case of an ensemble undergoing stochastic reorientations
these correlation functions have to be replaced by altered
correlation functions *c, (¢ ) which are determined in analogy

to Egs. (3.2b)-(3.2d), i.e.,

elt) = Z el ), (3.4a)
n=1
where forn> 1:
3el(e) = 30t Yexp( — t /7,), (3.4b)
!
elie) = ——f de' 3t —t')elr e ). (3.4¢)
7, Jo

The dynamics of the spin tensor operatofs is then described
by

Tiolt) =3¢, ()T, (0), £=0,1,2. (3.4d)
An identical construction of the dynamically altered corre-

lation functions applies to the high field situation.
The evaluation of the correlation functions

glt)="c(t), *C(t), %c;lt), °Clt) (3.5)
is most simple for the Laplace transformed functions

8ls) = Lw dt exp( — st )g(t).

One can show that g(s) complying to Egs. (3.2b)~(3.2d) must
satisfy®

805) = 8% + 7 V(1 —

(3.6a)

8%+ 77N, (3.6b)

where §%(s) is the Laplace transform of the relevant correla-
tion functions of the static ensemble and 7 =17, or 7 =17,.
For *c{(t) = 1, i.e., 89s) = 1/s, a straightforward calcula-
tion yields

Seolt) = 1, 3.7
a result which is of course to be expected. In case of very

large 7, i.e., for a relaxation process slow on the time scale of
the spin motion, the approximation 1st order in 7! is

=g+ 77 + 7% + 7). (3.8a)
Back transformation yields
glt)~exp( —t/7)g %) + 7!
t
X f dt’ exp( —t'/7g%t gt —t). (3.8b)
0

This approximation applies only for times ¢ S 7. For longer
times one needs to extend this approximation to account for
2, 3, ... stochastic events.

In the limit of fast relaxation processes, i.e.,, 7= 1,, 7,
small compared to the time scale of the spin motion, g{¢)
decays exponentially. The approximate expression which
correctly reproduces g(0) and g{0) is'®

g(t)~exp[ — ¢ /8(0)]. (3.9a)
In the limit considered g(0), i.e.,
£0) =20/ [1 — 7= 'g% )] (3.9)

depends only on the short-time behavior of g%z ). As g(z)
characterizes a coherent quantum process, the first deriva-
tive at ¢ = 0 vanishes and, therefore,

g9t )==1 + 4£9(0) ¢ (3.9

. From this results the high frequency behavior of the Laplace

transform

8Or =71 + 7§90) (3.94)
and, hence,

8(0)== — [7£0)]~". (3.9¢)

The experimental investigation of doublet spin dynam-'
ics under the circumstances of diamagnetic—-paramagnetic

- exchange in liquids revealed'” that 7, is very long compared

to the time scale of the spin dynamics of most doublets and,
hence, one can expect that approximation (3.8) will apply.
For doublet processes involving electron transfer at semi-
conductor surfaces'® the diamagnetic-paramagnetic ex-
change corresponds to the electron or hole conduction and
then should be much faster than the spin motion such that
Eq. (3.9) applies. In this latter case one determines for the
spin correlation function for doublets at Jow fields

2e(t /7;) = exp( — 4t7,/77) (3.10)
and at high fields
2C(t/7;) = exp( — 2tr, /7). (3.11)

For triplet processes the spin motion is expected to pro-
ceed on a time scale of 100 to 1 ps or shorter. Rotational
diffusion may be slower, e.g., in viscous media and at lower
temperatures, but more likely will be faster in many circum-
stances. In this case Egs. (3.9) apply again. For the low field
correlation functions one determines from Eqgs. (2.20) and
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(2.22) employing Eq. (3.9¢)
3,(0) = 3/2(0* + 0>
32,(0) = 5/2(0* + &>

from which follows according to Eq. (3.9a)

—w,0_)/3], (3.12)

‘cat) =exp[ —2tr,(@?, + 0’ —w, w_)/5]. (3.13)

For a derivation of the high field correlation function *C (¢)
we note that Eq. {2.32) has the short time expansion

-0, 0_)r,

—w, 0_),

Se\t) =exp[ — 27, (0?, + 0>

3CO)~1 + 1123C\0), (3.14a)
where
3E00) = — <[ 3D (cos 60— -1—)
2 3

3£ sin? @ cos 2¢]>.
24

The average over 8,3 with the definition Eq. (2.36) of D *
yields
( 3D” ) /45
27
and, hence,

3C(t)= exp[ 4t (3;) ) /45]

. 3'C'v(0)(o) _

(3.15)

IV. SPIN PAIR DYNAMICS

In the following we present the ensemble averaged spin
pair probabilities for the three sample processes introduced
in Sec. I. By means of the spin correlation tensors derived in
Secs. IT and I1I it is a simple matter to evaluate these proba-
bilities.

