Dynamics of reactions involving diffusive barrier crossing
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We develop a first passage time description for the kinetics of reactions involving diffusive barrier crossing in
“a bistable {and also in a more general) potential, a situation realized, for example, in some photoisomerization
processes. In case the reactant is in thermal equilibrium, the first passage times account well for the reaction
dynamics as shown by comparison with exact numerical calculations. A simple integral expression for the rate
constants is presented. For a case involving a reactant initially far off equilibrium, a two relaxation time
description for the particle number N(t) is derived and compared with the results of an “exact” calculation.
This description results from a knowledge of N{r = 0), Nt = 0), fodt N{t), i.e., the first passage time, and

=dt t N(t).

I. INTRODUCTION

Recently, the problem of reactions involving diffusive
barrier crossing between two stable states A and B
(see Fig. 1), e.g., cis=~trans isomerization, has at-
tracted renewed attention, As discussed in the classic
paper by Kramers,! when the system is strongly cou-
pled to the surroundings, the motion along the reaction
path is diffusive in nature,

Systems crossing the reaction barrier by diffusion
have no memory of their velocity and therefore are
likely to repeatedly reverse their motion near the bar-
rier top. Examples where such a diffusion description
is valid include reactions involving the motion of large
molecular units, broad barriers, and dense viscous
solvents,? e.g., many photo1somer1zat1on processes,
Many activated isomerization processes and related
biochemical processes in proteins and lipids are also
expected to show diffusive behavmr

Several recent studies have considered the dynamics
of barrier crossing using the Fokker-Planck? and
other® models to couple the system to the environment,
In this article, however, we will consider only reactions
for which a diffusion description applies (i.e., we use
the Smoluchowski model). We also restrict this treat-
ment to reactions along a one-dimensional reaction co-
ordinate x, The time evolution of the diffusion distribu-
tion accounting for all reaction paths along x is described
by the Smoluchowski equation (SE)

% p(x, tlxe) =Lixply, t]xo) , (1.1)

where L(x) represents the forward diffusion operator
8U
L= 2 ot (2 +822) (1.2)

and where ﬁ'l =kpT. Ulx) is the potential governing the
reaction (see Fig. 1) and D(x) is a configuration-depen-
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dent diffusion coefficient. The solution of Eq. (1.1) is
also subject to the initial condition

p(x,t=0[xo)=6(x—xo) ’ (1.3)

i.e., it is assumed that the system is initially in the
configuration described by x =x,.

On the basis of the-SE, Kramers' derived the well-
known expression for the effective first-order rate con-
stant for a system to cross from A to B (see Fig. 1):

k(Kramers) = (w,wc uD/24kT) exp[- B, "UA)] , - (1.4)

‘where U(x) has been approximated loc‘allybaround xa

and x., by a quadratic potential

Ulx)= Uzt spaly(x -x,P, Z=A,C, (1.5)

and the motion along the reaction coordinate is assumed
to involve the mass j.. Kramers’s result, however,
holds only in the limit of large barriers. Several recent
studies have addressed the interesting problem of gen-
eralizing the Kramers’s formula to arbitrary barriers
or else of deriving it from exact solutions of the SE.
Edholm and Leimar,® by means of an eigenfunction ex-
pansion of a particular bistable potential, developed an
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FIG. 1. Schematic representation of a bistable potential govern-

ing diffusive barrier crossing.
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estimate of the accuracy of Kramers’s expression and
some generalization of it. Eigenfunction expansions had
also been employed by van Kampen’ and by Larson and
Kostin® toderive Kramers’s formula from exact solutions.
In an interesting paper, Northrup and Hynes? have de-
veloped an analytic theory for diffusive barrier crossing
valid for the situation when the barrier is comparable

