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Pairs of radical ions generated in polar solvents by photoinduced electron transfer either recombine within

a few nanoseconds to singlet and triplet products or separate. On the basis of recent time-resolved
observations of a magnetic field dependence of the pair recombination a theoretical description of this
process is provided. The description, similar to the radical pair theory of CIDNP and CIDEP, is founded
on a coherent spin motion superimposed on the diffusive ‘motion of the radicals. The spin motion is
induced by the hyperfine coupling between electron and nuclear spins and can be modulated by low (0-200
- G) magnetic fields. The spin-selective recombination of radicals is accounted: for by a Feshbach optical
potential. The diffusion process described by a Smoluchowski operator depends sensi;ively on the solvent
properties. For the case of free: Brownian motion, simple analytical expressions for the time- and magnetic-
field-dependent recombination yields are derived. For the Brownian motion of oppositely charged radical
ions a differential-difference approximation is used to demonstrate the dependence of the recombination
yields on the viscosity and polarity of the solvent medium as well as on. the strength of the hyperfine

coupling and on the rate of the electron back transfer.

I. INTRODUCTION

Observations of elementary reaction processes have
in the past been mainly confined to the gas phase. The
advent of short time laser methods makes it feasible,
however, to monitor elementary reaction processes
also in the liquid phase with a nanosecond time resolu-
tion. From observations of reaction events in the gas
phase, an understanding of reaction dynamics governed
by the reactant—product potential surfaces has evolved.
.Clearly, one expects that reactions in solution are
much influenced by the solvent environment of the re-
acting particles. The solvent modifies the reactant—

product potential surface and also alters the translation-

al and rotational motion of the reactants from straight
trajectories of a classical mechanical description to
zig-zag random flight trajectories of a statistical
mechanical description. It is this second aspect of re-
actions in liquids, the random motion of two reactants
described by their time-dependent pair correlation
function, that we want to study in this paper. -

In general, the recombination of radical pairs is
governed by the alignment of the unpaired electron
spins (singlet or triplet) which is expressed in terms
of a spin density matrix. The recombination rate and
the partition of singlet and triplet products depends on
the product of the pair correlation function and the spin
density matrix. Once the spin density matrix is known,
a time-resolved measurement of the recombination pro-
cess could yield the time evolution of the pair correla-
tion function, In the light of the recent time-resolved
observation of radical recombination presented in Ref.
1, we want to point out in this paper some properties of
the time-dependent pair correlation function and fac-
tors influencing it as well as the singlet and triplet re-
combination yields.

Let us first summarize the results of the experi-
ments presented in Ref. 1, in which radical ion pairs
were generated in polar solvents via photoinduced elec-
tron transfer between suitable acceptor and donor mole-
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cules by nanosecond laser flashes.. In the case of-the
sample system, pyrene (Py) and 3, 5-dimethoxy-N, N-di-
methylaniline (DMDMA) in methanol, the radical ion
pair recombines to the triplet state as well as to the
ground state. The ions and their recombination prod-
ucts can be monitored with a nanosecond time resolu-
tion, " One finds that the recombination proceeds on two
different time scales. Either, the original pairs recom-
bine directly within several nanoseconds (first-order,
geminate recombination), or the pairs diffuse apart and
recombine with members of different pairs (second-
order, homogeneous vecombination) over the time
range 10°~10% ns, depending on the concentrations |
(~10-10"% mol dm™?). :

Since the radical ion pairs are being generated from
singlet precursors, their unpaired electron spins are.
in a singlet state ihitially. For the recombination to. the.
triplet state to occur the radicals must be brought to a
triplet spin alignment. - When radicals of different ini-
tial pairs encounter each other, the spin alignment is
random, i.e., 25% of them encounter in a singlet and
75% in a triplet alignment. The appearance of triplet
recombination products after a long time (~10* ns) is
then readily explained. However, triplet recombination
products appear already in the early geminate phase of
the recombination process. The mechanism by which
the spin multiplicity of the radical ion pairs is changed
within the short time of a few nanoseconds has been the
subject-of much debate. It was first'suggésted by
Brocklehurst® and more recently by Orbach and Otto= - -
lenghi® that the fast spin multiplicity changes maybé~
caused by the hyperfine coupling between unpaired‘elec-
tron and nuclear spins.

The hyperfine coupling induces transitions between- - -
the degenerate S, and Ty, T,;, T., electron spin states
of the radical pairs. An external magnetic field, how-
ever, lifts the degeneracy between the Sp, Tg, and the
T,, states.  For field strengths of the order of the hy-
perfine coupling constant the transition probabilities
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"between these states and, consequehtly, the triplet
product yield, will be reduced. As a magnetic field
effect is not to be expected for the long time (10° ns)
recombination process involving radicals of different
initial pairs, the magnetic field effect separates out
the geminate recombination. It has been reported in
Ref. 1 that the triplet yield of recombining radical ion
pairs in polar solvents is reduced by weak (0-100 G)
external magnetic fields: In a time-resolved experi-
ment the magnetic field effect was demonstrated to
build up over the geminate phase of the recombination
process. The magnetic field dependence of the triplet
yield was found to be in agreement with the prediction
of a theoretical model based on the hyperfine mecha-
nism of geminate radical recombination. Recently,
Michel-Beyerle et al.* have aldo observed a magnetic < '
field dependence of the geminate triplet production with
a donor-acceptor system similar to that in Ref. 1.

The theoretical analysis shows that a few nanoseconds
are needed for the hyperfine interaction to bring the
radical ion pairs to the triplet state.! If the radical
pairs separate much faster, the hyperfine mechanism

would not be effective and no triplet products and mag- " .

netic field effect would be observed. As a magnetic
field effect is observed, however, the time of the dif-
fusive separation of the radical pairs must be of order
1 ns. The experimental measurement of the magnetic
field effects on the nanosecond recombination processes
provides a monitor on the diffusive motion and interac-
tion dynamics of particles reacting in a real fluid, and
therefore, may serve as a much demanded check of ’
theoretical descriptions of this motion. It is actually
possible to employ the magnetic field effect on geminate
processes as a probe for quite a variety of diffusion
processes, e.g., for two-dimensional membrane or
liquid crystal systems or for intramolecular polymer 4
diffusion processes.

In a first 'preseniation of the magnetic field effect on -
geminate radical processes we have treated in detail
the hyperfine induced spin motion of radical pairs-and
its modulation by an external magnetic field. -The dif--
fusive separation and the recombination reaction were
modeled by a first-order kinetic scheme. Here we
shall describe the diffusion process of the radical pairs
during the geminate recombination phase in full'detail.
Leaving the formulation of the electron—nuclear spin
motion intact, the Liouville equation of Ref. 1 will be -
replaced by a stochastic Liouville equation containing
a diffusion operator of the Smoluchowski type which in-
cludes the effect of the dissipative motion arising from
the force field between the recombining radicals. - Such
an approach has been employed before for the descrip-
tion of the CIDNP and CIDEP effects by Deutch, 5 by
Evans ef al.,® and by Pedersen and Freed' in a series
of papers which much inspired our work. The existence
of a chemical reaction will be introduced into the Liou-
ville equation by means of a Feshbach optical poten~
tial. * In Sec. II we will set up the theoretical frame-
work for the description of spin-selective geminate re-
combination of radical pairs. In Sec. I we will deter-
mine the Feshbach optical potential in terms of second-
order rate constants which are well-known experimen-
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tal quantities. In Sec. IV we present an analytical
treatment for the magnetic field modulated, hyperfine
induced recombination of neutral radicals that are as-
sumed to undergo free Brownian motion, Though some-
what unrealistic, the free Brownian motion description
bears all essential features of the geminate recombina-
tionprocess. The Liouville equation for the geminate re-
combinationof radical ions cannot be solved analytically. .
and, hence, we present, inSec. V., a numerical treat-
mentof ion recombination processes. Inparticular, the ef-
fect of solvent viscosity and polarity and the hyperfine

. coupling strength of the geminate yield will be investi-

gated. In Sec. VI we add some concluding remarks re-

garding a theoretical analysis of experimental data on

time - -and magnetic-field-dependent recombination
yields. '

. STOCHASTIC LIOUVILLE EQUATION FOR
GEMINATE RECOMBINATION

Hyperfine coupling and diffusion act in concert in-
ducing recombination of radical pairs. -For spin-selec-
tive geminate recombination the cooperation of diffusion
and electron—nuclear spin interaction will be given now
a theoretical formulation which lends itself to calcula-
tions of recombination rates as observed in Ref. 1.

The ‘space, 'time, and electi'on—nuclear spin distribu-
tion of radical pairs is described by the density ma-

trix p{r,¢). The diagonal elements py(r, ¢}dr repre-

sent the concentration of radical pairs in some elec-
tron—nuclear spin state ) in the volume element dr
at separation r and at time £. The total concentration
of radical pairs at time ¢ is (p(t)) = [ drtrp(r, ) {trp
=3,;p;)- The density matrix is the solution of the sto-

- chastic Liouville equation

= olr, 1) =Uedo(e, 1) =5 [B 05, )]~ U@(r, £)

—p(r, £) U(r) - k@) p(r, £).

The first term on the right-hand side (rhs) describes
the relative diffusion of the radical pair. For neutral

2.1)

" radicals one may assume the pair to undergo free

Brownian motion, in which case the stochastic operator

I(r)is

© 1(r)=Dv?, (2.2).

where D=D, + D, is the sum of the diffusion coefficients
of the two radicals constituting the pair. In taking the
relative diffusion coefficient D to be independent of the
separation v we neglect any hydrodynamic effects® on
the motion of the radicals. If radicals in solution are
subject to a force field F(r), the diffusion may be de-
scribed by the classical Smoluchowski theory'® (8 .
=1/kT)

Ur)=DV .« [V - BF(r)].

