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A distributive process of the binomial type in a one-dimensional discrete space with an absorbing
barrier is studied. A simple expression for the particle number X(¢) is derived. The analysis is
based on recursion relationships and sum rules for the underlying eigenvectors, the Krawtchouk
polynomials. The first passage time is detérmined, and the validity of the passage time ap-
proximation to 2(?) tested. The continuous limit, corresponding to the diffusion and reaction of a
harmonically bound particle, is briefly described. -

1. Introduction

In this paper we will reconsider the Ehrenfest urn problem which charac-
terises the simplest stochastic process giving rise to a binomial equilibrium
distribution'?). This problem derives its importance from the fact that it
appears in various disguises in many situations of statistical mechanics. Our
treatment given here differs from previous studies in that we will consider the
problem in the context of a reaction process.

The Ehrenfest urn problem was devised originally to model the heat
exchange between two containers. In regard to current interests in in-
tramolecular relaxation, it may be assumed to model the exchange of vibra-
tional quanta between two modes of a molecule®). The questions traditionally
asked concerned the distribution of particles, assuming a random transfer of
particles between the containers. However, one may envisage the situation
that a reaction takes place whenever the particles in one of the containers
exceed a certain maximum number (absorbing barrier). A realisation may be a
molecule highly excited in a non-reactive vibrational mode which exchanges
vibrational quanta between this mode and a reactive mode. One may then ask
how the reaction will proceed in time. One may also want to estimate the

* Dedicated to Ernst Ruch on the occasion of his 60th birthday.
t Alfred P. Sloan Fellow.
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mean time for the reaction to take place. In the following we will derive the
corresponding answers.

Our treatment below follows the solution of the Ehrenfest urn problem by
Kac') in that it relies on eigenvectors given by the Krawtchouk polynomials,
generalizations of the Hermite polynomials*’). We drew much guidance from
the relationship between the Krawtchouk and the Hermite polynomials by
generalizing some needed properties of the latter.

The Ehrenfest urn problem gives rise also to the simplest description of
the end-to-end diffusion of a polymer molecule, entailing the most important
features of the realistic behaviour. As this notion allows for a clear physical
language, we want to consider the Ehrenfest model in this disguise only.
In section 2 we introduce the polymer formulation and solve the
Ehrenfest model under reaction-free conditions. The aim of this section,
which does not go beyond the Kac solution, is mainly pedagogical and to
define our notation. In section 3 we assume reaction conditions and solve for
the particle number. In section 4 the mean reaction time = will be evaluated.
We will demonstrate that the polymer reaction is approximated rather well by
an exponential decay, exp(~t/7). In section 5 we briefly rederive the results of
sections 2 to 4 in the continuous limit, i.e. for an Einstein-Smoluchowski
diffusion process giving rise to a Gaussian equilibrium distribution. As a
trivial departure from most previous studies, we will assume all processes to
proceed along a continuous time axis, i.e. we model the particle transfer
between containers by first order kinetics, and not as events discrete in time.

2. End-to-end motion of one-dimensional polymer

‘We want to consider in this section the simplest model of a polymer. The
archetype polymer is confined to a one-dimensional space and consists of 2N
segments of length one. Each segment can achieve two possible orientations,
one in the positive and one in the negative direction. The polymer can assume
thereby 22V different conformations. We wish to focus, however, solely on the
end-to-end distance of the polymer.

The end-to-end distance x assumes the value

x =2j, ) ’ 2.1
when N —j polymer segments are in the negative direction (j = —N,-N+
1,..., N). The end-to-end distance x = 2j is realized for (N+,) conformations.

The vast majority (for large N) of polymer conformations obviously cor-
responds to small x values. Assuming that at equilibrium all conformations
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are equally likely, the equilibrium end-to-end distribution Py; is

. 2N)
Py =2 (Nﬂ. ) 2.2)

We want to describe, however, the behaviour of the polymer under non-
equilibrium conditions. A typical question may be: How fast is the equili-
brium distribution attained by an ensemble of polymers after all polymers
have been extended to a length x =2m?