to kT. They construct a rather elaborate framework
based on dividing the potential into three regions: reac-
tant, barrier, and product, They then express the full
reaction rate constants in terms of a barrier rate con-
stant and internal rate constants which describe the re-
laxation to equiiibrium near the reactant and product
configurations. Finally, they show that if the partitions
are chosen so as to minimize the calculated relaxation
rate, the resulting rate is in excellent agreement with
that calculated by direct numerical integration of the
time-dependent SE even for low barriers where the clas-
sical result of Kramers errs significantly, A purpose
of this paper is to point out that the NH theory is un-
necessarily sophisticated, We divide the potential into
reactant and product regions at the top of the barrier
and, using the theory of first passage times, we derive
a single integral expression for the rate constant, In
the case of high barriers, we recover Kramers’s for-
mula (1. 4) while in the case of low barriers, this ex-
pression gives results that are virtually identical to the
“exact” results obtained by NH by numerical integration
of the time-dependent SE. In addition, we make con-
tact with a generalization of Kramers’s result given by
Edholm and Leimar,®

In Sec. II of this paper, we will derive the first pas-
saige time expression for reaction rate constants for
diffusive barrier crossing. In Sec. I, we compare for
symmetric wells the resulting predictions with the exact
results of NH, In Sec. IV, we generalize the descrip-
tion to nonsymmetric wells and in Sec. V to multiwell
situations.

Most descriptions of the reaction A~ B assume first-
order kinetics, ®! i,e,, use a single relaxation (reac-
tion) time, However, approximations can also be for- -
mulated which involve several relaxation times in a
description of the reaction dynamics. InSec. VI, we
will generalize the theory to allow for two relaxation
times to describe a reaction step A~ B within the dif-
fusive description of the dynamics.

Il. FIRST PASSAGE TIME THEORY APPLIED TO
DIFFUSIVE BARRIER CROSSING

We consider a system of two stable states A and B
separated by a barrier as shown in Fig, 1. As the sys-
tem is conservative (no particles added or deleted), the
SE for the conditional probability p(x, ¢|x,) for the sys-
tem to start its motion at x =x, and to be found at x at
time ¢ has to be complemented by the boundary condi-
tions

lim D(x) [—+B( )] p(x,t]x0)=0 .

X oo

(2.1)

However, in order to determine the reaction time, we
like to set up a situation that a particle starting out at _

© L*(xo) =explB(xo)] ;?;0‘ D{xq) exp[ - pU xo)] 8—:o ’
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%o i8 being “collected” as soon as it reaches a certain
domain x =x;>x,. As any particle reaching x; is taken
out of the system, this situation is obviously descnbed
by the new boundary condition :

P(xnf’xo):O . (2.2)

There is, of course, a certain distribution of times for
arrival at x;. For many applications it is sufficient,
however, to describe the diffusive motion by the average
time of arrival 7,(xy, x,), the so-called first passage
time (FPT). This approximate description corresponds
to casting the reaction process into first-order kinet-

ics®! and will be generalized in Sec. VI, The FPT is
© %1 .
(%0, %,) = f dt f dx p(x,t|x) . 7 (2.3)
U -o0 .
In Ref. 9 it was shown that 7,(x,,x,) obeys the equa-
- tions
=1=L*xo) 7(x0, 1) , . (2.4)
9
’%(1’513” o 71(x0, 1) =0, (2.5)
T;(x1,x1)=0 N . (206)

where L*(x,) represents the backward diffusion operator
2.7

Equations (2.4)—(2.7) can be readily solved to yield®!2

71, 21) = f " a0 [ dypaly),  (2.8)
where
p.,(x) Z™* exp[ - BU(x)] (2.9)
z= f dx exp[-pU(x)] (2.10)

Z representing a partition function, The FPT’s obey

the addition theorem (x=x; < x,)
T %0, %5) = Ty (%o, 1) + 7, (%1, x5) © (2.11).