Operator (2.' 3) has the property that in a reaction-free
system p(r, t) relaxes at long times to the Boltzmann .
distribution, i.e.,

2.3)

1imp(r, £)~exp [~ BV ()], 2. 4)
teoo
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where F(r)=—VV(r). Since the solutions of radical
ions in the magnetic field experiments® are dilute,
(~10"° mol dm™), we take F(r)=—(e®/er*)r, where €
is the macroscopic dielectric constant of the medium
which may be taken to depend on 7 in order to account
correctly for the dielectric screening over microscopic
distances (see Sec. III), The case when Debye—Hiickel
interactions are included in F(r) has been investigated
by Hwang and Freed. !!

A stochastic operator can also be employed that de-
scribes two-dimensional diffusion processes® as may be
realized in membranes or liquid crystals. It-may fur-
ther describe one-, two-, and three-dimensional conduc-
tion in crystals as would be required to represent the
experiments of Groff ef al. 2 51 to assess the existence
of photoinduced charge separation and recombination in
chlorophyll assemblies of bacteria and plants.“" Anin-
teresting extension would also be the study of hyperfine
induced recombination of biradicals, e.g., biradical
polymers, in which case the stochastic operator ! has
to describe an intramolecular motion,

The second term of Eq. (2.1) describes the electron-
nuclear spin motion of the radical pair. This motion is
governed by the Hamiltonian

H= Z @135y In‘*Eazxsz *I,+pBe (gxsx+gzsz)

+J(r) B +28,°8,]. (2.5)

(We neglect the smaller nuclear Zeeman terms and also
all anisotropic terms as the radicals are assumed to be
freely rotating in the solvent, ) The first and second
terms in (2. 5) describe the hyperfine interaction acting
between the unpaired electron spins .§;, S, and the nu- .
" clear spins I, I;. The third (electron Zeeman) term
describes the interaction between the electron-spins

and the applied magnetic field. 'The fourth term repre-
sents the exchange interaction of the unpaired electrons.
As J(r) rapidly decreases with the pair separation dis-
tance r one can safely neglect J over most of the dif-
fusion path except in the contact region of the radicals.

At small pair separation the exché.nge interaction
J(r) splits the singlet and triplet radical pair states
and for

en .
J>>m{¥ law |+ Z‘: | a2 |}~10‘° eV

suppresses the hyperfine induced spin transitions and
any magnetic field effect. The observation of a mag-
netic field modulation of the geminate recombination
process gives, however, ample evidence that the re-
combining radicals must have been separated by a dis-
tance 7 at which J(r)<« 10" eV for a time of at least a
few nanoseconds, i.e., long enough for the hyperfine
coupling to induce the singlet—triplet transition.

In the contact region, J is essential only for the
generation of electron spin polarization of the separated
radicals. It exerts, however, only a minor influence
on the recombination yield and will be neglected in our
further discussion,
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For a system of M nuclear spins 1 there are 2¥+ spin
states to be considered for a representation of the elec-
tron—nuclear spin motion. This amounts to over four
million states for the system *Py>+?DMDMA? of Ref. 1.
For the purpose of this study, which is mainly con-
cerned with the diffusion process of radical pairs, such
a detailed description is not necessary. We will instead
consider a model system with one nuclear spin on each
radical. .

The third rhs term of Eq. (2.1) describes the oc-
currence of geminate recombination. The Feshbach
optical potential U(r), first introduced by Tomkiewicz
et al.,® accounts for the extinction of radical pairs at
distance r due to electron transfer, The optical poten-
tial U(r) is strongly peaked around a distance 7; at
which the electron jump is most likely. We assume
that 7; is also the distance at which the radical pairs
have been generated originally by electron transfer. In
the coupled electron spin representation we take U(r)"
to be diagonal, i.e., U(r) only depletes singlet and trip-
let pairs but does not create or destroy electron spin
phase,

U(r) =s(r) [ksQ s+ K Qz]. 2.6)

s(r) is a measure of the probability for the recombina-
tion reaction to. take place at distance r, and the opera-
tors:

Qr =% + 8,8,
Qs=1-@Qr,
project on the manifold of triplet and singlet states,

@.7

" respectively. Equation (2. 6) implies that singlet [trip-

let] radical pairs in the reaction domain described by
s(r) undergo a first-order recombination process with
rate constants kgs(r}[k7s(r)]. To employ U(r) in the
form of (2. 6) the rate constants have to be known., 'In
Sec. Il we will derive for the case of spin-independent
recombination (kg =k,) the relationship between «s{xp)
and the second-order recombination rates kg(k;) which
are amenable to experlmental measurement )

The. gemmate recombmatlon rabe of singlet [triplet]
pairs 7 g(¢) [72r(£)] induced by the optical potential U(r)

‘is

i 5@)=- [ artr{Qs (U)o, D) +p(x, HUE] 4},
(2.8)

()=~ [ drer{Q[U)o(r, ) +p(r, § UD] @

Substituting in the optical potential (2. 6) yields the ex-
pression

i 5(6) == 2k [ dr (o) tr[Qeplr, 1) @], oo
2.9

o(8) =~ 20 [drs(e)er [Qeolr, ) @r).

If the reaction domain s(r) is spherically symmetric
and closely centered around 7;, i.e., s(r)=06(r-7)/2,

-then

1 s(t)=—durikstr[Qsp(7y, ¢) Qsl,

. 2.10)
nr(t) = - 4”"? Kp tT[QTp('rU t) QI‘] ’ (
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assuming also spherical symmetry for p(r,t). These -
equations illustrate an essential point of our study: a
time-resolved observation of geminate recombination
rates 7 () and 7 (t) provides a measure for trp(7, f)
which is just the time-dependent pair correlation of the
‘reacting radicals, i.e., the probability for a radical -
pair 1mt1a11y at dlstance 7 to be found stxll after tlme t
at the same distance.

The last term of Eq. (2.1) describes the homogeneous

recombination between radicals of different initial pairs '

where k is the second-order homogeneous recombina-
tion rate constant. This term can be ehmmated from
Eq. (2.1) by settmg

p(r, £)=c(t) P(r, ).

P(r,t) describes the time evolution of an isolafed radi-
cal pair and the scalar function c(t) the depletion of
radicals through homogeneous (interpair) recombina-
tion:

P, 1)=1) PG, £)- :? [, P(x, 1))

- U(r) P(r, ¢)~ Pr, £) U(r), (2.12)

%c(t):—k({)(t))cz(t), (2.13)

where (p(£)) =fdr tP(r, t).

7 Once P(r,t) has been determined from Eq (2. 12)
c(t) can be evaluated readily:

O i Pre p‘<r»

For the experxments described in Ref. 1 the initial pair
concentration ¢, was chosen small (kc,~ 10 ns") and,
hence, the homogeneous recombination was neghgxble
over the time range.1-100-ns of geminate recombina-
tion. It should be pointed out that our treatment of the

homogeneous recombination process is valid only in the
The effect of the com-

limit of low pair concentration,
petition of 1,2, 3, ... radicals for one reaction partner
has been described recently for a stationary situation-
by Deutch ef al. ' .

To account for the electron-nuclear spin motion of a
radical pair one may employ the Helsenberg repre-
sentation

P(r,t)=exp [~ (i/R)HL) Y (x, t)exp[(i/F) Ht ],

which leaves one to solve

(2.15)

¥, =1 Y(r, )= K, ) Y, 1) = Y5, K (5, 8),

(2.16)
where

K(r,t)=exp[(i/#)Ht] U(r)exp[- ({/K) Ht]. (2. 17)

Y(r, t) obeys a diffusion equation with the time-depen-
dent sink K (r, ¢) which accounts for the geminate re-
combination process. The time dependence of the re-
combination operator K(r, f)has an obvious interpreta-
tion; Due to the hyperfine interaction the electron spin
state population varies in time which in turn induces a,
time-varying recombination rate.

2. 11) . beenillustrated in Ref. 1.

(2.14) .
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In the case that the recombination process described

" by Ul(r) is spin-dependent Eq." (2. 16) constitutes a
" rather formidable set of coupled equations.

A simple
approximate solution can, however, be set up from
Eg. (2.12) by the following argument: The electron-
nuclear spin Hamiltonian commutes with the scalar
operator I (r) and with U(r) except in the reaction do-
main s(r). The spin-motion of radical pairs in this
domain is governed by the complex Hamiltonian

HU;H*":(KSQS'*'KTQT)S(!‘)- (2.18)

~.- Besides depleting the radical pairs the effect of the opti-

cal potential is to dampen the transition probability be-
tween singlet and triplet electron spin states. This has
If we neglect the latter ef-
fect, i.e., assume that H and U commute for all r,

. P(r,t) takes the form

P(r, t)~Py(t)tr P(x, t), (2.19)

¢ where Py(f) is the electron—nuclear spin density matrix

in a reaction-free system:
4 pty=-Lix Py(t)] (2. 20)
dat 0 Lo 0 ’ .

We insert, however, this approximate expression for
P(r,t) only into the second term of Eq. (2.12) which

- describes the electron-nuclear spin motion, i.e., we

replace — (i /%) [H, P(r, )] by the expression

-(i/ﬁ)[jf Py(t)]tr Pr, t)—f’o(t)trP(r ). (2.21)

If one then averages the Liouville. equatlon (2.12) over
all nuclear spin states, iie., assumes that all nuclear
spin states exhibit identical singlet -« {riplet transition

rates #[Qs,rPoQs,r], 2 pair of coupled diffusion equa-

tions for the probabilities of singlet and triplet radical
pairs defined: by

ps(r, t)=tr [@sP(r, £)Qs], (2. 22)
- belr, t)=tr[QrP(r, £) Qr] (2 23)
can be derived
L pslr, ) =L@ bslx, 1)+ [sx, 1)+ Prr, £)]
xtr[QsPo(t) Q5] - 2kss(@)pslr, t),  (2.24)
8tutb(x‘ 8)=1(r)prlr, t)+[ps(r, £)+pr(r, 1))
Xt?’[QTPo(t)Qr] = 26p5(r) pr(r, £). (2.25)

In a forthcoming publication'® the spin-dependent gemi-
nate recombination of realistic radical ion pair systems -
will be studied along the lines:of Eqs. (2.24) and (2. 25).
There the validity of the approximations leading to
these equations will be demonstrated.