For a description of the stochastic motion of the end-to-end distribution
one needs to know the rate of fluctuation between positive and negative
segment orientations. We assume that the fluctuations of all segments are
independent and are governed by the rate equation

aila)== 1 il

dt[n Tl 1 —1{lnl) , (2.3)
where the vector [4] accounts for the occupation of positive (p) and negative
(n) segment orientations. With these assumptions, the problem of describing
the end-to-end diffusion of the polymer through its 2?-dimensional
configuration space can be reduced to a diffusion problem described by a

master equation in the much more confined 2N + 1)- dlmensxonal space of the
end-to-end distribution P(j, t):

TR(%P(JE )= =2NP(, )+ (N +j+ DPG +1,t)
+(N=j+DP(—1,0). @2.4)

This equation follows directly from the observation that single ‘segment
reorientations yield 2N ways to change a x = 2j conformation either into a
x=2j+2 or x=2j~2 conformation, N —j+ 1 ways to change a x =2j~2
conformation into a x =2j conformation, and N +j+ 1 ways to change a
X =2j+2 conformation into a x = 2j conformation. Eq. (2.4) is equivalent to
the master equation in ref. 1 describing an elastically bound particle and to the
Ehrenfest model, except for the trivial difference of a continuous time
variable.

We may note here for later use that eq. (2.4) may also be cast into the
operator form

TRGf P(t) = OP(t), 2.5)

where the vector

(PO =PGt) (2.6)
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describing the time-dependent end-to-end distribution and the stochastic
operator O is a tri-diagonal matrix with elements

N-j+1 ifi=j-1

0. = -2N ifi=j
"IN+ ifi=j+1 2.7)
0 otherwise.

As a demonstration of the behaviour described by eq. (2.4) we will show.

that any polymer extended to some end-to-end distance x = 2m described by
the initial condition

P(ja t= 0) = sjm (2.8)

decays towards the equilibrium distribution. For this purpose we define the
generating function \

+N :
glx, t)= EN P(j,t|m,0)x. (2.9)
. ==
Eq. (2.4) implies then the differential equation
2 .
TG 80D = N(x+x7 = 2g(x, )+ (1 - x) 2 g(x, 1) 2.10)

and the initial condition (2.8) imposes

glx, t = 0)=x", | | @.11)
Eq. (2.10) gives rise to the eigenvalue problem

[(1 —xz)%+N(x+x"—2)] &(x) = A(k)g(x), @.12)
which is solved by (k=0,1,2,...,2N) |

8(x) = x7N(1+ x)2NK(1 = x)k, (2.13)

Ak) = =2k, (2.14)

The generating function &(x,t) is profitably expanded in terms of these
eigenfunctions

2N .
gx, ty=xV go a(1+ xPN*[exp(=2t/r)(1 - x)]¥, (2.15)

for as the initial condition (2.11) may be written

8(x, t=0)=2"MxN[(1+x)+ (1 - )N "[(1 +x)— (1 — x)]V*™ (2.16)
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one can immediately conclude

8(x, ) =2%x"N[1 + x + exp(=2t/mg)(1 — x)]N-"
X[1+ x —exp(=2t/rg)(1 — x)]N*™ .17

According to the definition (2.9) of the generating function the distribution
P(,t lm, 0) can be abstracted from this expression by expansion in terms of
powers of x. Inspection of (2.17) shows that at long times g(x, ) becomes
independent of the starting distance x = 2m

+N
g0 2 27 N =2 5 (2N ) (2.18)
ie. P(j,t lm, 0) approaches the equilibrium distribution (2.2) at long times.
Because any initial distribution can be regarded as a superposition of (2.8), we
have, thus, shown that any solution of the master equation (2.4) decays
towards the equilibrium distribution. This is, of course, to be expected:
according to (2.15) the relaxation times for the contributions of gx(x) are mr/2k
so that at long times only go(x) remains.