If the particle starts initially in a distribution d(x) as-
sumed to be normalized, i.e.,

[ arato=1, (2.12)
the FPT is _
rlad(),x]= [ ™ o d(xo)y (x0,71) 2.13)

ill.. APPLICATION TO BARRIER CROSSING IN A
SYMMETRIC DOUBLE WELL

In order to describe the barrier crossing reaction
A~ B corresponding to the potential situation in Fig, 1,
we define the system to be in state A (B) as long as
%<0 (x>0), The corresponding concentrations for a
system starting at x =x, are

N, (t]x0)= J: dxp(x,t]xo) , (3.1)

Nalt]xo)= | " dxplx, t]xo) 3.2)
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As argued by NH the relaxation to equilibrium can be
approximated by first-order kinetics (however, see Sec.
Vi)

Ny (t]x0) = =y (20) N (8] x0) + 2, 0) Np(t | x0) (3.3)
Na(tlxo)= —k,(xo)NB(tlxo) +ky(x0) NA(tlxo) ’ (3.4)

which is to say that the rate constants &,(xo) and %,(x,)
can be determined as first passage times, In this sec-
tion we will only consider the situation of symmetric
wells for which &,(x,) =&, (x0).

Obviously, N, +Ng=const. The relaxation of the sys-
tem initially prepared in the configuration x4 is then
completely accounted for by the exponential decay of the
quantity .

Alt]x%0) =N, (¢t | x0) = Ng(t]x0) ,

(3.5)
which according to Egs, (3.3) and (3.4) is
A(t’xo)=exp[—2k,(xo) t] . (3. 6)

Because of symmetry N(¢]x,) =Ny (¢ | ~x,) and therefore
A(t10)=0, This requires the condition

[2k4(x5=0)]""=0. (3.7)

Hence, [2k,(x)]"! represents the first passage time for
the system to start at x, and to reach the point x =0 on
the barrier top, i.e.,

[2p(29)] " = 71(x0,0) . (3.8)

NH assumed that the system is initially in thermal equi-
librium in well A described by the equilibrium distribu-
tion '

pA(x) =2 exp[-BU(x)], x=0, (3.9)
. .

ZA=f dxexp[—pU(x)] . (3.10)
The corresponding relaxation time &} is

ks = mlpdu(x0), 0] . (3.11)
According to Ref. 9,

- 0 % 2 -
wis [ aoeprer| [ anw)] . ea2)

Equation (3.11) can be also derived using a simple
physical argument, Once the system has reached the
top of the barrier, the probability of going over is 1/2.
Since the average time to reach the barrier starting
from an equilibrium distribution is [ p (x,), 0], &, is
well approximated by {27,[p2(x,), 0]}"!. Since kg, =%,
+k, and k, =k, for a symmetric well, Eq. (3.11) follows
immediately. Conceptually, this result is clearly stated
by NH [in their notation our %, is k(6 =0)]. However,
using an entirely different mathematical analysis, the
expression they in fact derive for the relaxation rate,
when cast into our notation, is

E(5=0)=7(~,0) . (3.13)
From the addition theorem (2, 11) it is clear that
(=, 0)> 71 [ poy (x0), 0] (3.14)

and hence it is not surprising that their k(6 =0) is a
poor approximation (except for high barriers) to the
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exact relaxation rate constant obtained by numerically
integrating the time-dependent SE starting with an equi-
librium distribution in well A, Thus, it would appear

_ that as a result of their misevaluation of £,(56 =0), they

had to introduce a high energy (barrier)region, and de--
vise a criterion (i.e., their minimum principle) for se-
lecting the optimum partitioning of the potential, in order
to reproduce their exact results.  As we shall show be-
low, all this is unnecessary and Egs. (3.11) and (3.12)
predict results in excellent agreement with the exact
ones,

For a quantitative evaluation of the rate constants de-
rived, we follow NH and consider the symmetric poten-
tial

BU(x) =Uplz? + 3 exp(~22%)] ,

where z=x/0. We also assume a constant diffusion co-
efficient; The barrier height is (see Fig. 1)

BEs= BE,=BU(0) = BU(x,) ,

where x, is the position of the minimum of well A, For
the potential (3, 15), NH obtained “experimental” results
for k., by numerical integration of the corresponding SE
(1.1) assuming initial equilibration in well A, Unfor-
tunately, NH characterized their potential by the SE,
value rather than by U;. We had to determine, there-
fore, U, as the solution of a transcendental equation
attributed with a certain numerical error. The authors
also did not specify exactly in which space interval they
integrated the SE and evaluated the integral expressions
for their approximate rate constants., This missing in-
formation hampers somewhat.a.comparison of our pre-
dictions with the results of NH. '