A spin-independent recombinétion process described
by '
U(r) =ks(r) (2.26)
renders the recombination operator (2.17) time-indepen-
dent, namely, K(r,t)=U(r). In this case the diffusion

equation is’ diagonal in the electrbh-—nuclear spin states
and can be solved readily. For reactions starting ini-
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tially from a singlet radical pair at distance »,, i.e.,

8(r-m) Qs

dary Zg (2.27)

p(r,0)=c,
(Zs is the number of singlet electron-nuclear spin
states), the density matrix takes on the simple form

p(x, ) =c(t) plr, t)expl- (i/m)H)Q s/ Z 5) expl (i/m)HL] .

(2.28)
where p(r, ) Qs/ Z s is the diffusion distribution solving
Eq. (2.16) subject to the initial condition

p(r, 0)=8(r —7,)/4n75 . (2.29)

The rate of geminate triplet recombination products is '
then according to Eq. (2.10), with s(r)=56(r=7,)/2 and
a spherically symmetric potential V(r),

p(t) == 4arikpc(t) tr{Qr exp[— (i/m)H]
X (Qs/ Z s) exp[(i/ 7) HE] Qr} p(n, t).

This expression illustrates that a measurement of the
geminate triplet recombination rate #:(¢) yields direct-

-1y the pair correlation function p(7, t) describing the
short time diffusion of radicals in the liquid. - It is this
special case of spin-independent recombination pro-
cesses that we want to study in this paper. Further-
more, we shall assume as in Eq. (2. 30) that the radical
pair genération, diffusion, and recombination are in-
dependent of the relative orientation of the radicals and
consider only spherically symmetric solutions.to the
stochastic Liouville equation (2. 1).

(2.30)

1. GEMINATE AND HOMOGENEOUS
RECOMBINATION DESCRIBED BY THE OPTICAL
POTENTIAL U(r)

The radical recombination process as described by
the Liouville Eq. (2.1) occurs in two'steps: first, the
diffusive separation and collision of the radicals 243
and 2D? accounted for by the diffusion operator I(7);
and second, the electron jump and formation of smglet
or triplet products acéounted for by the: optlcal poten=
tial U(7):

1) ()
243 42 D% g WA + aD‘).mem‘ *A+1D,
+collision - jump

Taking the concentration of radical pairs to be small
enough in order to neglect the homogengous recom-
bination term in (2.1), we describe the recombination
process by the diffusion equation

8 .
37 P&, 8)={DV« [V - BF(r)] - 2s(r) kg sk p(r, £).  (3.1)
The following treatment is exact only in the case of spin-
independent recombination, i.e., kg=kp=k. A treat-
ment at high concentrations which includes the competi-
tion of several radicals for a reaction partner can be
found in Ref. 14.

The rate at which radical pairs recombine

h(t):ﬁ-fdrp(r, £) 3.2)
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can be determined from Eq.’ (3.1). If one assumes that
the pair potential is spherically symmetric, then for
the diffusion process with a minimal encounter distance
N

n(t)=dnrdi(n, t)+ dnds - ZKJdrs(r)p(f, t),  (3.3)

where j(r,t) is the radial flux density defined to be ..

i(r, £) =-D(§;-ﬁF(r))p(r, f). (3.4)
If the recombination rate #(f)is considered to be solely
due to the optical potential s(r)«, then the flux of radi-
cals at 7;, the first term in (3. 3), must vanish, and
one has to impose the boundary condition on the solu-
tion of (3.1)

jn, 1) =0. (3. 5)

" The term 4o1rJ., represents the flux condition at large

separations (7r—), and for an isolated system J, =0.
We assume the optical potential is also spherically
symmetric and peaked around 7, and set

s(r)=8(r-n)/2, - (3.8)
in which case the recombination rate (3. 3) becomes
#(t) =dnri [ /7% — kp(ny, t)]. (3.7

As geminate and homogeneous recombination pro-
cesses are due to the same reaction events (diffusive
encounters and electron back tfansfer\ Eq. (3. 1)
serves to describe both. If we now assume Egs. (3.1)
and (3. 7) describe the homogeneous recombination, -
we can use the stationary solution (8p/8t =0, J.#0) to
relate the rate constant « to the macroscopic second-
order recombination rate constant % defined by

N =RPAz][Dt]. (3.9)

This requires that the stationary solution of Eq. (3.1)
satisfies the additional boundary condition

P ;2 [*A3 ][ Dt Jexp[- BV (1)), (3.9
i,e., the correlation function p(») goes asymptotically

to the Boltzmann distribution. Qur treatment will be

‘similar to that of Debye!® and Eigen!’ except that we

incorporate a reduced reaction probability of the en-
counter complex 343 +2Dt) due to the finite rate con-
stant K.

Under statlonary condltlons it follows from Eq.
(3.1) that the radial flux » ](r) which can also be writ-
ten

() ==7D e'""’% pir) e’ (3.10)

must be a cénstant ~4J), say. Jj canbe evaluated from
Eq. (3.7) for the condition n(t) =0, i.e., J; =J. =+2kplr,),
and upon mtegratmg (3.10) one obtains
P =[2A% Dt ]t
_'g‘z: P(’:’i) f" dR K% VR
i ¥ .

Since the rate at which the recombination products are

(3.11)
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formed is N =4nrikp(r,), the second-order rate con-
stant & as defined in (3. 8) can be determined (in units
of cm® s71)

41D/[r; dR R exp[B V(R)]
"1+ Dexp[BV(n))/7 ik I dRR™ exp[ﬁ V(R)] °

(3.12)

This expression is identical to the Debye-type correc-
tion formula found in the treatments of diffusion effects
on reaction rate constants when the reaction volume is
taken to be the annular volume of the contact region. 1e.
The limit of diffusion-controlled recombinationin which
the ions react upon every encounter is attained for
large rate constants «:

limk =4w/ f " dRR™exp[BV(R)]. (3.13)
n

Ko

Clearly, the effect of a finite « is to reduce the second-
order recombination rate constant below the dltfusxon-
controlled value.

For recombination processes of neutral radicals and
radical ions, simple analytical expressions for the

second-order rate constants can be derived. In the
case of free diffusion [V(r)=0]
k =4z Dr /(1 + D/x7,) (3.14)

and in the case of oppositely charged radical ions [V(r)
== e?/er]

- 4#Dr,, / |-1 -exp (:—’:‘-)]
= —— e =,
1+ D'exp,(:l".-)r,, /‘ri K [1 - exp(ﬁ)]
n n

where 7, =pe?/c is the so-called Onsager radius, i.e.,
the distance at which the separate ions assume an ener-
gy —kT. Equations (3.14) and (3. 15) establish the de-
sired connection between the microscopic optical po-.
tential U(r)=k356(» —7,) and the macroscopic second-
order rate constant k. A general expression for the -
bimolecular reaction rate constant when the optical po-
tential extends over a finite region is found in Ref. 7(c).

(3..15)

The notion of the dielectric screening of the Coulomb
force described by the macroscopic dielectric constant
€ cannot be expected to hold over microscopic distances
of a few molecular diameters. Hermanson" has de-
scribed for a Hartree—Fock potential of a bare electron—
hole pair in a rare gas solid the dielectric screening by
the random phase approximation and obtained the modi-
fied Coulomb potential

V(r)--—--[1+(€ 1)exp( 3 )]

The “breakdown length” b, related to crystal proper-
ties, was found to be smaller than an atomic diameter
and of order 1 A, We will assume that the diffusion of
ions over microscopic distances can be described by
this static potential of a rare gas solid environment in
order to see what effect a dielectric “descreening” (i, e.,
a factual reduction of the dielectric constant at short
distances) may have on the recombination of radical
ions.

(3. 16) '

“ x=1.74'& nst, 7 & ns™, 30'& ns™,
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FIG. 1. Dependence of the second-order recombination rate

constant % on the breakdown length in solvents with the micro-
scopic dielectric screening described by the Hermanson po-
tential (3. 16) with € =35 for the optlcal potential strengths
», Also presented are the
recombination rate constants for free diffusion and for dxffusion
in & Coulomb potentlal with €=35(at T=298 K, D= 10 S¢

.1) .,

In Fig. 1 we compare the second-order recombina-
tion rate constants k for freely diffusing radicals, for
radical ions diffusing in an attractive Coulomb poten-
tial (with € =85), and for radicals diffusing in the Her-

‘manson potential (3. 16) for various breakdown lengths.

Smallest in value are the rate constants for free diffu-
sion evaluated from Eq. (3.14). Figure 1 demonstrates
that the second-order rate constants for free diffusion
and recombining ions as evaluated from (3.15) are low-

" ered from the diffusion-controlled values (x —«) as «

decreases. The rate constants evaluated using the Her-
manson potential coincide with the rate constants for the
Coulomb potential at small breakdown lengths as (3.16)
goes to the Coulomb potential for 5=0. However, as b
increases the second-order rate constants become
greater than the Debye diffusion- controlled value (k —)
and eventually coalesce.

V. RECOMBINATION OF RADICAL PAIRS
UNDERGOING FREE BROWNIAN MOTION

In this section we consider the geminate recombina-
tion-of a radical pair undergoing free Brownian motion
for which case analytical expressions for the recom-
bination rate #(¢) and the triplet quantum yield ¢.(¢, B)
can be obtained. Though somewhat unrealistic, the -
free Brownian motion description of radical recombina-
tion is most attractive in that it allows a simple analyti-
cal formulation which bears all the essential features of
the more general situation. For radical pairs moving
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in a force field only a numerical description is possible
which will be furnished in Sec. V. :

In view of the experimental observations of Ref. 1,
the quantity of chief interest is the rate of geminate
triplet recombination 7 (¢) defined by Eq. (2.8). As-
suming the radical pair concentration to be low enough
to neglect the homogeneous, second-order recombina-
tion during the geminate phase, we set c¢(f)=cy=1.
Furthermore, we consider the recombination to be
spin-independent, i.e. kp=Kkg=« in (2.6), This yields
according to Eq. (2. 30) ‘

fip =—4nrik Wp(t, B)p(ny, t), (4.1)

where we have defined

Wr(t, By=tr {Q,. exp(— ;_z' Ht)(%i—) exp (%_ Ht)‘ QT‘] .

