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Quantum scattering theories of chemical reaction usually require, at some stage, 2 transformation from the
quantum states of reactants to those of the products. We show that it is useful to separate this
transformation into angular momentum coefficients and transiational-vibrational integrals. The angular
momentum coefficients thus defined are general kinematic factors, depending only on the masses of the
atoms and the product vibrational and transiational distances, but not on the particular potential surface.
Analytic formulas are derived for these angular momentum coefficients, both for reactions confined to 8
plane and for three-dimensional motion. Various selection rules, symmetry properties, orthogonality
conditions, normalization rules, and recursion relations are derived from these formulas. An efficient and
numerically stable method is derived for numerical evaluation of the angular momentum coefficients.
Examples are given for several specific reactions and the trends with varying mass combinations are
rationalized in terms of limiting cases. These results display the kinematic aspects of angular momentum
transfer in chemical reactions. Comparison with classical trajectories, which include both dynamic and
kinematic effects, shows the extent to which dynamic effects aiter the distributions of rotational and orbital
angular momenta from those given by the kinematic effects alone. Finally, the integral for the
transformation of the vibrational and radial dependence of the scattering wavefunction is discussed

qualitatively.

1. INTRODUCTION

Molecular beam measurements of total reactioncross
sections and of product angular distributions have pro-
vided a great deal of information about elementary
" chemical reactions of the type A+BC—~AB+C. Recent
developments of molecular beam techniques allow one
to measure the orientational distribution of the product
rotational states. Spectroscopic techniques now can
determine the distribution of product rotational and vi-
brational energies. These measurements call for new,
more detailed theoretical studies of molecular reac-
tions.

Classical and semiclassical calculations have been
most successful in describing reactive molecular scat-
tering. In this paper, we will be concerned with devel-
oping further the quantum mechanical theory of reactive
collisions. Quantum mechanical calculations have been

_carried out mainly on collinear reactions, but no gen-
eral method exists so far to deal with reactions not re-
stricted to a collinear configuration of the nuclei in-
volved. Because of the long range character of molec-
ular interactions, chemical reactions often involve
large angular momentum values. Therefore, as well
as in the light of the recent molecular beam measure-
ments, it is necessary to extend the calculations to in-
clude the rotational degrees of freedom,® and the orbit-
al angular momentum.

In reactive collisions with sticky collision complexes,
all degrees of freedom are sufficiently coupled to popu-
late all open product channel states significantly. Sta-
tistical models therefore are reasonable in describing
the cutcome of these collisions.?* If reactions, how-
ever, proceed via a loose, very short-lived transition
complex, the population of product channel states devi-
ates from a statistical distribution. In such cases the
rotational degrees of freedom will often be only weakly
coupled to the translationai and vibrational degrees of
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freedom; hence, the population of product rotational
states will reflect to an important degree the reactant
rotational states altered by the redistribution of masses
in the reactive event.?»3

In these “direct” reactions, the transformation that
connects reactant and product rotational states strongly
influences the product angular momentum distributions.
The matrix elements of the transformation that couples
reactant and product angular momentum states depend
both on the shape of the reaction complex and on the
masses of the colliding particles. In this paper we de-
rive analytical expressions for these reactant-product
angular momentum coupling coefficients. Since the
transformation considered is independent of the actual
dynamics of the reactive system, the coupling coeiffi-
cients derived are applicable for all reactive scattering
calculations.

In Sec. II we introduce the connection of the reactant~
product transformation of angular momentum states
with several formal approaches for three particle reac-
tive scattering. In Sec. II the angular momentum re-
arrangement transformation for reactions restricted to
a plane is derived, and the derivation is extended in
Sec. IV to three-dimensional reactions. In Sec. V
some numerical examples of reactant-product angular
momentum coupling coefficients are presented for some
sample reactions and quasiselection rules for product
rotational states which follow from our coupling scheme
are compared with the results of classical trajectory
calculations. In Sec. VI we discuss the reactant~prod-
uct integral transformations for the translational-vi-
brational wavefunctions which necessarily accompany
the transformations of the angular momentum wavefunc-
tions in any detailed calculations. ’

We have also developed a suitable algorithm for the
numerical evaluation of the reactant-product coupling
matrix elements. [t produces accurate results effi-
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FIG. 1. Definition of coordi-
nates for the arrangements 1
+(2,3) and 2+(1,3).

ciently, even for very large angular momentum quantum
numbers ( 100), which are present in many reactions.
In Appendix A we describe this algorithm for the new
class of coupling coefficients that are derived in this
paper, and in Appendix C we present an algorithm for
the evaluation of 95 coefficients for large angular mo-
menta, which are needed in the course of our calcula-
tions.