(3.15)

(3;16)_

In Table I we compare the predictions of our Eq.
(3.12) and the results of NH for diffusive crossing over
reaction barriers of different height, The simple first
passage time prediction by Eq. (3.12) compares well
with the exact rate constants and the more elaborate
approximation k. (5,,,) (see Ref, 2 for the definition of
this expression) of NH. The relationship (3.14) is also
demonstrated, For large barriers, e.g., BE,=10, all
rate constants show a close comparison. This is also
the regime where Kramers’s formula (1.4) holds. As a
further illustration of the passage time concept, we
present without further comment in Table II various
FPT’s corresponding to a barrier SE,=5.0.

In order to show the convergence of Eq. (3.12) to-
wards Kramers’s formula in the limit of high barriers,
we note that in this limit

x
1= [ dyph(y) (3.17)
becomes independent of x and equal to unity in the re-

gion near the barrier where [pA ()] becomes large.
Therefore,

) 0
r2~D? | de[pA(x)]. (3.18)

The expansions (1.5) yield immediately [2%, (Kramers)]*
as given by Eq. (1.4). One can readily see that also’
k(56 =0) as given by Eq. (3.13) converges towards. the
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It may be noted finally that the generalization of
Kramers’s formula presented by Edholm and Leimar®
corresponds to our 7y(x,, xp) if one replaces in Eq,
(2.8) the integration limit x by x =0, '

IV. BARRIER CROSSING IN ASYMMETRIC
DOUBLE WELL POTENTIALS '

We will now generalize our treatment to the case of
an asymmetric double well potential, We denote by C
the state at the top of the barrier (see Fig, 1) and con-
sider the barrier crossing as a two step reaction

(4.1)

k.
-.—-i.-'-C:k—z_'B
kay A_z

Following NH, we assume a steady state concentration
for C, eliminate C, and describe the reaction by means
of the first-order kinetic equations (3.3) and (3.4) with -
rate constants

kP =p +232,/25, (4.2)
El=rd 11 2/2, , (4.3)
where Z, is defined by Eq. (3.10):
Zy= f dx exp[-pU(x)], 4.4)
0

and where we used Zp/Z, = k,/k, .

Equations (4,2) and (4. 3) express the forward and
backward rate constants %, and %,, respectively, in
terms of the first passage times ;! and &2} to reach the

_barrier top starting from the equilibrium distribution
in well A and well B, respectively,

Obviously,
ki'=kgy [as given by Eq. (3.12)], (4.5)
o o 2
#h= [ axlpwphor | . s, @

Schulten, Schulten, and Szabo: Diffusive barrier crossing 4429

TABLE I. .Comparison of rate constants (in_units of Dg™?).,*

Barrier height BE_," 1.6 3.0 5.0 10.0 .

kY (NH)® 0.4690. 004 0.211£0.003  (0.505+0, 002)x 107! 0.707x 107 &

‘B (this work)® 0.471 0.215 0.506% 1071 0.723x 107

P (009 0.465 0.215 0.506% 107! 0.707x 107

2%, (Kramers)® 0.545 0.252 0.570x 107! 0.768x1073

ke (6=0)* 0,31 0.19 0.497x 10~ 0.723% 107

iFor the symmetric potential of Eq. (3.15), the four barrier heights chosen in our calculation corre-
spond to U, values of 0, 99743, 1,8702, 3.1170, and 6. 2339, respectively. The range of integration
in Egs. (3.12), (3.13), and (2. 8) were chosen to achieve convergence to within three significant
figures. .

"Calculated by NH by numerical integration of the SE (1. 1).

°Calculated according to Eq. (3.12),

dCalculated by NH, for the definition consult Ref. 2.

°Calculated by NH according to Eq. (1.4).

Calculated according to Egs. (3.13) and (2. 8); the corresponding values of NH show small dis-
crepancies which are probably due to slightly different choices of Uy in Eq. (3.15).