A. The doublet-doublet process
(D, + 2Do)—>(D; + 2D,) '

We consider first the triplet probability p (¢ ) of a pair of
doublets in a static ensemble generated at # = 0 in a singlet
state. This probability can be evaluated by means of Eqgs.
(1.8) and (1.10). In the case of low magnetic fields when the
Zeeman energy is small compared to the hyperfine interac-
tion energy in either molecule

gupB /AT ! Ty !
the tensors U are given by Eq. (2.3a) and one obtains

prit)= 3 — 3% /7}) 2 /1)) (4.1b)
The correlation function %c'?(t ) is provided by Eq. (2.3b) and
the time constants 7, are determined by the hyperfine cou-
pling constants through Eq. (2.5). At intermediate fields

75 '&gugB /figr ! (4.2a)
one can apply Eqs. (2.3) for 2D, and the high field expressions
(2.4) for 2D,. The resulting spin probability is

prlt)=§ — §’c%/m)

(4.1a)

At high fields

L1y &gy B/M (4.3a)

— 1%t /7,) 2C't /7;)cos\gu Bt /). (4.2b)

o
-2

>
E {a)
o
ry {b)
a 05}
{c)
o
o
0 { 1 { 1 >
3 6 9 12 ¢
time

FIG. 1. Triplet probability of doublet-doublet encounter pairs starting in a
singlet state 7, = 1, 7, = 5, (a) at zero external field, evaluated according to
Eq. (4.1), (b) at intermediate magnetic fields with gu, B /% = 3/7,, evaluated

according to Eq. (4.2); (c) at high magnetic ﬁelds, evaluated according to Eq.
(4.3).

Eq. (2.4) apply for both radicals and the triplet probability is
prit) =1 — 12C% /7)) 2C %t /1y). (4.3b)
The time development of the triplet probabilities for the field

situations (4.1a), (4.2a), and (4.3a) is shown in Fig. 1. The
diagram reveals the following asymptotic behavior for the

"static ensemble at t— oo

prit)~ % (low fields and intermediate fields)
(4.4a)
prit)~ 1 (high fields).
This behavior results from the asymptotic values of the cor-
relation functions

—

lim %c9x) = —
X— o0 3

(4.4b)

lim 2C9%x) =0
The fact that %c‘”(x) does not vanish asymptotically implies
that despite the ensemble average there is some indefinite
‘memory’ of the initial state. The reason for this behavior is -
that (in case of large numbers of nuclear spins, the case con-
sidered here) the hyperfine coupling at low fields preserves
the electron spin polarization along the direction of 2, a, I¢
in each doublet while it averages out the other two direc-
tions, i.e., § of the polarization is conserved.

This behavior is being altered when a doublet under-
goes diagmagnetic-paramagnetic exchange whereupon the
nuclear spin orientations are randomized and, as a result, no
spin component is conserved anymore. We consider first the
case when the diamagnetic—paramagnetic exchange is slow.
To describe this situation one has to replace the correlation
functions °c”(x) and >C ‘“x) in (4.1b), (4.2b), and (4.3b) by the
correlation functions %c(x) and 2C (x) introduced in Sec. III.
In the case of slow exchange the correlation functions are
then given by Eq. (3.8). Figure 2 compares the resulting time
development of p(t) to the situation of no exchange. One
observes that the exchange process increases the asymptotic
value of the low field triplet probability to values above %,
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(t)
> A
= [ (a)
2 rf\ T e=s== 23
2
2.05 T 1/2
@
=3

! L .
0 3 6 9 12 ¢

time
FIG. 2. Comparison between the triplet probability of a doublet—doublet
pair D, + 2D, asin Fig. 1(- - -} and the triplet probability of such pair which
undergoes diamagnetic—paramagnetic exchange D, + 'M | —'M, + %D
witharelaxationtime 7, = 10(—); thecorrelation functionsc(t }and °C (t ) of
2D, had been determined according to Eq. (3.8), (a) zero field situation, (b}
high field situation. )

whereas the high field probability is only little affected. One
can prove that the exact correlation functions in case of ex-
change both vanish asymptotically

lim %c(x) =0,

(4.5a)
lim 2C(x) = 0.