In Sec. III the connection between x and the second-order
rate constant %2 of homogeneous recombination has been
established

k=(k/a) 41Dr,,

where

4.2)

a=k+D/n.

In this expression the factor 47D, is the diffusion-
controlled rate for a radical pair encounter (approach
of two radicals to the distance 7,) and the factor x/a is
the probability for the pair to react after the encounter.

The function W,(¢, B) gives the probability for a radi-
cal pair initially (£=0) in a singlet electron spin state
to be found at time £in a triplet spin state, For a sys-
tem of two radicals each with a half-spin nucleus and
electron—nuclear spin coupling constant a, the following
expression can be derived (see for example Ref. 6):

Wr (¢, B) =%Sl("’h t) ""':' [Si(wy, £) = 38 (w,, )

-%Sl(wl +w2,\t) =2S1(w, - sz: t)] (“’x/wz)zr

~$[S1(ws, ) = £5,(2w,, ¢ ) (wy/ws)t, (4.3)
where
w =4(ge/2me)a, wy=w, [1+(B/aP]?,
- and
S (w, t) =sinwt . (4.4)

The magnetic field B and the coupling constant a are
both in units of Gauss, At high magnetic fields,?i.e.,
wy/wy~ 0, this expression simplifies to Wy(t)=4 sin’y,?,
and at low magnetic fields,®? i.e., w;/ wp =1, to W(t)
=% sin’w,f +§ sin®2w, ¢, Figure 2 illustrates the time
and magnetic field dependence of W, (¢, B) assuming
a=50 G. This value of the coupling constant is rough-
ly equal to the sum of the coupling constants in each of
the radicals ?Py< (2, a;, =30 G) and 2DMDMAS3 (3, a5,
~56 G) in Ref. 1. The combination of the hyperfine
coupling constants on each radical into a single cou-
pling constant accelerates the initial buildup of W, (¢, B)
and produces oscillations at longer times which are
damped in most realistic spin systems.*!%

The radical pairs described by Fig. 2 are initially all

Z. Schulten and K. Schulten: Radical pairs in solution
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FIG. 2. Time and magnetic field dependence of the hyperfine
induced singlet—triplet transition probability as given by Eq.
(4.3) with a =50 G., The pairs are initially all in the singlet
state, i.e., W,(0,B)=0. :

in the singlet state, i.e., W,(0,B)=0. As time evolves
the pairs oscillate between the singlet and the triplet
state. In the field free case, B=0G, the radical pairs
reach a maximum triplet probability of 75% atabout 3, 5,
10.5, 17.5, ... ns and a minimum triplet probability of
zero at about 7,14,21, ... ns. For magnetic fields
above 120 G only a 50% triplet probability is reached at
times 4,12, 18, ... ns, The modulation of the spin mo-
tion at intermediate fields is lucidly demonstrated by
the wave pattern in Fig. 2.

The pair correlation function p(7,, £) is related, of
course, to 7thé distribution function p(7, ¢) of the radical
pair. If one assumes free Brownian motion, the dis-
tribution function is the solution of the diffusion equa-

tion with a sink
= B(r, £) =DV p(r, 1)~ k8(r = 7,) p(x, 1), 4.5)

This equation is equivalent to the elementary diffusion
equation ’

gat-P(r',t)=DVzp(r,t) (4.6)

subject to the radiation boundary condition (assuming
spherical symmetry)*

] K

gp(r, t)= Bp(r, t) at r=7, 4.7

We assume for the distribution function the initial con-

dition

(7, 0)=8(r - 1,)/4n7r?,

which implies that the radi%al pairs are generated
through electron transfer 'A+!D~243+2D¢ all at dis-
tance 7, the same distance at which recombination,
i.e., electron back transfer ?4? +2D!~ 134 +1D, takes
place. The solution to Eqs. (4.6)—(4.8) has been given
by Carslaw and Jaeger.? It can be written in the sim-
ple form

_exp[-(r;rl)z/4Dt|
P(r’ t)"‘ 4“”1 41]'Dt/
: 5 (Z_F[w/tTD +(r-r,)/J4Dt])

34+ (r=-n)/4at

(4.8)

4.9)
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Free Diffusion -

t/ns r/A

FIG. 3. Space- and time-dependent pair distribution 4nr%(r, 1)
of Eq. (4. 9) for radicals undergoing free Brownian motion.

The radical pairs are generated initially at »;=6 A and also
recombine at r, with a total réecombination yield K/ a=0.1,

The ‘initial distribution is reduced in height to fit the illustra-
tion. The correlation function p(r,#) at the inner boundary is
related according to Eq. (4.1) to the recombination rate ny(t).

‘th_ere
F(z) =V7 zexp(z?) erfc(2), (4.10)

erfc(z) standing for the complemevntgry error function

2 r~ 2
— -t :
wl ot =

For an evaluation of (4.10) the fol‘ibviing expressions
proved well convergent23

F(2)=

l/Zz 1.5<|z|<oo?

G
__—722.3

Te... (4.11)

F(2)=V7 z exp(zz)(i —-—LZ (=1)2%"/nl(n +§)) N
S I v 0 ok
- _ (4.12)
The radical pair distribution function 41rrzj>('r t)is
presented in Fig. 3 both as a function of the pair dis-
tance 7 and time £, In evaluatmg the distribution we

have assumed k/a=0.1, i.e., 10% of the radical pairs
recombine, the remainder'Separate completely, and

0<|z|=1.5
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“that the radxcal pairs are initially generated at a dis-

tance 7, =6 A. At #=4 ns the bulk of the pairs have dif-
fused more than 20 A apart and only very few are still
in contact. The number of radical pairs in contact,
given by the pair correlation function p(n, t), decreases
rapidly in time as illustrated by Fig. 3. So does the
total recombmatlon rate 7 (¢) =~ 4nrikp(r,t):

n(t)== (L - FaVID)].

m (4.13)

The rapid diffusive sépara-tion of the radical pairs
and the concomitant decrease of the pair correlation
function p(7,, t) counteracts the recombination to singlet
and triplet products. The total recombination yield ¢(¢)
provides, hence, a qualitative measure of the pair sep-
aration:

R
o()=- [ a@ar

= (k/a) [L - e***/P erfe(aVT/D))]. (4.14)

. 2 :
As lim,., €° erfc(x)=0, the total recombination yield is

lim¢(t)=«/a,

feow

(4.15)

as to be expected from the expression (4. 2) for the
second-order recombination rate constant.

However, only the y1eld ¢,.(t ‘B) of .triplet recom-
bination products
4(t, B) == f " Wa(r, ByR(T)dT - (4.16)
: el B SE .
is accessible to éxperlmental observation as has been
discussed in'Ref. 1. In order to determine ¢ (, B) it
is necessary to evaluate’ the mtegral

Sy(w, t)=— f S, 7Y (r)dr. .17

~ Replacing §{w, ) in Eq. (4.3) by Sy(w, ?) yields ¢(¢, B).
- One obtains from (4.4) and (4. 13)

C(2wt) — yS(2wt)
l4y®

2 cosZc'.»t:rl sin2wi
-e* t/Perfc(aVt/D)|1 --

1 3 —VZy

K
Sew, )= 55| Ty7

ley~

(4.18)

where y= a"’/ZwD and C(x) and S(x) are the Fresnel in-
tegrals

' cost ,, -
C(x) /211 f e (4.19)
sinf
= [L dt 4,20)
S(x) j;fo 7% (
which can be evaluated by virtue of
C(x)+iS(x) = X ;i [i-erfc((l —.i)fg-.)]\. (4.21)

Fo.r the evaluation 6( the complex error function erfc(z),
the expressions (4.11) and (4.12),  analytically continued
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%
60 | Triplet Yield @,{t,B) %) TRIPLET YIELD ¢ (B (a)

0 Gauss

200

0 8 1 24 32 40 48 56 64 72
Time /ns

FIG. 4. Time-dependent yield of triplet recombination prod-
ucts &r(t, B) evaluated from Egs. (4.3) and (4. 18) for D
=10 cm?s™, k/a=0.5, a=50 G and B =0, 50, and 200 G.

to the complex plane, can be employed.

The time evolution of the triplet yield ¢, is presented
in Fig. 4 for magnetic fields 0, 50, and 200 G assuming
a diffusion constant D=10"° cm®s™-and a total recom-
bination yield k/a =0.5. One observes that ¢(t) rises
rapidly within about 4 ns and then grows slowly to its .
‘asymptotic value ¢5(, B). Some quantum beats due to
the oscillations of the triplet probability Wy(f, B) are
clearly discernible. The total triplet yield ¢(», B)
depends strongly on the applied magnetic field B. At
0 G the total yield is 4. 8%, at 50 G it is 3.-7%, and at
200 G it drops to 2.8%.

The total triplet yield can be evaluated by taking the
limit £~ of S(w, ) as given in Eq. (4.18). As C(x)
and S(x) both go asymptotically to a value 3 and

erfc(x) vanishes for large x, one obtains

. %/2 h 7 ' '

s =imsw,0=125(1- Ta-»), w22
- f s . 1 +y 2

where y is as defined in (4. 18). Replacing S;(w, ¢) in

Eq. (4.3) by Si(w) gives then the total triplet yield

¢1'(°°, B)o .