3. End-end reaction of one-dimensional polymer

We will describe now by means of the master equation (2.4) polymers
which undergo a reaction when their ends meet at x=0. The aim is to
evaluate for such situation the fraction of polymers unreacted yet at time ¢

(= 5",1 P(,t) 3.1
1= .

for any initial distribution P(j, t = 0). We will assume here and in the follow-
ing 2(0) = 1.  As the reaction at x = 0 depletes the corresponding polymers,
one has to impose the boundary condition

P(j=0,t)=0. ‘ (3.2)

Since the occurrence of the reaction effectively divides the diffusion space
into two halves, i.e. j >0 and j <0, the sum in (3.1) may involve only positive
Jj values.

3(t) is most conveniently evaluated starting from the expression for the
reaction rate

N+

TR

dg._ N+1
730= PQ, 1), (3.3)
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which results from a summation of (2.4). The eigenvector expansion of the
initial distribution,

N
P0) = % Py, (3.9
leads to
2N .
P@, t)= k§=:0 ay exp[A (k)t/Tr] Py, (3.5)
or
2N
;—t I)=- N: LS i explA(0)t/ el Py (3.6)
R k=0

Integration yields

2N
E(t) = —(N + l) ’(2=0 ak/\(k)—l exp[)‘(k)t/TR]P“. : (37)

For an evaluation of 3(¢) one needs to determine the (right) eigenvectors P,
of O. They are provided by the generating function g(x) defined in eq. (2.13)
by means of%)

N '
gulx) = 2 Puxl, (3.9)
vii.
_ s (kY 2N -k
Pu-g( D <s><N+j—s)' (3.9)

The spectrum A(k) of O is given by (2.14). The properties of the eigenvectors
needed in the further calculation are best abstracted from the generating
function

Gx,y)=xM[1+x+y(1-x)PN

2N +N 2N .
=2 (k)P""yk""

=N

(3.10)

which follows directly from (2.13) and (3.8). One can immediately derive from
this relationship the symmetry property

Pij = (= D*Py;. (3.11)
This implies Py =0 for k odd, and togethér with
(2k =2N)Py; +(N —j+ DPyjuy+(N = j+ )Py, = 0, (3.12)

a restatement of the eigenvector property OP, = —2kP,, it implies Py # O for k
even. From this follows that the expansion (3.5) and, hence, (3.7) entails only
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odd k values:
! & Qg1 <
St)=(N+1) kz_| Tk —5 expl-(4k - 2t/ TR1Pag1s- (3.13)
Clearly,
(3.14)

lim2(t)=0,

i.e. all polymers finally uhdergo reaction. The decay of 3(¢) is dominated at
long times by the longest relaxation time i7g.
As O is not a symmetric operator, its eigenvectors are not orthogonal. The

transformation S7'0S
_ 2N 102
Sij = (N + j) By

brings O to a symmetric form and, hence, provides an orthogonal basis S™'P,,
ie.

(3.15)

$ ( 2N (3.16)

-1
N+ j) PyiPyj = oSk

=N

This orthogonality relationship allows us to determine the expansion coefficients

a; defined in (3.4)
ap = S_sz M P(O)/S—zpk . Pk. (3.17)

In the appendix we derive for the case that the initial distribution is-equal to
the equilibrium distribution for j > 0, but vanishes for j <0,

_ N+1.,n( 2N
Q-1 —zk_lz <2k_1) PZk—ll' (3'18)
Hence,
N 2
_ana N N+ 2N 2 o[ (dk —
2(=227 5 O (2N ) Phoss expl-(ak 275 (3.19)

This expression is readily evaluated. The result is presented in fig. 1 for a
polymer with 40 bonds (N = 20).

4. First passage time approximation

Expression (3.19) demonstrates that the end-end reaction of polymers is
described by relaxation times (1/2)rz, ('/6)7s, (1/10)7g, etc. The longest
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Fig. 1. One-dimensional discrete polymers (2N = 40) undergoing binomial end-end diffusion and
an end-end reaction: comparison of the fraction of polymers yet unreacted at time t, 3(f) as given
by eq. (3.19), and its first passage time approximation exp(—t/r), 7 evaluated from eq. (4.17).

relaxation time (1/2)g will dominate the behaviour of 3 (t) as the contribution
of the shorter relaxation time should decay fast. The question arises how well

3(t) can be approximated over its whole time course by a single exponential,
1e.