X— 00
From this results the behavior of the triplet probabilities at
t—0:

Ppr(t)~ 3 (low fields), p,(t)~ 4 (high fields). (4.5b)

This asymptotic behavior manifests itself most clearly in the
limit of fast exchange. In this case one needs to replace the
correlation functions *c?(x) and 2C ©(x) by their dynamic
counterparts as given by Egs. (3.10) and (3.11), respectively.
The resulting time development of the triplet probabilities is
presented in Fig. 3. The triplet probability at low fields as-
sumes its asymptotic value fast whereas the approach of the
high field triplet probability to its asymptotic value } is
slowed down. The influence of diamagnetic—paramagnetic
exchange processes on the dynamics of doublets has been

(t)

> 4P
E | {a) 3/4
o
S
aostk (b) 2
©
e

L 1 1 1 ’

0 3 6 9 12 ¢t

time 4
FIG. 3. Triplet probability as in Fig. 1, but for a pair undergoing fast dia-
magnetic~paramagnetic exchange *D, + 'M | —'M, + *D | with 7, =0.1;
thecorrelation functions ’c(t }and 2C (¢ )of 2D, had been determined accord-
ing to Egs. (3.10) and (3.11), (a} zero field situation, (b) high field situation.

demonstrated here only for the limiting cases of low and high
fields. This influence is actually even more pronounced at
intermediate fields® and opened the possibility to monitor
exchange processes (3.1) by an analysis of the magnetic field
dependence.'”

The asymptotic values (4.5b) of p,(¢) can be explained
by simple statistical models. In the low field situation all four
states of the doublet spin pair without hyperfine coupling,
i.e., the states S, (singlet) and T, ,, Ty,; T, (triplet) are de-
generate. The hyperfine coupling brings about a ‘mixing’ of
these states, such that the initial population of S, develops
into an equipartition of all four states. This model predicts
then the fraction of 3 of triplet character in agreement with
the exact result (4.5b).

The high field behavior of p-(¢ ) could also be explained
as an equilibrium among the degenerate states S, and T, of a
doublet pair without hyperfine coupling. However, this ex-
planation is not in harmony with the actual spin dynamics
and fails when applied to doublet-triplet processes. The cor-
rect explanation invokes phase randomization rather than
equipartion between degenerate states. One considers the
wave functions of the degenerate S, and T}, states which in
the basis of doublet product states

1) =Dl -

and
2) =13 — D]
are

1So) = (I1) — 2WA2, |To) =(11) + [2))/42.

Phase randomization of the initial state |S,) implies the tran-
sition

1S0)— (explih,)| 1) — exp(ig,)[2))/V2 = expligy)|Sol> — 1)),
where the phase difference ¢, — ¢, is random. The resulting
triplet probability is then for a particular ¢ = ¢, — ¢,:

[{TolSo(é )} |> = 41 + cos ¢).

Average over all phase angles 0<#<27 yields then the cor-
rect asymptotic value 1.

B. The triplet-doublet process
43Ty + 2D)—>2(°T, + 2Dy)

We consider now the probability p,(¢) for the process
*T, + *D,)—*(*T, + *D,) from which a magnetic field de-
pendence of the quenching of triplets by radicals can origi-
nate.” This probability can be determined from Egs. (1.19)
and (1.10). In the case of low magnetic fields, i.e., Zeeman
interactions small compared to the zero field splitting as well
as to the hyperfine coupling, the spin correlation tensors are
given by Eqs. (2.3a) and (2.24). The resulting low field prob-
ability is '

polt) =4—4°cPt) et /7)), (4.6)
whiere the correlation functions %c“(x) and 3c{?(¢) are given
by Egs. (2.3b) and (2.20), respectively. At high fields the spin
correlation tensors of Egs. (2.4a) and (2.30) have to be em-
ployed. This yields the high field probability -

Polt) =3 —3Re[*’Ct)1*)Ct /1), 4.7)

| Chem Phve Vol 80 No 8 15 Anril 1084



niaus senuiten: Spin pair dynamics of molecules 3677

* Y (@

Z st .

= low field

0

St

2

Q29| :

< high field

S e

[*]

el
1 1 i L
] 2 3 4

time

F
N
w

doublet probability
N <
[{o] w

low field

9
1 1 1 l.
1 2 3 4
time
3.I./S)-- .
-g 1/3 . .
s high field
5 2/9 [\/\/\,w :
= 194 ‘
po |
(=}
he) 1 1 1 i»
1 2 3 4t
time

FIG. 4. Doublet probability of a doublet-triplet encounter pair starting in a
quadruplet electron spin state for a low and a high field situation evaluated
according to Egs. (4.6) and (4.7), respectively, (a}) 7,=1,
n=f/fD*+3E?=0.1, (), 7, =1, (¢} 7, = 0.02,

where *C ?(x) and *C ¢ ) are given by Egs. (2.4d) and Eqs.
(2.32)+2.36), respectively.