(b)

—
(¢
~

% 10 30 S0 -70 S0 %

w
According to Eqs. (4.22) and (4. 3) the yield of gemi- S 10 { /a0
nate triplet products ¢ (0, B) is controlled by the dif- E T 1-pde,0) - @00} ? ?
fusion constant D, the strength of the hyperfine coupling o 30 70 P
a, the applied magnetic field B, and the recombination 43 o
probability k/a. The influence of these factors on 5 501 ’ / Pl0.0) 503 o
$p(, B) is demonstratéd in Fig. 5. In Fig. 5(a) the 5)‘, o T
total triplet yield ¢pp(=, B) is plotted as a function of =79 « 03s 3
both the diffusion constant D and the magnetic field B. ° | =&
The triplet yield is shown to decrease with increasing ® 90 Ik i Y
. diffusion constant. This result is to be expected as a “ % 10 30 S50 70 90 %
faster diffusion of the radicals shortens the recombina- Total Recombination Yield
tion time and, therefore, the probability for the radi- ©,(0,0) + @ {2,0)
cals to be in a triplet state at the instance of the reaction : ,
is decreased. Figure 5(a) also reveals the peculiar FIG, 5. Yield of triplet recombination products. ¢ stee;B) -

. magnetic field dependence of ¢5(~, B). The triplet yield evaluated from Egs. (4. 3) and (4. 22) as (a) a functien-of the
first increases from its zero field value of 11% (for applied magnetic field B and the diffusion constant D for «/«a

108 2. -1 s =0.5, a=50 G; (b) a function of the applied magneti&:field'B
D dlt?) c;n s™) to a maximum value of 215(‘)% at about 10 G and the hyperfine ¢oupling constant a for x/a =0.5, D =105
an _en ‘ecreases' toa value‘of 7% at G, corre- cm?s™!. (c) Partition of the pair recombination into singlet
sponding to a relative magnetic field effect ¢, (<, 200 G)/ and triplet products and separated radicals for a =50 G,

¢7(~,0)=0.58. This qualitative behavior of the triplet D=10"% em?s™; and B=0,
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- yield is quite independent of D. The relative magnetic
field effect varies only slightly with the diffusion con-
stant. '

Figure 5(b) exhibits the dependence of the triplet
yield ¢ (o, B) on the hyperfine coupling constant a. The
larger a, the faster is‘ the hyperfine coupling induced
singlet—triplet transition of the radical pair and the
more likely are the radicals to recombine to triplet:
products before they separate. This expected behavior
is reflected by the increase of ¢ (=, B) with increasing
a. ‘Most interesting is the effect of the hyperfine coupling
strengthon the magnetic field dependence of the triplet
yield. For small a(e.g.,
its main magnetic field dependence at low fields of about
10 G. Forlarger @ (e.g., @=50G) stronger fields (50~100
G) are needed to reduce ¢r (=, B). The magnetic field de-
pendence of ¢4(, B) is, hence, a measure forthe strength
of hyperfine couplmg in the recombining radicals. The
relative magnetic field effect given by ¢p(, 200G)/

' ¢p (=, 0) varies only slightly with a, e.g., it is 0.58 for
a=50G, 0.53 fora=25G, and 0. 50fora 10G (for
D=10" em s'1s

Figure 5(c) shows how the geminate process parti-
tions the initial radical pairs into singlet products tr1p-
let products, and separate radicals (D= 105¢cm?s™
" a=50G, B=0). One observes that triplet product for-
mation is at a maximum for a total recombination
yield k/a =¢ g, 0) + ¢z (,0) of 50%, in which case 45%
of the pairs form singlet products, 5% triplet prod-
ucts, and 50% of the pairs separate. For a larger re-"
. combination probability, i.e., higher total recombina-
tion yields x/c, the pairs recombine too fast for the
hyperfine coupling to induce triplet products. For a
total recombination yield k/o of 90% one has 88% singlet
products, only 2% triplet products, and 10% separated
radicals. Of course, also for small recombination
probabilities there is little triplet product formation,
e.g., for k/@=0.1 there are 8. 5% singlet products,

1. 5% triplet products, and 90% separated radicals.

The free Brownian motion model for the geminate
recombination of radical pairs has also been employed
by Evans ef al.® for the case kp=0and a delta-function
» exchange interaction. These authors obtained an ap- |
proximate expression for the total yield of singlet re-
combination products ¢ s(=, B) in specific nuclear spin,
states which provides a measure for the NMR (CIDNP)
spectra of the diamagnetic radical products.

We have demonstrated in this section by way of a
simple analytical treatment the hyperfine -induced re-
combination of radical pairs undergoing free Brownian
motion. The model of free Brownian motion is, of
course, quite crude as it neglects the Coulomb attrac-
tion of the ionic radicals as well as force fields gen- :
erated by the liquid molecules surrounding the radical
pair.

V. RECOMBINATION OF RADICAL PAIRS
. UNDERGOING BROWNIAN MOTION IN A
COULOMB POTENTIAL

We want to describe now the spin—independe\nt (K sj-=lc._,-) o

recombination of radical ions by the. pair distribution

a=10 G\ the triplet yield exhibits

function of two Brownian particles moving under the

_action of Coulomb attraction. For the radical ion pairs
-we assume again the initial condition (2.29) and take the

diffusion and recombination processes to be spherically '
symmetric. ' The pair distribution function satisfies the
SmoluchowSki equation with'a sink .

a—at-p(r, )= [D'r'z 2 2( 2.8 aV(”) u(f)]ﬁ(r t)

or a7
= [Ur) = u(N]p(r, t);h

where V(7)=—¢?/€r and € is the macroscopic dielectric -
‘constant of the medium. A more realistic descnptlonof '

the dielectric screening of the Coulomb forces through
the solvent medium over-short distances by the Herman-
sorni potent1al will also be d1scussed below.

It appears that an analytnc solution exists only for the
stea.dy state problem (Sec. III} and that the time-depen-

" dent problem must be solved numerically. Formally

one can integrate the diffusion equation (5.1):
* plr, t)=exp{t[l (r) - u(7)]} p(r, 0).
If the spectrum and e1genfunctlons of l(r)- u(r) are

‘known, -one can expand the initial distribution (7, 0)
"in the eigenfunction basis and thereby evaluate p(7, £).

However, the eigenvalue problem cannot be solved

" analytically, and we pose instead an approximate for-
. m'ulation which can be solved numerically. .

A leferentlal-d|fference approxnmatlon to. the
Smoluchowskl equation

- To construct a finite-difference approximation for the
spatial operator I () - u(») we follow a treatment similar
to that of Pedersen and Freed.” The diffusion space
{r n= 'r<oo} is partitioned into a set of discrete spheres

§; or radius #; and w1dth By
; S‘ {r r¢<'r<'r‘+h‘} i= 1 2

and the continuous dlstrlbutlon of radical pan's (7, t)
is approximated by a discrete vector P(t):

B 10 | D
jPz(t)
r)=| - |,
Py(t)

where P;(f) gives the concentration of radical pairs in
S; at time £... The finite-difference approximation as-
‘sumes that the Brownian motion takes place by random

- (5.3)

" jumps between adjacent spheres Sy, S;, S, and re- ;
places the continuous. diffusion operator I(7) by a transi-

tion matrix L. The elements of L are obtained by ap-
proximating the dlfferentlal operator l('r) by the three-

 point dlfference formula®

P P .
"(LP)’_'rj ( L4 15U 15 W £ o B

731 Ppa1 )

Byhy + g & Bgltyy Ty Oty + 1yy)

8 V(73) Pra = Pjt 317
a'r h, +hy.

+BD V() P, (5.4)

L becomes then a nonsymmetrlc, tr1d1agona1 matrix
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with elements @=j=N=1; Toy=(t;+hy)/2; hy=hys)

ZD
LJI h h (71) ’
ﬂ 8 V(”'j‘)
Ly =—2Dma or__
HA™ 25k (y +h1-1) hy+hyy
é,V(T,)
L, ~ 2D7r ﬁ,D 87
R (hy + hn) ~ Rgehyy
o )

r3h :
L11=-2;%h_jﬁzx, (5.5)

A AR
Lyp=-2 ;%}% Ly =2 ;%Zf Ly,

2 3

: ViyorFy.
Lyg=-2 "N'ELN—L,F 7 Ly.an
. i
/ . »Ta_ﬁ_ ‘ ’fz ’_l_z by
Lyy4=-2 _Lzl‘Ll,. 7% LN-w-; -2 _Nzﬂ_L Ly-2na

‘where U (r) is an approximation to the dwergence term
(a/ar)r (8V/o7): ~

2 3V(na) o 8V (r3a)
M e i

" We introduce also a further approximation and truncate
the diffusion space at 7, such that the distribution vec-
tor P(¢) and the diffusion operator L become- finite.

The approximate problem to be solved is then posed
by the differential-difference equation :

d ; :
%’P@)=[L—U]I"(t),,

* where the sink term - U “is connected with the optical
potential u(r)=2x_s('r) by the approximation

Uis=u (7). (5.8)
Equation (5. 7) has the formal solution ‘

P(t)=exp{t[L - U]} P(0), (5. 9)
which posee the eigenvalue problem O '

[L-U1Qi=2Q;. ‘(5-1'Q)

Once the eigenvalues %; and eigenvectors Q; have been
determined, the time evolution of the dlstrlbutlon can’
be evaluated readily by virtue of
P()=Y QrPO)NQ,. (5.11) -
The number of i'adical pairs at time ¢ evaluated accord-
ing to the composite trapezoidal rule is
n(t)= 3 anrinw,Py(t), (5.12)
7 ~ :
where the weights w; are w, =%, wy =%, w, =1+ Byuy/ 1) /2
for i=2,3, ..., N=1, The recombination rate is by
virtue of (5.7) . :

()= ;}(; v L~ v_],,)P,(t). (5.13)

Z. Schulten and K. Schul,'ten:, Radical peily'si in ‘_s_o‘lutio/n o

. (5.8) -

6.7

From the definition (5.5) of L it follows, however, that

E 73, L,, =0, (5.14)
5o that
n(t)—— E 41rr¢h;w,U“P; (5. 15)

.The depletion of radical pairS'ls 'soleiy due to the optical

potential :U, the Brownian motion described by the tran-
sition 'operator L does not consume particles, as of.
course is to be expected. Condition (5. 14) implies that
the rows of L are linearly dependent, i.e., detL =0, It.
follows that the matrix L has at least one elgenvalue
zero, Furthermore, one can show that L is negative
semidefinite and, accordmgly, as u(7)>0 the operator