“This value was estimated to be identical to kg, (65,,) and ke, (6=0) as calculated by NH,

Kramers’s formula in the case of a steep potential and a where

high barrier, - . :

g p2(2) =23 exp[-BU(x)], x=0. .7

From EqS. (3.3) and (3.4) one can derive the relaxation
behavior for a system initially in state A as

N NA(f)=[ZA/(ZA +ZB)]

+[1=2,/(2, + 2, expl = (k, +1,)1] (4.8)

i.e., the relaxation time is (¢, +#,), By virtue of Egs.
(4.2) and (4.3), '

(bp+k Y = (k3 Z, +11 25) /(24 +25) . (4.9)

To illustrate the accuracy of this description, we com-
pare again with results by NH who considered the poten-
tial (z=x/0) »

BU(z)=1.3716{(z +0.348 48)? +3exp[-2(z +0.05848)]} .
: . (4.10)

For this potential NH obtained the exact rate constant
k3 =(0.438+0.002)Do™ and the approximate rate con-
stant 0.440D¢™, On the basis of Egs. (4.9), (4.6), and
(4.5) we obtain the value 0,435D¢2, Noting that the po-
tential (4,10) exhibits rather low reaction barriers,
i.e., pE,=3.0 and BE,=1.5, the good agreement of our
simple expressions for k;! and B2 is very satisfying,

TABLE II. First passage times for
the symmetric well [Eq. (3.15)]

with BE;=5.0.
Ty (=, x,) 0.221
Ty (=%, 0) 20, 097 )
7 (g 60), 0] ' 19.782
7y [xy, 0] 19, 876
7y [xp, xp] 40, 014
7y [0, %] " 20.138
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FIG. 2. Reaction in a multiple well potential: The system
_starts at the configuration x, to either reach the well at x,
or to escape to xp.

V. MULTIPLE BARRIER CROSSING REACTIONS

The expression for the passage time derived in Sec.
II can also be applied to potentials which have multiple
minima and maxima along the reaction coordinate., A
typical situation which is of particular relevance to bio-
chemical processes is illustrated in Fig, 2. A particle
is initially at x =x, and one wants to describe its binding
at the potential minimum at x =x, assumed to lie con-
siderably below the potential at x =x,, i.e., Ulx,)
~U(x,)> kT. Typically, the particle may also have a
chance to escape the binding at x, by passing over a bar-
rier to some external space at g, The situation de-
scribed is, for example, reminiscent of the binding of
O, at the hemme group of hemoglobin after its diffusive
penetration through the protein. - (However, see also
the description in the next section for this case.) If the
possibility of escape is excluded, the description given
here may account for internal motions of protein side
groups, e.g., group rotation, or photochemical isom-
erization processes.

In this section we would like to cast the reaction pro-
cess corresponding to Fig. 2 again in a first-order ki-
netic description.. In this approximation, the fraction
of particles bound at x, is described by

Calt) = ¢(xo){1 = exp[- 2/ (x0)]},

where ¢(xo) represents the reaction yield and 7,(x,) the

. FPT for the situation that the particle starts out at
x=%0. T1(x,) obeys again the inhomogeneous equation
(2.4); however, the boundary conditions are now

(5.1)

(5.2)
(5.3)

It is for this change of boundary: condition that we have
altered the notation of the FPT. The. solution of Eq,
(2.4) subject to these boundary conditions is {p,.(x)
=exp| - BU(x) ]}

Tl(x°)=f,A dx[D(x)P.q(x)]'lfx dypcq(x)
%0 *B

T(xo=2,)=0,

T1(Xo =x5) =0.

[ @D T [ dy pualy)
x *B,

B

<[ @l [ @@ .9

*o
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The reaction yield has been shown by Tachiya!® to obey
the equation

] ] _

s;D(x)p,q(x) §¢(x)-o (5.5)
subject to the boundary conditions

¢(xp)=0, (5.6)

olx)=1. (5.7)

These equations are solved by

¢(x’0)=fxo d.az[D(x)p,‘,(x)]"/f"A dx[D(x)pe (). _
IB xa .