2(t) ~ exp(—t/7). 4.1

The effective relaxation time 7, the so-called first passage time’), is determined
¥by

7= dt3(¢). 4.2
/

We want to show now that 3(¢) can indeed be approximated rather well by
(4.1), (4.2) and demonstrate furthermore that the first passage time 7 can be
evaluated with little effort.

Let P(,t¢ Im, 0), 3@t ] m), 7. be the distribution, fraction of polymers
unreacted yet, and the first passage time for a polymer ensemble which starts
to diffuse at time ¢ = 0 with an end-to-end distance x = 2m and subsequently
undergoes an end-end reaction. One can derive from 2.5)

P, t|m,0)= [exp (TLR O)]jm = [exp (-:—R OT)L;’ 4.3)

where O stands for the transpose of O. The first equation entails the recursion
equation (2.4). The second equation, though seemingly trivial, yields an
important new master equation, the adjoint equation

re st PGt | m,0) = S OuP Gt | n,0) | (44)
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.()‘r

resr PGt | m,0)=~2NPG. 1 [ m,0)+ (N = m)PG,t | m +1,0)
+(N+m)P(j,t|m—1,0). 4.5)
Summation over j results in
TR—C%Z(t | m)=—2NZ(t |m)+ (N —m)3(t | m + 1)
+H(N+m)Z(t|m-1), (4.6)
an equation which has to be supplemented by the boundary condition
3(t[0)=0. @7

Integration over ¢ yields by virtue of 2(0[ m)=1 [for m# 0] a recursion

" relationship and boundary condition for the first passage times Tm (M=

1,2,...,N)

=2N7 + (N ~ m)Tpy + (N + Mm)Tpy = —1Tp, 4.8)

T0=0. “4.9)
This equation will be solved now.

The solution of (4.8), (4.9) goes in two steps: first the differences

n =T —Tmyy, m=1,2,...,N (4.10)
will be determined, and then the first passage times by means of

T = D d, 4.11)

n=1

The differences d,, obey the inhomogeneous equation

(N ~m)dp.1— (N +m)d,, = —1x. “4.12)
.Multiplication by () results in

2N -1 _ 2N -1 __( 2N )

2N<N_m_1>d,,.+, 2N(N_m)d,,,— N ) @.13)

from which follows
_ TR 2N—1)" N (2N>
"'“zN(N—m Z",” N+i/ @.14)
The resultant first passage times 7,, are
_ TR & 2N—l)"”(2N)
T"‘_ZN,.Z.(N—n 2 N+i) (4.15)
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The first passage time = for the initial equilibrium distribution Py, j >0,
defined as

= ,g, (Nziv m) T"‘/ ?:. (Nziv m)’ (4.16)

is given by the expression

N -1 N -1 N 2

=l SRS BT @)
Fig. 1 demonstrates for a polymer with 40 bonds that the agreement
between the exact 3(t) and its first passage time approximation exp(—t/r) is
very close. The first passage time = is in this case 0.3897z. As to be expected,
7 is shorter than the longest relaxation time of the exact expression of 3(¢),
which is 7, =irz but longer than the shorter relaxation times Ty T3y ... =

(1/6)7g, (1/10)7g, .. .. .

" 5. The continuum limit

For long polymers (N large) the equilibrium distribution (2.2) is ap-
proximated well by the continuous Gaussian distribution (x = 2bj)

Py(x) = (47b*N )" exp(~ x?/4b>N). .1

This suggests that the discrete master equation (2.4) may be represented by a
diffusion equation which yields (5.1) as its equilibrium distribution. The
corresponding equation is the Einstein-Smoluchowski equation’)

Kl - 20 58 )

TR pix, t)= (4Nb ax2+2 a5~ p(x,t), 5.2)
where b stands for the bond length of the polymer and x = 2bj denotes the
end-to-end distance.