L - Uis negative definite, i.e , has only negative eigen-
values. -

The d-function optlcal potential k6(» —7,) corresponds
to an U defined through

- The total recomblnatlon yield for a radical pair at dis-

tance #; undergoing free diffusion described by the dif-
ferentlal—dlfference method is accordmg to Eq (3.14):

¢-o (1 +D/h1[ju'rlwl) (5. 173)

A correspondmg expression for the case of Brownian

motlon in a Coulomb potentlal follows from (3.15):

_(1 +(D/hlUu'r;wﬂ{n/ﬁ[eXp(?’z,/’lﬁ) 1]})': :
5. 17b)
The solutlon of the elgenvalue problem (5.10) is sim-
plified by the fact that L - U is a tridiagonal matrix, 25 ‘
In a first step L - U is symmetrized by a similarity

_transformation
A=STL-U]s, (5.18)
where Sis a dlagonal operator
Sn =1, Sy —54-1 i-1 ‘fm, i=2. (5.19)

The applicability of th1s transformation is hmlted by the
condition ‘

L; -1 Lia >0, (5.20)

which is always sat1sf1ed if n; is chosen sufflcl,ently

small:

hi< ,ﬁi%"ﬂ(;?)
The 'resulti-ng symmetric tridiagonal matrix A :

Ay=[L-Uly

Ay = m

for V'(r;)%0,

(5. 21)

is read11y diagonalized by the implicit QL me’chocl25 to

yield the diagonal matrix B:
B=2z"'AZ. (5.22)

The eigehvalues of the symmetric‘ opeirator A are identi-

. cal to the eigenvalues of the original nonsymmetric
operator L - U. The eigenvectors are
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TABLE I.. Comparison of numerical and analytical description
of free diffusion.?

Pair number n(f)

Time n{0) =1 0%x 7(¢) (ns‘")
(ns) Exact®  Numerical® . Exact® Numerical ¢
1 0.5812 0. 5812 ~3.759 -3.755
2 0.5585 0.5586 ~1.405 -1.404
5 0.5375 0. 5375 —0.369 - 0.369
10 0.5266 0.5266 -0.132 -0.132
20 0.5189 0.5189 ~0.047 - 0.047
40 0.5134 0.5134 -0,017 -0.017
60 0.5109 0.5109 -0, 009 — 0.009
80 0.5095 0,.5095 ’ - 0.006 - 0.006
100 0.5085 0. 5085 —0.004 —0.004
200 0.5060 0. 5060 -0.001 —0.001

3For D=10" cm?s™!, 6,=0.50, =6 A.

YEvaluated from Eqs. (4.13) and (4. 14). .

SEvaluated by finite-difference method, ;=1 A, 1=i=90;
hy=20 &, 91=is11s.

Q, =SZ‘, (5. 23)

where Z; is the ith column vector of the unitary matrix
Z. The time-dependent radical pair distribution func-
tion can be evaluated according to the etgenvector ex-~

pansion (5.11), :

The transition matrix L is constructed to guarantee

. an eigenvalue zero.  In single precision-arithmetic
round-off errors that increase with the dimension of
the matrix prohibit the calculation of an exact zero. It
* is, hence, essential to perform the diagonalization in
double precision arithmetic which does yield an eigen-
value |A|<10°'%, This precision guarantees that upon

. introducing a reaction through the optical potential any
alteration in the eigenvalues, which according to (5.11)
critically determines the decay of radical pairs, is due
to the reaction as described by U and not due to nu-
merical inaccuracies.

As a test of the accuracy of the differential-differ-
ence method we compare for the case of free diffusion
the particle number #(¢) and the recombination rate %(z)
evaluated from the analytical formulae (4. 14) and (4. 13)
to those values evaluated numerically according to Egs.
(5.12) and (5.15). The results presented in Table I are
in close agreement with a relative error less than 0. 1%.

To test the accuracy of our calculations describing
diffusion in a Coulomb potential we checked the eigen-
vector Q, of L corresponding to the exgenvalue zZero,
One can show

I(r)exp[-BV(7)]=0, (5. 24)

i.e., the eigenvector Q, must represent the Boltzmann
equilibrium distribution. Table II provides a compari-
son of the Boltzmann distribution exp[-B8V(7)] and Q.
for a typical partition.

Present in all numerical solutions to problems posed
on semiinfinite domains is the mathematical artifact of
a second boundary upon truncation to a finite range, in
this case an outer boundary at 7y. The number Nof

points to be taken, i.e., the length of the diffusion
range, can be estlmated from the mean square displace-
ment of freely diffusing particles

7 =3Dt, (5. 25)

In order to study a system with D=10"5cm?s™! for a
time of 100 ns the integration range should be greater
than 200 A. An upper limit on the integration range
(the dimension of the transition matrix) is, of course,
posed by the computational effort required to diagonal-
ize L-U determined by the storage capacity and the
computation time. Our calculations were all performed
on a UNIVAC 1108 system on which the diagonalization

© and subsequent exgenvector expansion require about 40 s

for N= 100.

If the integration range is taken sufficiently long, the
calculations are insensitive to the outer boundary 7

" at which the particles are assumed to be reflected back.

As time increases these back-reflected particles may
eventually affect the recombination rate % (¢). To assess
this possible error we assigneda strong optical potential
Uyy at 7y, large enough to remove any particle from
the system that reaches the outer boundary. A com-
parison of the two calculations for the case of free dif-
fusion with an absorbing and reflective outer boundary
is presented in Table III. - One observes that over a-
time range of 200 ns o effect on the rate 7 (¢) is dis-
cernible to 4 digits.

B. Influence of the Coulomb forces between radical ions

-in polar solvents on the geminate recombination process

‘We shall now examine on the basis of the differen-
tial—difference solution of the Smoluchowski equation
(5.1) the influence of the Coulomb attraction on the dif-
fusion and recombination of radical ion pairs. The fol-
lowing treatment will assume the recombination prob-
abilities for singlet and triplet radical collisions to be
equal and the hyperfine coupling to be described by the
triplet probability Wy (¢, B) of Fig. 2 for a model two-
proton system. Incomparing the geminate processes
in different solvent media ‘and in different hyperfine

TABLE II. Test of numerical description of diffusion in
Coulomb potential; Comparison of eigenvector @, and Boltz-
mann distribution exp(r,/7).

Boltzmann Boltzmann

Distance Q distr. " Distance Q distr,
&) €=20 (&) €=35

6 4617  4.564 - 6 3.633°>  3.626

7 2.35% 2.341 7 2.478 2.476

8 1,423 1.419 8 1.861 1. 860

9 0.963 0,962 9 1.489 1.489

10 0.705 0.704 10 1,247 1,247

20 0.173 0.173 20 0. 560 0.560

40 0,086 0. 086 40 0.375. 0.375

101 0. 056 0.056 101 0.294 0.294

201 0.049 0.049 201 0.272 0.272

301 0.047 0.047 301 0,265 0.265

3p=10"% cm’s™! and T =298 K. Distributions have been scaled
to same normalization factor

bFinite-difference method, with h;=0.5 A, 1=i =90; k;=10 &,
91 ={=135.
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FIG. 6. Space- andtime-depéndent correlation furction

47 (r,f) for radical ion pairs as evaluated by the differential—
difference approximation (see text) for D =107° em?s™!, T=298K
in solvents of polarity €=10, 20, and 35. The radical
.pairs are generated initially at ;=6 & and also recombine at
7, with k=0. 3678 & ns™'. The initial distribution is reduced

in height to fit the illustration, - The correlation function p(ry, )
at the inner boundary represents-according to.Eq. {(5.26) the
recombination: rate #{t).  The plots in (a), .(b), and (c) are not .::
drawn to the same scale. The stepsizes for the numerical. )
evaluation are those of Table II except for €=10, in which case
we chose h;=0,2 A for i =100 and #;=4 & for 100 =i =140,

coupling situations, we shall keep the strength of the
optical potential k =fdru(7) constant and confine the
recombination process to the contact region of the radi-
cal pair in sphere S, and set U, =«/hw,. The dielec-
tric constants and diffusion coefficients used here are
typical of the solvents and systems studied in the mag-
netic field experiments. )

In Fig. 6 we present, both as a function of the time
and of the pair distance, the radial distribution func-
tion 4n7*p(, t) for radical ion pairs in three different
solvent environments with € =10, 20, and 35; D=10""
cm?s™; and k=0.3678 A ns™'. This optical potential
strength corresponds to a total recombination yield of
10% for € =35, 33% for € =20, and 96% for € =10. The
radicals are assumed to be generated initially (£=0
at a distance of 6 A. The Coulomb attraction counter-
acts the diffusive separation of the radical ion pairs;h
and produces an accumulation of pairs in the contact
domain, This effect diminishes, however, as the di~-
electric constant €“increases. (The distribution func-
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TABLE III. Influence of outer boundary on finite difference
description of free diffusion.® :

Pair number n(t) {n(0) =1} 0%xn(t) (as™)

Time Reflective®  Absorbing® Reflective® Absorbing©
(ns) boundary boundary boundary boundary
1 0.5812 0.5812 -3.755 -3.755
2 0.5586 0.5586 - ~1.404 -1,404
) 0.5375 0.5375 -0.364 -0.364
10 0.5266 0.5266 ' -0.132 -0.132
20 0.5189 0.5189 T —~0.047 « —0,047
40 0.5134 0.5134 -0.017 -0.017
60 0.5109 0.5109 —0.009 - 0,009
80 0.5095 0.5094 — 0,006 - 0,006
100 0.5085 0,5078 -0.004 ~-0.004
200 0. 5060 0.4760 ~0. 001 -0.001

P=10%cm?s!; h;=13%, 1=
6. =0.50,

=0, Up=0, iz=2.
°U“==0, U“=0, ZSiSN—'l, UNN#O’

i<90; k=20 &, 91=i=115,

tions in Fig. 6 have not been drawn to identical scale
as this proved unsuitable because of the vastly differ-
ent time decays for the three cases.)-

In a weakly polar solvent with € =10, Fig. 6(a) demon-

strates that the thermal motion of most of the radicals
is not sufficient to overcome the Coulomb attraction.
At a time of 5 ns only 2% of the initial pairs have es-
caped to distances beyond the Onsager radius of 56 A.