1. SOLUTIONS OF NONREACTIVE AND REACTIVE
SCATTERING

In the following we will consider three colliding par-
ticles in their center-of-mass {c.m.) system. To de-
scribe a collision of particle 1 with the bound pair of -

" particles {2, 3), one can choose coordinates R, and 1,

defined in Fig. 1. R, goes from particle 1 to the center
of mass of the (2, 3) subsystem; r, connects particle 2
with particle 3. It will be more convenient to use re-
scaled coordinates,* N, and n,, which are related to R,
and ry by. )

Nl = a;‘R; »
nm=qr, o
a% = [mzmS('nl + My + m,)/m;(”tg “’ms)z]ln -

Coordinates (Ny,n,) and (N,, n,) describing two different
arrangements of the particles (see Fig. 1) are then
connected by the simple transformation formulas

(2a)
(2v)

where cosB = — [mymy/(my + my)(my + my)]'# and sing>0.

N, =cospN, - sinf n, ,

n, =sinfN,+cosf n, ,

The momentum vectors P, =puN, and p, =8, (=1, 2)
with p ={mymymy/(m, + my + m3)]*'? transiorm like the
position vectors.

A wavefunction ¢ which describes the inelastic but
nonreactive collisions 1+ (2, 3)~ 1+ (2, 3)* is a regular
eigenfunction of the three-particle Hamiltonian H. As
atom 1 separates from molecule (2, 3), ¢ must go as-
ymptotically (N, ~ =) to ,

P = Z s ‘L’.’..U\'a)vﬂ’(nl)‘yu(L, l;.ﬁ,, ny) . (3)

Leglgn

In this expansion, fih(N;) describes a free translation
between atom 1 and molecule (2, 3),

i’,’,,(.-\',) = J‘,:—m (e (km_Nl) - ”L(klan)RLlu) . @

+$1(5,) describes the vibration of molecule (2, 3) in its
1ih rotational state, and Y u(L,I; Ny, #;), defined by

'.U;" (L, l; .'{.1, ;il) = Z (L”ILbnl‘J.‘I)YL-L(J\‘.‘)Y”,,(;A) (5)

mymy
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describes the total angular momentum state (J, M) of the
atom-molecule system with orbital angular momentum
L and molecular (rotational) angular momentum I. N,
and n, stand for the angles that define the directions of
N, and n,, respectively. (Lmglm,iJM) denotes the
Clebsch-Gordan coefficient as defined in Edmonds.® #,
is a solution of (Hy") - E)$, =0, where H¢" =limy .. H,
and E is the total energy of the three particles in their
c.m. system.

To insure the right asymptotic behavior, the inelastic
scattering solution # is expressed in terms of the par-
tial waves that contribute to ¥,

4’=LZ FOLNW )y (L, 15 Ny, 7y) (6)
v hoR

The translational wavefunctions F§},(N,) have to be de-
termined from the set of coupled ordinary differential
equations -

3 [ i, [anglPndyialL, 1 By, i)E - )
L" l' 'u'

oty (L', I Ny, i) F e (N;) =0 . N

Methods to solve this equation are by now well known, s
If the angular dependence of the potential is expanded in
Legendre polynomials P,,

VN, 1y, 00) = 3 VN, m)P,(cosdy) , (®)

then the matrix elements
(Y rulL IRy, ) | Pyleosod |y L, 1 N, 2)) (9)

appear as factors in each term of Eq. (7). On applica-
tion of the Racah algebra of angular momentum cou-
pling, these matrix elements can be expressed in terms
of vector coupling coefficients.” The angular momen-
tum coupling factors (9) strongly affect the results of
inelastic scattering calculations and establish selection
rules for the collisional transitions.

In case of weak coupling between rotational states, the
distorted wave Born approximation (DWBA) can be ap-
plied; the transition amplitudes are found in this case
to be directly proportional to the corresponding angular
momentum coupling coefficients (9). The transition
amplitudes deviate from this behavior if the coupling
between rotational states is somewhat stronger, and
transitions can occur via intermediate channels. How-
ever, the angular momentum coupling coefficients still

‘determine to first order the relative magnitude of the

transition amplitudes. In case of strong coupling the
transitions through intermediate channels become as
important as direct transitions; then the anguiar mo-
mentum coupling coefficients no longer provide an esti-
mate for the transition amplitudes. These considera-
tions will hold equally for transitions connecting reac-
tant and product states in case of reactive collisions,
for which the angular momentum coupling coefficients
are derived in this paper.