We want to describe now continuous one-dimensional polymers which

undergo a reaction when their ends meet, i.e. at x =0. The fraction of
polymers unreacted is

()= f dxp (x,1). ‘ (5.3)
[1]

The occurrence of the reaction imposes the boundary condition

p(x=0,1)=0 | (5.4)
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on the solution of (5.2). The diffusion space is thereby divided into two
disjunct intervals, x >0 and x <0. In order to keep a close analogy to the
derivation in section 4, we will obtain 3(¢) by means of an eigenfunction
expansion: ‘

P(x,t)= Ek) ck explA (k)R] P (x/2bV/'N), (5.5)
where (y = x/2bVN)
<_32_2+2_a_y) Pi(y) = AMK)P(y). (5.6)
ay ay
The solutions of (5.6) are given by the Hermite polynomials Hj
Pi(y) = exp(—y*)Hi(y), (5.7
Ak)=—-2k. (5.8)

Egs. (5.7) and (5.8) imply that the Hermite polynomials, i.e. Pi(y = j/VN),
represent the continuous limits of the eigenvectors P,; above, a relationship
which has been derived by Krawtchouk?). Fig. 2 compares the orthonor-

%

02 / \ 02
0.14] \ 01
\\ k=3
-01 4 \ // H-01
-0.24 T F-0.2
\_\)/

034 =, Lo3

/Y
024 / \ L02
. / \,
011 \\ ket 0.1
.

0 4 8 1 18 20
j . -

Fig. 2. Comparison of the orthonormalized eigenvectors of the binomial diffusion opera‘tor

27Ny W) 2P, presented by (x), and of the orthonormalized Hermite polynomials

[2*Nk!V 712 exp(— 212N )H, IV N) presented by (—), for 2N = 40.
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malized polynomials
N 2N>!/2( 2N )—I/Z ,
2 (%) (4 +j) Pu |
and [2*Nk V7] exp(— j?/2N)H,(j/V/N) for N = 20 to illustrate that only for
small k or j the agreement between the polynomials is satisfactory.

The boundary condition (5.4) eliminates all even eigenfunctions from expan-
sion (5.5), i.e.

p(x,t)= 230 Caiv1 €Xp[—(4k + )t/ 75 — Y] Hyr(y). (5.9
The coefficients ¢y, have to comply with the initial condition

p(x,t =0)= Py(x) for x>0, (5.10)
hence, '

(bVwN)'= ;) CartHaunr(y). (5.11)

One obtains®)
Caer = (= D [bm2* 2k + DKV N, ' (5.12)
and for 3(¢) then

()= -12;2) (=D[2*Q2k + k']

x expl~(4k + 2)ti7e] [ dy exp(-y) Haeo (). 5.13)
. 0

Integration of (5.6) yields

[ 4y exp(=y2Hani() = Ha0) 514
0
and, finally®),
3(1) = %,@, @RY[ZH kK + DI expl—(dk + 2t/ ], (5.15)
which is recognized as the Taylor expansion of
I = ;2,_— sin~!(e2/®), (5.16)

The derivation of egs. (5.12)-(5.15) involves those properties of Hermite
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polynomials which, in the course of obtaining (3.19), have been generalized to
Krawtchouk polynomials.