"~ Most of the remaining 98% of the radical ions stay to-
gether and eventually recombine.

Figure 6(b) presents the geminate recombination.
process in a more polar solvent with € =20, In thls ;
case 50% of. the pairs have succeeded to separate at
5 ns beyond the Onsager radius of 284. Ina polar sol-
vent with € =35, a still larger fraction of pairs, 85%, -
has separated to distances beyond the Onsager radius-
of 16 A at 5 ns. However, contrary to the case of free
Brownian motion of radicals in Fig. 3, there is still an
accumulation of radical pairs at-smau separation ex-
hibited in Fig. 6(c) by the long time tail of the correla-
tion function p(r,, t), i.e., the probablhty for a pair
initially at distance 7, to be shll found at 7;-at a later
time £,

The recombination rate according to (5. 15) and (5 16)
n(t)=-4nricPy(t) (5. 26)

is related to the pair correlation function p(7y, ¢)=P,(¢).
A direct comparison of the recombination rates is pro-
vided in Fig. 7 for radical ion pairs in solvent media
with € =20, 25 and 35 and freely dlffusmg radlcal pairs
for a shghtly stronger optical potential k=1, 737 A ns™
(this optical potential strength corresponds to a total
recombination yield of 70% for D=10"%¢m?® s and €=20).
The Coulomb attraction increases the recombination
rate over its free diffusion value and also causes the
rate to decay more slowly. ‘As to be expected, gemi-
nate recombination is more hkely the smaller the di~
electric constant.

The effect of ‘the dielectric' cbnstant is most apparent
on the recombination yield of triplet products:

. cals undergoing free diffusion.
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br(t, B) =~ " i) W(r, B), (5.27)
0

which is presented in Fig. 8 corresponding to the rates
of Fig. 7. The triplet product yields are the result of
the overlap of the recombination rate #(f) and the hy-
perfine-induced singlet- triplet transition probability
Wy(¢, B) for the two-proton system of Fig. 2. The yield
plots are all similar in form for the various solvents.
The wiggles occurring arise from the oscillations of
Wy(¢, B) and are due to the coherent motion of the un-
paired electron spins in the radicals. For systems
with more nuclear spins interacting with the unpaired
electron spins these wiggles may be smoothed out and
not observable, although Klein and Voltz?® recently
claimed the observation of oscillations in the nanosec-
ond time-resolved solute recombination fluorescence
linked to geminate radical processes. In the case of
free diffusion’the recombination rate decays so fast
that little overlap between s (£) and Wy(t, B) is pos-
sible, which explains the low triplet yield..

Figure 8 also demonstrates the reduction of the triplet

_yield when a magnetic field is'applied. The magnetic
- field effect, defined here to be the difference between

the triplet yield curves for zero field and B=200 G, is
seen to build up over a time span of about 10 ns and
then remains constant.

The numerical values.of the.singlet and triplet re-
combination yields at 80 ns corresponding to Fig. 8 -
are supplied in Table IV. The Coulomb attraction be-
tween the recombining radicals greatly enhances the
total yield ¢, (80 ns, B). Singlet and triplet yields at
both low (B=0) and high (B=200 G) fields increase with
decreasing dielectric constant. The relative magnetic
field effect on the triplet yield ¢, (80 ns, 200 G)/

¢r (80 ns, 0) also recorded in Table IV is found to be’

Recombination: Rate -10?xA{t)/ns™
Q. €:20
b. €=25
€. €=35
" d. free ditfusion
0] 5 10 15 20 25 30
Time /ns

FIG. 7. Rate of geminate recombination for radical ion pairs
evaluated by the differential—difference approximation accord-
ing to Eq. (5.26) for D=10"% cm?s™, T=298 K, x=1,737 A ns™!
in solvents with € =20, 25, and 35, and also for neutral radi-
The radicals are generated

at ry=6 A and also recombine at 7.

J. Chem. Phys., Vol. 66, No. 10, 15 May 1977



4630

% Triplet Yield %
20 | riplet Yie 240
0 Gauss o
50 12
14
200
L8 1
T T T T T 0
8 16 24 32 40 L8 56 64 72
Time/ns
% 4
T . 0/
120 | riplet Yletq 105
96 124
0 Gauss
) 50
72 1 , 099
48 200 06-
€= 35 '
24 1 03;

-8 1 24 32 L0 4B 56 6L 72
Time/ns )

Z.-Schulten and K. Schulten:
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Radical pairs in solution

Triplet Yield
0 Gauss
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Time/ns
Triplet Yield
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200

Free Diffusion

0 8 16 24 32 40 48 56 64 72
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FIG. 8. Time-dependent yield of triplet recombination products ¢;(¢, B} evaluated according to Eq. (5. 27) for the recombination

rates of Fig. 7 and Wy(t,B) of Fig. 2. ’

quite insensitive to changes in solvent polarity and as-
sumes a value of about 0. 58 for all reactions. -

Not only the solvent polarity, but also the solvent
“viscosity has a profound influence on the geminate re=

combination process. To illustrate this point we givein

Table V the singlet and triplet yields ¢ 5 (80 ns, B) and
" ¢,(80 ns, B) for solvents with € =35 and D=0.5%x10",
1.0%x105, 5.0%10™° cm?s™ at low (B=0) and at high
(B=200 G) fields. Both the singlet and the triplet yield
are found to fall off with decreasing viscosity (increas-
ing diffusion constant), The relative magnetic field ef-
fect ¢, (80 ns, 200 G)/¢ (80 ns, 0) is virtually insensi-

tive to changes in solvent viscosity and again assumes
the value of 0. 58. -

We have so far considered the forces between the
recombining radical ions to be of the Coulomb type at-
tenuated by the macroscopic dielectric constant of the
solvent. “We will now see how the geminate triplet”

“yield may be modified by a “dielectric descreening”

described by the Hermanson potential (3.16). In'Sec.’

I we have already shown that the Hermanson potential
leads to second-order recombination rate constants
which are larger than the values predicted for recom-
bination processes governed by‘a Coulomb potential

TABLE IV. Solvent effect on geminate singlet and triplet recombination yields for. . .

x=1.737 & ns1.*

?;ﬁﬁ:;?: brtds  rB=0)  0s(B=0)  67(B=200)  s(B=200) %-

Free dif- . ; .
fusion 0.091  0.013.  0.078 0.008 0.084 0.583

35 0.322 0,088 0.234 0,051 0.271 0.579

25 0.496 - 0.150 0.346 0.087. 0.410 0.578

20 0.664  0.206 0.458 0.119 0.545 0.578

%y corresponds. to-a total recombination yield of 70% for €=20, Yields are given at
80 ns as evaluated by the differential-difference method with hy=0.25 A, i=15 n
=0.5 &, 15=i=41; k,;=1.0 &, 41=i=78; h,;=20 X, 78=i=111. The radicals are as-
sumed to be generated at v, =6 &,-D=10" cm?s™!, T=298 K, B In units of G. .

J. Chem. Phys., Vol. 66, No. 10, 15 May 1977



. radicals.

Z. Schulten and K. Schulten: Radical pairs in solution

4631

TABLE V. Effect of the diffusion coemcxent on geminate smglet and triplet recombina-

tion yields for k=1.737 & ns™.*

Diffusion .

coefficient i B _ i (B =200)
@/cmisy  Ortés  4rB=0) 65B=0)  oxB-200 gyB-200 LI
0.5x10°% 0.474 0.136 0.338 0.079 0.395 0.579
1.0x10° 0.322 0.088 0.234 0.051 0.271 0.579
5.0x107 0.091 0,018 0.073 0.010 0.081 0.585

*yields are given at 80 ns with the conditions of Table IV, €=35.

with constant €. It is, hence, to be expected that the
dielectric descreening can also lead to an increase of
geminate triplet products. This effect is indeed demon-
strated by Fig. 9, which presents the triplet yleld for
the breakdown length =0 (Coulomb case), b=1 A and
b=1.25A. The effect of the dielectric descreemng on
the triplet yield may, however, also be the opposite for
recombination processes with large optical potential
values, as will -become clear from the followmg discus-
sion,

The cardinal question regarding the geminafe recoms-

bination is How do the geminate processes partition the -
. initial pairs into singlet products, tviplet products, and

separaled vadicals? The “phase” diagram Fig. 10(a)

provides an answer to this question for radical ion pairs -

in solvents with € =20 and 35 and for freely diffusing
radicals at zero field. The phases in Fig. 10(a) are the
geminate singlet-and triplet products, and the separated
For example at a total recombination yield
¢5(80-ns, 0)+¢,(80 ns, 0)of 10%, i.e., 90% of the
radical pairs are still separated at 80 ns, there are

1. 4% (8. 6%) triplet (singlet) products in the case of free
diffusion, 2.8% (7.2%) triplet (singlet) products for
radical ions in a solvent with € =35, and 3. 4% (6.6%)
for € =20. As the strength of the optical potential ;

k= Uy kyw; is enhanced and the total recombination yield
increases both-the singlet yield ¢ ¢ (80.ns, 0) and the
triplet yield ¢, (80 ns, 0) rise. However, beyond a total
recombination yield of about 60% the triplet yield de~
creases again. This startling behavior is readily ex-
plamed by the recombination rates depicted in Figure
10(b) for three radical ion systems in a solvent with
€=20 and total recombination yields 10%, 60%, and 95%.
The rate corresponding to the total yield of 60% is at -
all times larger than the rate corresponding to a total
yield of 10%; hence, the concomitant increase of singlet
and triplet yields is no surprise. The recombination
rate corresponding to a total yield of 95% exceeds, how~
ever, the rate corresponding to a total yield of 60% only
at very short times, i.e., very reactive radical pair
systems recombine very fast. For such systems the
triplet probability has no opportunity to build up and the
triplet yield is therefore small. Consequently, for a
total recombination yield of 60% there are 21% (39%)
triplet (singlet) products formed at 80 ns; and for a
total recombination yield of 95% there are 8% (87%) -
triplet (singlet) products.