Let us now consider collisions for which reactive
channels are energetically accessible in the asymptotic
region so that both the inelastic processes 1+(2,3)~1

- +(2,3)* and the reactive processes 1+(2,3)~2+(1, 3)*
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are energetically allowed. The reaction products
(1,3)* and 2 are described asymptotically by the wave-
function

t= 2 F0, N o ) (L 1 Ry ) - (10)

The functions occurring in this expansion have the same
meaning as those defining ;. The wavefunction ¢, in
order to represent reactive collision processes 1+(2, 3)

- 2+(1, 3)", has to be subject to fwo asymptotic bound-
ary conditions,
¥ Ny lares é‘
(11)
7 Ny lares b -

The N, axis and the N, axis point towards different di-
rections in the three-particle configuration space and,
hence, the boundary conditions force the scattering
wavefunction ¥ to have nonvanishing asymptotic tails 3,
and ¥, confined along two different directions. The dif-
ficulties encountered in reactive scattering calculations
stem from the difficulty of satisfying these boundary
conditions. In the case that the particles are restricted
to collinear reactions, the difficulties can be overcome
by evaluating # in a configuration space transformed
such that the reactant and product coordinates N, and N,
and, hence, the asymptotic waves @, and ¢,, come to
run parallel in the asymptotic region.® Similar trans-
formations employed for three-dimensional reactive
processes which connect both asymptotic arrangements
of the particles, 1+(2,3) and 2+(1, 3), lead to compli-
cated forms of the kinetic energy operator.’” Quantum
mechanical calculations using such coordinate systems
(limited, however, to reactions with nearly collinear
collision complexes) have been proposed recently, *®

Boundary conditions (11) will automatlcally be satis-
fied if one expands

$= D FUNIP )Y (L, 1 Ry, i)

Lalen y

o D (N YL, ViR ). (12)
z.' 3,0
The unknown reactant and product transiational wave-
functions Fiih(N,) and Fi%...(N;) can be found as solu-
tions of the two-dxmensxonal coupled integro-differen-
tial equauons .

Y et [dnaytdr, iR, m0@ - B

‘.L."..".
XYL 5 h ”;)FL' °n’ (Np)v:ﬂ' (719) =0. (13)

The terms multiplying F{%}.,.(N,) (@ =p) are evaluated
in the same manner as the corresponding terms occur-
ring in the inelastic scattering Eq. (7), except that the
' }

f as [dRayalLs 1 Res FudH - BNl s Ras
L, 1',m
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integration in (13) is not extended over the vibrational
wavefunctions v!$’(n,). The angular momentum cou-

pling for these terms follows the scheme employed for
inelastic collisions.

The terms acting on F¥...(N,) with a# 8 cause the
coupling of reactant and product channels. The evalua-
tion of these terms is very different from the evalua-
tion of the terms with a=8. First, the matrix elements
that couple the angular parts of the wavefunctions,

s (Ly Ry i) | Plcoso) | s L% 1 R g}, (14)

cannot be determined within the Racah algebra of ordi-
nary anguiar momentum coupling. Second, the integra-
tion over the solid angles N, and n, extends over the
unknown translational wavefunctions Fity...(Ny). This
gives rise to the well-known noniocal eharacter of the
reactive scattering Schrddinger equation, when its so-
lution is- expanded in both reactant and product bases,
as in Eq. (12).}

To evaluate formally the reactant-product coupling
terms, the partial wave.

' l’n' (Ng)l’.* 1 (ﬂg)"{;, (L' 1' ;l‘)

is transformed to the coordinates N, and n,. . The total
angular momentum state in the 8 arrangement is there-
fore recoupled and expressed in terms of total angular
momentum states of the @ arrangement,

Yyu(L,1; Ny, 7tg)
= 2 sCliwerWas me s L, Vi i) (15)

The functional dependence on N, and n, of the recou-
pling coefficients yCj.,., ,,..,..(N,,,n,) takes into account
the fact that the rotational modes of motion in the g ar-
rangement confain some component of translational -vi-
brational motion in the a arrangements. The transla-
tional-vibrational terms in (12) describing the 8 ar-
rangement in turn contain some component of internal
angular motion in the @ arrangement:

F& e (N0 8} ()
=‘Z 5}":’,-..“ Nos ﬂc)?lou('.f;ﬁ'.,ﬁ.) . (16)

The analytical form of the recoupling coefficients
3CLepesp00 10 (Ngy ) will be derived in Secs. HI and IV.
The derivation will employ a coupling scheme for angu-
lar momentum states which is based on the theory of
the representation of the Euclidean group rather than
the rotation group. - The evaluation of the functions
FEenese(Ny, ne) will be discussed in Sec. VI.