. (5.8)
By virtue of Eq. (5.8) we obtain
, A *
rilx)=g(x) [ a0 [ dy pugl)
IB xB
- [ a1 [ aypls).  6.9)
!B -

*B
The expressions (5.8) and (5.9) serve to determine the
time evolution of the binding reaction, In the case of
steep potentials, the approximation of locally quadratic
potential minima and maxima can be applied as in the
derivation of Kramers’s formula in Sec. III.

If the system starts in an initial distribution d(x,),
the expressions for ¢(x,) and 7,(x,) have to be averaged
according to Eq. (2.13). In fact, one would expect the
FPT description presented here to hold the better the
closer the system initially approaches the Boltzmann
distribution, However, the FPT theory can also be gen-
eralized to account for systems which are initially far
off equilibrium as shown in the following section, -

Vi.. DESCRIPTION INVOLVING TWO RELAXATION
TIMES

The FPT approximation corresponds to the assump-
tion of first-order kinetics. This assumption is justi-
fied in case the reaction starts in a near equilibrium
configuration, and if the equilibrium is approximately
maintained during the reaction. A deviation of this sit-
uation occurs if the reaction starts from a single con-
figuration x =x; rather than the equilibrium distribution.
The reaction rate derived from Eq. (5.1), i.e.,

71 %)t ¢ (x0) exp[—1/7(x0)] ,

has its maximum at £ =0, However, in the situation as-
sumed, the reaction rate C,(t) should vanish initially,
reach some maximum value at later times, and decay
again to zero. To describe such behavior, one needs at’
least two relaxation times, one for the rise and one for
the decay of CA(t). The FPT approximation presented
above allows only a single relaxation time to describe
C.(#). In this section we will generalize this treatment
to a description which involves two velaxation times. A
more general description involving further relaxation
times will be the subject of a future publication.

We will assume in the folloWing that there exists no
route of escape as in Sec, V, i.e., ¢(x)=1. In order
that ('?A.(t) exhibits the proper behavior, namely,

J. Chem. Phys., Vol. 74. No. 8. 15 April 1981
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(1) the total number of particles

reacted is unity, 6.1)

(2 é;(t) =0 att=0, (6.2)

the concentration C,(¢) in a two-relaxation-time descrip-
tion must assume the functional form

! CA(t) =1~ [tl exp("t/tl) -1, exp(—t/tg)]/(tl -'tg) . (6. 3)

Our aim is to determine the time constants #; and £, on
the basis of the SE (1.1). For this purpose we impose
the following conditions on C,():

3) fo’ dt[l1 - C, () ]=7x, %), (6.4)

@ [ arl1 -y =ralne, 1) - (6.5)
(]

Since 1 —C, (f) represents the number of particles un-

reacted at time ¢, i.e.,

1-Ca®= [ dxplx, t]xo)= Nt| x) (6.6)
*y .

condition (6.4) states that the time integral over 1-C,(¢)
should assume its exact value 74(x,,x,). Similarly,
we impose by Eq. (6.5) the condition that the first
moment,

\ fo " N xo) 6.7)

.will coincide with the exact value of this integral 7,(xy,x, ).
75(x0,%,) can be determined as readily as the FPT it-
self. To show this, one starts with the backward diffu-
sion equation for N(tix,) (see Ref, 9):

2 Nt = L) Wt x0) . (6.8)

The time integral in Eq. (6.%7) yields the equation for

7y( %o, x4) [note N(£=01xy) =1, lim,. . ¢N(t lxo) = 0] (Ref. 10):

= 11(x0, %) = L*(26) T3 x0, ) (6.9)

This equation is subject to the boundary conditions

. 9
x(}il’_ll EO- Tg(xo, xA)=0 . (6.10)

Tz(xA,xA)=0 . (6. 11)

71(x0,x,) is given by Eq. (2.8). For 7,(x,, x,) one ob-
tains '
. Tz(xo,xA)= f A dx[D(x)P,q(x)]q
’ ) xg o