To see what information can be gained from the phase
diagram F1g 10(a), let us consider a geminate process

in a solvent with € =35 described by an optical potential
that corresponds to a total recombination yield of 80%.
One obtains in this case from Fig. 10{a) a triplet yield
of 9.5%. If the optical potential strength is not affected
by the solvent polarity, then according to Eq. (3.15),
placing the reaction into a solvent with € =20 would give
rise to a total recombination yield of 95%. This cor-
responds to a triplet yield of only 8%, i.e., placing the
reaction into-a less polar solvent actually decreases the
triplet yield.

The strength of the hyperfine coupling in the recom-
bining radicals measured by the coupling constant a
influences strongly the partitioning of the recombina-
tion between singlet and triplet products but does not
affect (in the case of spin-independent reactions con-
sidered here) the total recombination yield ¢5(, B)
+¢ (=, B). A stronger hyperfine coupling induces a

faster transition of the initial singlet radical pairs to
- the triplet state and, hence,- leads to an increase in the

yield of geminate triplet products. This fact has been
demonstrated for the case of free diffusion in Sec. IV

and is demonstrated again for the recombination of
radical ions by Fig. 11(a), which presents the time
evolution of ¢,(Z, B) in a solvent with € =35 for coupling
constants 15, 25, and 50 G. Beside the large differ-
ence in their asymptotic values ¢, (o, 0), the three yield
curves also exhibit a difference in the structure of the

R ‘.

150 - Triplgt Yield

20 4 - b=1254
g b=10A

90 b= 0 A

60

30 1 ‘ 3 B= 0 Gauss

8 6 24 32 40 48 S6 64 72

Time/ns
FIG. 9. ' Time-dependent yield of triplet recombination prod-
uets ¢g(t, B) for ion pairs with a r-dependent dielectric
screening as described by Eq. (3.16) with breakdown lengths
b=1,25 A 1.0 A and 0, and macroscopic dlelectnc constant
€=35, T=298 K, withD=10% cm®s™, x=1.737 & ns! and
Wy(t,B) of Fig. 2.
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m % 10 30 50 70 80 % (a) Recombination ‘Rate =10%xA(t)/ns’ b)
T 10 9083
T {1-960ns0) 2 €=20
. -y :

® 30 - ,{80ns,0) 170 R 41
o L ==
5 50 ¢/80ns0) |50 = 5l
] : 2 9.
g_ . > =
» 707 9(80ns0) [0 5 3 21
- < .22
o 90 5 L10 = &
3 A M——\ "
> % 10 30 50 70 90 %

Total Recombination Yield : — — —_—

@S(BOns,O)*LPT(BOns,O) 0 10 s 20025 30 35
g KT g Time/ns

FIG. 10. (a) Partition of the pair recombmaﬂon into triplet products, singlet products, and separated ra.dxca.ls for free diffusion (a);

and diffusion of radical ions in solvents with€ =35 (b) and 20(c) .

(b) Recombination rates for radncal ion pau’s in a solvent with € =20 -

for total recombination yields of 10% 60% and 95% (T'=298 K, D=10"cm?s™).

- quantum beats supemmposed on them. The perlods of
the quantum beats are (a in G)

T=4nmc/gea= 360 ns/a, (5.28)

i.e., 7ns for a=50, 14 ns for a =25, and 24 ns for a
=15. From Fig. 11(a)one may also conclude that an
observation of the quantum beats on the triplet yield
'should be possible only for radicals with strong hyper-
fine coupling, as for example-in perﬂuorated aromatlc
radicals. :

The strength of the hyperfme couphng also governs
the magnetic field dependence of the triplet yield as is
illustrated by Fig. 11(b) for three systems with coupling
constants ¢=15,. 25, and 50 G. The magnetic field B, ,,
at which the drop of the triplet yield is half of its sat-
uration value at large fields

Dr(e, Bry2)=3[0r(2, 0)+ 0r(2,=)]

is a convenient measure for the hyperfine coupling .
strength. The B,,, values conform to the ratios.
26:43:83=15:25:48, which are close-to-the ratios of
the corresponding hyperfine coupling constants. - -

Vi. DISCUSSION

We have demonstrated that the recent observations of
the time and magnetic field dependence of the geminate
triplet recombination yields (Ref. 1) is amenable to a
theoretical description based on a coherent motion of
the unpaired electron spins superimposed on the pair
diffusion process. The spin motion, induced by the hy-
perfine coupling between the electron and nuclear spins,
can be modulated by weak external magnetic fields. .
The diffusion and recombination process depends in a
straightforward way on the relative diffusion coefficient
of the radicals,:on the rate of the electron transfer
(rs, k), and on the force field between the radicals.
Whereas increasing the magnetic field strength at-
tenuates the triplet yield, the combined effect these last
factors have on the trlplet yield requlres a more com--
plex analysis. : :

, (5.29)“

T 7024

The treatment presented above is but a crude first

‘, step, and there are several refinements to be suggested

1. The effect of different recombmatlon rate con- .
stants kgand «, for smglet and triplet radical pairs, re-

. % ;A . o

120 Triplet  Yield \pT’(bt,O) - (a)
- a=50 Gauss
a=25 Gauss
a=15 Gauss

8 16 26 32 L0 48 56 64 72
- - Time/ns
% ~ Triplet Yield ¢.(80ns,B)

9.0 b et o (b)v

a=50 Gauss

a=25 Gauss

a=15 Gauss

1.8
0 T IA T U T T T T T T i
20 40 60 80 100 120 140 160 180 200
‘B/Gauss
FIG. 11. ({a) Dependence of the triplet yield ¢5(¢, B) on the-

hyperfine coupling constant a at-zero field. (b) Magnetic field

- .effect on the triplet yield ¢p(~,B) and By, values (see text) for

hyperfinecouplmgconstantsa 15, 25, and50G (€ =35, T =298K,
D 107 cm?s™! and k=1.737 & ns")
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spectively, needs to be studied as realistically singlet
and triplet recombination processes proceed with dif-
ferent probabilities. In our study above we have also
assumed the rate constants to be solvent-independent.
However, it is known that the dielectric relaxation of
the solvent, i.e., the frequency-dependent dielectric

constant, influences strongly the fastelectrontransfer. 27

2. Information on the distances at which radicals are
generated and recombine (how far do electrons )ump'7)
is badly needed. .

3. The influence of a distance-dependent exchange
integral J(») dampening singlet—triplet transitions
should be investigated as has been done by Pedersen
and Freed in a study of the CIDEP mechanism. ?

4. The effect of the liquid environment on the force

field between recombining radicals, i.e , the dielectric.

screening over molecular distances, needs to be in-
vestigated. Here we have considered only a sfatic ef-
fect on the solvent. However, dielectric relaxation
times of polar solvents can be as large as 100 ps and
hence, may also have a dynamic effect on the relative
diffusion of the radical ions.

5. The assumption of a continuous diffusion for the
radicals is somewhat dubious and ought to be replaced
by a (molecular dynamics) model which accounts for
the discrete nature of the solute—-solvent system. In
particular, the propensity of electron transfer for cer-
tain relative orientations of the radicals, i.e., the de-
- viation of the recombination process from spherical
symmmetry, needs fo be taken into consideration.

However, even if the theoretical description may
never be completely adequate for the truly complicated
processes preceding the formation of products in sol-
vent reactions, it will nevertheless serve an important
purpose as a reference point for an interpretation of
experimental data. The existence of detailed theoreti-
cal predictions may motivate an effort for experimental
data which can profitably be analyzed theoretically. Our
theory gives rather different weight to the experimental
- observables connected with the geminate recombination
process. The relative magnetic field effect ¢ (o, =)/
$r(o, 0), for example, has been found quite insensitive
to influences of the solvent medium. Hence it does not
reveal much information except that it may serve the
useful purpose to determine for realistic systems with
several routes to triplet product formation which frac-
tion of the triplet products is actually due to the gemi-
nate recombination.® The magnetic field dependence of
the triplet yield as presented in Fig. 11(b) is governed
by the hyperfine coupling in the recombining radicals
which is known from ESR spectra and therefore not of
immediate interest. The time development of the gemi-
nate triplet products, however, or better the recom-
bination rate #n,(f), is a quantity of extreme interest
as it is linked to the pair correlation function p(7y, ¢).
The question arises if this information can be inverted
to yield some estimate of the solvent modified pair po-
tential governing the relative diffusion of the radicals.
Unfortunately, under current experimental conditions,
e.g., those of Ref. 1, radical pairs are being gener-
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ated over a time period of about 10 ns. This smear-
ing out of the “zero time mark” for the spin motion and
the diffusion does lead to a loss of information on the
pair correlation function and also covers up possible
quantum beats of ¢5(¢, B). The total yield of geminate
triplet products ¢,(=, B) depends sensitively on the sol-
vent conditions, but its theoretical analysis is rather
intricate as is revealed by the phase diagram Fig. 10(a).

In closing we would like to comment on a possible .
role of the magnetic field modulated geminate recom-
bination for magnetic sensory mechanisms in biological
species. This role suggests itself by the mere fact that

. the'chemical effects discussed here and in Ref. 1 occur

at low fields <100 G. Radicals with very small hyper-
fine coupling constants would make even lower fields
effective, as illustrated in Fig. 5(b). If the sum of the
hyperfine coupling constants is 1 G, .the magnetic field
of the earth could well influence a geminate process.
For any explanation of biological magnetic field sensors
it must be noted that a prerequisite is the perception

-of the direction of an external magnetic field. The pro-

cesses discussed above depend solely on the magnitude
of the field.
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