On application of the transformations (15) and ( 18),
the Schridinger equation reads

}.a' :'ﬂ' thx )Ur(l'al)' (‘va)

o 2 faSe [ @il 5 R fdE - B (L7, 1% R, Vot B ) Bz Ns ) 0. (17)

z .l',n

1,

J. Crem. Phys., Vol. 64, No. 7, 1 Aprii 1976



K. Schulien and R. G. Gordon: Angular momentum coupiing in reactive collisions

The Schridinger equation in this form is actually not
useful for numerical solutions of the reactive scatter-
ing problem, since the evaluation of the function

F ¥ ne15(Ngs ng) Tequires a previous knowledge of the
scattering solutions Fi¥;...(N,). - However, in the non-
trivial case that the transferred particle 2 is very light,
this equation can be solved approximately by making
use of the results derived in this paper.

The great importance of transformations (15) and
(16) will be illustrated now for several approaches
taken to solve the quantum mechanical reactive scat-
tering problem. As a first example of the use of these
transformations, we consider the distorted wave Born

approximation in which the reaction amplitude for the
transition L,,n-~L',l',n’ is given by

Tiinire = ,_',’,"’(N,)v“’(n,)y,,,(z, LNy, )|

XV!X?')I(';)'(N:)L:’:'(":)'HM(L U5 Ny 73))
(18)

Here ¥ is the interaction responsible for inelastic and
reactive transitions; X7){”(V,) is the incoming elastic
scattering solution in the entrance channel; X2%) (N,
is the outgoing elastic scattering solution in tk_\e exit
channel. | the potential is separated into radial and
angular dependent factors as in (8), and transforma-
tions {15) and (16) are applied, the reaction amplitude
reads

Titui tnt =L" s ‘S..,;.(L AL s l)(X},(m')(Nh n,)v‘,‘.’(n,)'vajsg}‘,.," Ny, m )y CLopegpeepee Ny 1)) 19)
. Sy
The angular integral ,
Suad Ly BL, 15,0 =(yy (L, 1 Ry, ) | Pylcoson) [y 1w (L7, 175 Ry, P ¥eolt, £ 1, 7)) (20)
. | | -
can be expressed in terms of nj symbols, as is well ploying only reactant basis functions
known from the theory of inelastic scattering. How-
ever, in contrast to the angular momentum coupling for IdN, I dny (L, 1; Ny, i WH ~ E)
inelastic processes, the scattering amplitude for reac- Lyt
tive collisions contains the additional radial dependent XY (L, 15 Ry 1)) F e (NS e (n)) =0 . @n

coupling coefficients yCf«p;zes 0+ (N, 1;) Which enter the
translational-vibrational coupling term. The advantage
of our procedure over the usual method! of integrating
(18} numencally relies on the fact that our recoupling
coefficients ;Ci,,z.+;+(Ny, m,) can be obtained in an
analytical form. This means that the integration in (18)
over rapidly oscillating angular wavefunctions (for angu-
lar momentum quantum numbers as high as encountered
in molecular reaction processes) can be dealt with in an
exact manner, and that one relies on a numerical inte-
granon procedure only to obtam the functions

fch l'n‘,t(vm ”c)

To illustrate the significance of the recoupling coeffi-
cients yCj.;o;zee oo (N3, 1), let us consider a model reac-
tion with a collision complex confined so that the trans-
lational-vibrational coupling terms in (19) are well lo-
calized, say around (Ng,ny). In that case the radial in-
tegrals are proportional to yCf:;e;z+s e (Ngs mg). The re-
coupling coefficients then establish selection rules for
the reactive transitions in that one can predict that the
dominant transitions have large values of the products

SuaelL: L L 15 8, 06C T oy pee 1o+ Nos 1) -

It will be seen later that the recoupling coefficients

sC1+ 10510030+ (Ngy ) Show a pronounced dependence on the
masses of the colliding particles. It is therefore un-
derstandable that the final population of rotational states
depends on the atomic masses of the reacting particles
as well as on the geometry of the collision complex de-
fined by Ny and n,.