The time development of p,, (¢) is illustrated in Fig. 4.

Figure 4(a) shows a situation when the zero field splitting in
°T, and the hyperfine coupling in ’D, are of similar strength.
The low field probability asymptotically oscillates around a
value }, again above the asymptotic high field probability 3a
value which is approached after a few strongly damped oscil-
lations. Figures 4(b) and 4(c) show a situation when the zero
field splitting in 37, is much stronger than the hyperfine
coupling in 2D,, a situation which should prevail most often.
The oscillations of p,, (¢ ) exhibit a shorter period in this case,
else the behavior of p,, () is not altered compared to the situ-
ation of Fig. 4(a).

In the low field case the correlation function forE=0
is
cDt) =1[1 + cos(Dt /#)],

ie, E=0 introduces a constant contribution { and the
asymptotic behavior of p,,(t) is

Po(t)~F — % cos (Dt /#).

Hence, in the particular instance of vanishing E as presented
in Fig. 4 the asymptotic oscillations appear around the value
%. The general average value, however, is 4. This value can be
explained again by an equipartition among the degenerate
overall spin states of the triplet-doublet pair (neglecting the
zero field splitting and the hyperfine coupling interactions)
*Q,.,m= —3, —1, 1, } (quadruplet) and D,,m=—1},}
(doublet). The magnetic interactions neglected induce a mix-
ing of the initially occupied quadruplet states with the doub-
let states. Equipartition implies that § doublet character is
reached asymptotically. The fact, that p,, () exhibits asymp-
totic oscillations implies an indefinite ‘phase memory’ of the
[initial state. :

In the case of high fields only two of the quadruplet
states are degenerate with the doublet states, i.e., ‘0 _1n
with D _,,, and Q,,, with D, s2+ The asymptotic value of
Pp(t) in this case can be explained as resulting from phase
randomization. Considering the states *Q, ,, and D, ,, which
in the basis of triplet and doublet product states

[1) =]10}3 1)
and
2) =111 —1)

are
[*Q12) =—'\/2/_3|1) +\/T7§f2),
[Dy);) = —\/WII) +m,2),

the magnetic interactions induce a phase for the initial state

[*Q1,2 =@ 2(8)) = MI 1) +1/3 exp(¢)[2).

This state assumes thereby the doublet character

(D12 [*Q2(6)) = 81 —cos ¢).

Phase randomization results in the asymptotic value 3 How-
ever, since only half of the initially populated quadruplet
states couple with the doublet states in this way, the asymp-
totic value of p, () should be %, in agreement with the exact
value.

In case that the doublets undergo paramagnetic—dia-
magnetic exchange or the triplets are being reoriented ran-
domly one needs to replace the correlation functions 2c0)
2C9,30, and *C @by their dynamic counterparts as detailed
in Sec. II1. In case of fast exchange one replaces ¢ by % of
Eq. (3.10)and °C by C of Eq. (3.11). In case of fast orienta-
tional relaxation one replaces %" by *c, of Eq. (3.12) and
*C9by 3C of Eq. (3.15). The resulting doublet probabilities
are presented in Fig. 5. This figure demonstrates that the
relaxation processes damp the oscillatory behavior of p(t)
in the low field case and, thereby, lead to a constant asympto-
tic value J.
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FIG. 5. Doublet probability as in Fig. 4(a}, but for dynamic ensembles, (a)
ensemble undergoing diamagnetic-paramagnetic exchange D, + 'M}
—'M, + 2D} with 7, = 0.25, the correlation functions were determined as
in Fig. 3, (b) ensemble undergoing orientational relaxation with 7, = 0.025,
the correlation functions c,(¢ and >C (¢ ) were determined according to Eqs.
(3.12) and(3.15), respectively.