As in the case of discrete polymers, it is to be expected that the longest
relaxation time 7g/2 in (5.15) will dominate the decay of 3(¢). The question
again arises if 3(¢) can be approximated over its whole time course by a
single exponential, i.e. through eqgs. (4.1) and (4.2). The evaluation of the
corresponding first passage time 7(x,) for an ensemble of polymers starting at
time ¢ = 0 at an end-to-end distance x, follows closely the treatment in section
4,

Let p(x,t lxo, 0) and (¢ ]xo) be the polymer distribution and polymer
fraction unreacted at time t. Eq. (4.4) in the continuous case has to be
replaced by the adjoint equation'’) of (5.2)

9 = 2 9% _ _8_) '
g0t ] 50,0 = (4N6? Lo =200 ) (a1 0,00 5.17)

together with the adjoint boundary condition »
p(x,t | xo=0,0)=0. (5.18)

Integration over x yields

9 - 202, 8
el S(tlxo)—<4Nb T5- 2% axo) 3(t, o). (5.19)

Integration over ¢ by virtue of the initial condition 3(0, x) = 1 results then in
the first passage time equation

d2
4Nb? ax: 7(Xp) — 2Xo ad;“) 7(Xp) = — g, (5.20)

together with
70)=0. (5.21)

The solution of (5.20) and (5.21) goes again in two steps, solving first for
d7(xo)/dxo and then for 7(xo) to obtain, instead of (4.15),

7(xo) = (Tr/4Nb?) f dx cxp(x2/4Nb2)fdy exp(~y*/4Nb?). (5.22)
0 x

The first passage time for an ensemble of polymers initially in the equilibrium
distribution (5.1), i.e.

r=((bVaN)" f dxo7(xo) exp(—x2/4Nb?) (5.23)
0
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is now [cf. eq. (4.17)]

=Qwn/Vm) j: dx exp(x?) [ f dy exp(-—yz)]z. (5.24)
0 x

But only in the continuous case can 7 be reduced to the simple expression
{note') [ dy exp(— y)F = fi det(1+ 3 exp[ — x*(1 + )]}

7=(7r/2)In2. . (5.25)

Fig. 3 demonstrates the agreement between the exact X(t) given by (5.16)
and its first passage time approximation exp(—t/r). The first passage time for
the continuous case, i.e. eq. (5.25), amounts to 0.347, and that for a discrete
polymer with N = 40 to 0.389. An illustration of the merit of the passage time
approximation for more general situations has been given in ref. 12.

T e
04 08 12 16 1,

Fig. 3. One-dimensional continuous polymers undergoing Gaussian end-end diffusion and an
end-end reaction: comparison of the fraction of polymers yet unreacted at time ¢, 3(t) as given by
€q. (5.16), and its first passage time approximation exp(—2#/rg In 2).

Appendix

Sum rules for Py;

We want to evaluate the two sums

S7P - P(0)= !/Zl Py, (A.D)

i=1

2 N (2N \!
S?P P, =D ( N +i) P}. , (A2)
Summation over the eigenvalue equation (3.12) yields for odd k, ie. Pyo=0

& N+1
i; Py = T Py, (A.3)
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The evaluation of (A.2) is somewhat more elaborate. Starting points are two
differential equations for the generating function (3.10)

[1+x+y(1-—x)]:%;G(x, y)=2N({1-x)G(x,y), (A.4)

(1-3)35 6%, 3) = (1= X) & G(x, )+ (NI = N)G(x, ), (A5)

which imply the recursion equations
By~ Pryyj— Prjor— Py =0, (A.6)
N = K)Piij = (N +j+ )Py + (N +j— k)P = 0. (A7)
Combination of ihese relationships yields
(2N — k)Pys1j +2jPy + kPyy; = 0. ‘ (A.8)

Multiplying (A.8) by Pi); and subtracting the same recursion equation taken
for k — 1 and multiplied by P,; we obtain

kPi_U' + (2N - k)PkHij—li_' (k - 1)Pk_2,'ij - (2N - k + I)Pi, = 0 (A9)

Multiplying this relationship by (#Y;)~' and summing over j yields by virtue of
the orthogonality relationship (3.16)

Tk =-2-1—\’——k_—+_10"" (AIO)

or, by iteration,
~1 |
oy = (2N) 0. (A.11)
k
As oy is readily evaluated, one has
-1 .
o =2V (211:1 ) . (A.12)

For odd k the sum in (A.2), which involves only positive j values, is just
jo1. Combination of this result and (A.3) yields finally

=N N1 (2N ) P (A.13)
k k
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