X[r Ay pea(9) T1(3,%4) . - (6.12)

To determine #, and ¢, entering Eq. (6.3) we carry out
the integrals on the lhs of Egs. (6.4) and (6, 5) to obtain

ty+ty=Ti(x0,x4) , (6.13)
Brtity +8=1y(x0,%,) , (6.14)
ie.,
tr,2 =[5+ VT (%0, %) /Ti (%0, #4) = 3] 110, 24) (6.15)
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\—T1N(t)
10 o
] reflection absorption
® .
5 o8- P t=0
- 4 [ ~¥ free diffusion
o 067 f — exact —
5 1/ W ° = °
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8 o.z._ /] — 2T expl-n/2t)
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Time

FIG. 3. Comparison of the absorption rates (6.25) (—),

(6.19) (---), and (6.28) (+++) for a reaction system under-
going free diffusion; the reaction-diffusion system is illustrated
by the insert of this figure [1;=7{(0,a), x4 =al.

As a test of the description suggested, we consider
the situation depicted in Fig, 3 with U(x)=const., x,=0,
and a reflective boundary at x =0 [the latter modifica-
tion leads to a replacement of —« by 0 in the integration
limits in Egs. (6.12) and (2.8)]. One determines

{0, %)= (4% —xﬁ)/ZD (for variable x,) , (6.16)
73(0,2,) =% 730, %) » (6.17)
and hence
2= (3+V1/712) 1,00, x,) . (6.18)
" 'This yields the following for the rate C,(t): '
Cal)=1.727,(0, x, )" {exp[-£/0.797,(0, x,)]
-exp[-1/0.217,(0,x,)]} (6.19)

which reaches its maximum at 0,38 7,{0,x,).

In order to test the validity of the rate expression
(6.19), we will evaluate the exact rate, For this pur-
pose we expand the diffusion distribution

p(vx,t|0)= ZO A, f(x)exp(x,Dt), (6.20) |

where f_,,(x_) and A, are the eigenfunctions and eigenval-
ues, respectively, of the SE subject to the appropriate
boundary conditions ’

Sfulx)=cos[(2n + 1)nx/2x,7,
M==[@r+)a/2x,].

The expansion coefficients A, are determined through
the initial condition. One obtains -

(6.21)
(6.22)

A, =2/x, . (6.23)
The reaction rate determined by virtue of
-D 5x”—p(x,t|o), atx=x, (6.24)
is found to be
[n/27,(0, xA)]i; (@n +1)(=1)yem? (6.25)
=
- y=exp[-(1/2)¢/27,(0,x,)] . (6.26)
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In Fig. 3 we compare this expression to the approxima-
tion (6,19)., Within the limits of a two-relaxation-time
description, the agreement appears to be very satis-
factory.

We may note that for the reaction process considered,
a simple short and medium [t~ 1,(0,x,)] time approxi-
mation can be derived. In fact, if thereflective boundary.
at ¥ =0 is removed, the resultmg distribution po(x, £10)
in the space x>0 will be close initially to p(x, #10) until,
due to the reaction at the boundary x =x,,. the concen-
tration of particles is depleted. The resulting decrease
of the concentration gradient is sensed by the particles
in x <0 which hence diffuse towards x >0 and at times
longer than 27,(0,x,) will react at x=x,. po(x,¢10) is
well known to be

Dolx, #|x0) ={exp(~x*/4Dt)

—expl-(x —2x,2/4DtYN7DF . (6.27)
The resulting reaction rate
7100, 2,)™! V27,00, %, 0 /78 exp[=7,(0, x,)/2¢] (6.28)

. compares very favorably with the exact rate as demon-
strated in Fig. 3.

It may be pointed out that the two-relaxation-time
reaction rate (6. 3) is of direct relevance in the dynamics
of the olfactol’y sensory process which involves a one-
dimensional diffusion process.!* It should also describe
photoisomerization processes in condensed media when
the motion on the excited state potential surface linking
~reactant and product states should resemble a dxffusmn
~ process governed by the SE (1,1),
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