C. The triplet-triplet process >5(°T, + 3T,)—'(®T, + 37,)
We consider now the spin dynamics of the transition
35(3T, + 3T,)—-'(*T, +°T,) which governs the magnetic
field dependence of triplet—triplet annihilation.? The singlet
probability has to be evaluated from Egs. (1.26) and (1.27).
The spin correlation tensors for the low field situation are
given by Eq. (2.27). One obtains for the Jow field singlet prob-
ability
Psle) =4 — 4 °ePle) %20(t)
— 3 ) e, (4.8)

where the correlation functions *¢{’ and ¢ for triplet *T

and T, respectively, are given by Egs. (2.20) and (2.22). For
high field situations the spin correlation tensors of Eq. (2.31)
have to be employed. The resulting singlet probability at
high fields is ’
pslt) =4 —  Re[*C%¢) 2COY1)], (4.9)
where the correlation functions are given by Eq. (2.32).
The time development of the singlet probability is pre-
sented in Fig. 6 for the case E = 0 and E #0. The probability
exhibits oscillatory behavior which continues into the
asymptotic region. The convergence to a constant value in
Fig. 6(b) is only accidental since p¢(t ) resumes oscillations at
later times. This becomes evident from an inspection of the

1718

singlet probability

‘F’(t)
]

(b)

=
[Te]
T

1/10
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FIG. 6. Singlet probability of a triplet—triplet encounter pair starting in ei-

ther a triplet or a quintet overall spin state at zero (—) and high (- - -) exter-
nal magnetic field evaluated according to Egs. (4.8) and (4.9), respectively,
@) 7y =m,=1, 7, =4#/D, E=0, (b) same as (a) but with 7, =#/D* and
E=D/10. :

functional forms of >c(¢ ) in Egs. (2.20) and (2.22). The maxi-
mum values which pg(¢) reaches in the low field case are
about 1/10. This value derives from the fact that 3c{(z) en-
tails the constant contribution 3. Representation of *c{’(¢) in
the form

e =3 +3°cPle)
leads to the following separation of ps(t)ina constant and an
oscillatory contribution

Ps(t) =4y — & *ct)

— & *er) — 4 *ee ) *ePe).

The high field probability does converge to a constant
asymptotic value, i.e., 4, albeit slowly since the convergence
according to Eq. (2.34) goes as ¢ ~! [the asymptotic values of
the Fresnel integrals C(z) and S (z) both are 1].

If one wishes to describe triplets which undergo orien-
tational relaxation one needs to replace the correlation func-
tions ¢\ and >C @ in Eqs. (4.8) and Eq. (4.9), respectively, by
their dynamic counterparts. In case of fast relaxation the
expressions (3.12), (3.13), and (3.15) apply. The resulting
singlet probabilities are presented in Fig. 7. The relaxation
process produces the behavior that the constant asymptotic
values § and f are quickly approached.

The asymptotic value § of the low field situation can
again be explained by the assumption that the spin dynamics
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FIG. 7. Singlet probability of a triplet-triplet encounter pair as in Fig. 6(b)
with £ 50 at low and high field for an ensemble in which both triplets un-
dergo orientational relaxation with 7, = 0.5, the correlation functions *c,(t ),
*c,(t), and *C (1) were evaluated according to Egs. (3.12), {3.13), and (3.15),
respectively.

induce an equipartition of all degenerate spin states. Initially
all eight triplet and quintet states are populated. At low
fields and if the zero field splitting is neglected these states
are all degenerate with the overall singlet state of >T, + 3T,.
The zero field splitting leads to a population of the singlet
state. Equipartition implies then the fraction } of singlet
character in agreement with the exact result.

In order to explain the asymptotic value 4 in the high
field situation one can again envoke asymptotic phase rando-
mization as an explanation, albeit in a modified manner. At
high fields without zero field splitting only two of the eight
triplet and quintet states, T;, and Q,, are degenerate with the
singlet state S,. In the basis of triplet-triplet product states

[1) = |1, — 1)]1, + 1),]2) = [1,0)]1,0)
and
[3) =1, + 1)|1, - 1)
these three states are
1Qo) = (1) +2{2) + [3))/V6,
1To) = (= 11) + 3N, [So) = (]1) — [2) + [3)A3.

However, before one applies the idea of phase randomization
it is important to observe that according to Egs. (2.29a), and
(2.296 )the |1,1) and |1, — 1) statesofan individual triplet for
any particular realization of orientation specified by 6,4 ex-
perience identical phase changes. [See also the comment be-
low Eq. (2.32).] This implies that the phase difference of (1)
and |3) produced by the zero field splitting interaction upon
the initial overall triplet and quintet states must vanish. Ex-
cept for an overall phase factor the zero field splitting pro-
duces then the transition

'To>""iTo>r IQo)"’IQo(¢)>
= ({1) + 2 exp(#)|2) + |3))/V/6,

Al an ML

i.e,, only the quintet state assumes singlet character

[{(SolQo(@ ))|* =41 — cos & ).

The assumption of a random phase yields then

I(So‘QOW))'Z =3

Since only } of the initial population is in the state |Q,) one
arrives at the correct asymptotic singlet probability =4
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