A possible approach to treat reactive molecular col-
lision processes in a more exact manner is as follows:
Consider the Schridinger equation reduced to a system
of coupled two-dimensional differential equations em-

This set of equations is integrated between the asymp-~
totic region and the collision complex region, carrying
two independent solutions for each channel. The N so-
lutions (¥ being the number of reactant and product
channels) are transformed in the collision complex re-’
gion from the {N,,n,) coordinates to the (N,,n,) coordi-
nates employing the transformation procedure above.
The transformed wavefunction can then be matched to N’
independent solutions of the Schrodmger equatxon in the
product coordinates:

Idﬂ:fd’lﬂlu(fc I; Ny, #ig)(H - E)
L

X YyulL®, V5 Ry, 1) 400 (N0 E)e (1) =0 (22)

In this method the transformation procedure carrying
the wavefunction from the (N,, n,} coordimates to the
(N3, ny) coordinates provides for the necessary match-
ing of reactant and product wavefunctions. . .

Another approach to solve the three-dimensional re-
active scattering problem is to employ the Schrédinger
equation in the (N,,n,) coordmates {21) throughout, !°
expanding .

= Z e N0 )Y (L, 25 R, 7))
L% 1 "

(23)
The Schrodinger equation then has to be integrated along

the vibratiomal coordinate ny out in the valley Ny~ = to-
wards the asymptotic region of the reaction products.
Since the partial waves in expansion (23) are not suit-
able to describe the asymptotic motion of the reaction
products, the wavefunction has to be transformed to the
product coordinates (N,,n,), finally. Again, the trans-
formation procedure proposed will serve this task.

J. Chem. Phys, Vol. 64, No. 7, 1 Aoeid 1976



2922

There exists yet another way to transform reactive
scattering wavefunctions from reactant to product co-
ordinates which has been proposed for nuciear reactive
scattering.'' One may separate from the radial part of
the wavefunction (23) the factors N{ and n{ and expand
the solid spherical harmonics

Nf’l{'ynl &, ﬁly ﬁl)

= Z‘ sDL1sp 1 Ny, ng) Yy (L7, 15 Ny, 12p) (159
Povd X
and accordingly the remaining radial part
() (o ) . .
E N(I- )zu”_gﬂl=z Sg!)l:swz’ 1) Yno(s, s; Ny, ny) . (167)
1 r] )

This second set of expansions is very suggestive for
actual calculations in that expansion (15’) is finite and
simpler to evaluate than the infinite expansion (15).
However, difficulties appear now in the numerical eval-
uation of the functions Si%.,(N,,m,). For large angular
momentum quantum numbers L and /, the powers Ni*
and n;’ in (16°) are rapidly varying. Hence, the series
S :¢(Np, 1) may be slowly convergent, as will be seen
in Sec. V. One may say that the two sets of transfor-
mations (15), (16) and (15’), (16') are complementary in
that the latter should be used for reactions that involve
small anguiar momentum quantum numbers, while the
first set should be used for reactions with large angular
momentum quantum numbers. .

Il. REACTANT-PRODUCT TRANSFORMATION FOR
TWO-DIMENSIONAL ANGULAR MOMENTUM STATES

To solve angular momentum coupling problems for
three-dimensional motions, it is always instructive
first to study the analogous problems for planar angular
motion. All steps in the algebra of three-dimensional
angular momentum coupling have their direct counter-
part in the much simpler algebra of two-dimensional
angular momentum coupling. This also holds true for
the more complicated coupling of reactant and product
angular momenta which will be derived in Sec. IV.
Thus, we impose in this section the restricticn that the
colliding particles move in a fixed plane. The
derivation of the equations, which describe the decom-
position of reactant angular momentum states into
product angular momentum states, is then particularly
transparent and can be generalized to the three-dimen-
sional case in a straightforward manner.

On the reactant and product side, the three-particle
wavefunction must go asymptotically to

ca= D P (NI Y3 Ny i) @=1,2,  (24)

men
which differs from the three-dimensional wavefunction
only in the total angular momentum states

Yelm; No, itg) = (1/27) eiU-mIy gimia

The total angular momentum quantum numboer 3 is the
sum of the orbital angular momentum guant.:: number
A/ = m and the molecular rotatiomal angular momentum
quantum number . The angles N, and 7, deiine the
directions of the position vectors N, and n,, respec-

(25)
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tively.

The classical reactant orbital angular momentum N,
% P; and molecular rotational angular momentum n, Xp,
are easily expressed in terms of product angular mo-
menta by decomposing the position and momentum vec-
tors into their product components by means of the
transformation equations (2a) and (2b).* In quantum
mechanics, rather than decomposing reactant vectors,
one must decompose the corresponding state function
depending on the reactant coordinates, into state func-
tions depending on the product coordinates. Thus, the
transformation of a free particle plane wave e'”* under
a change of coordinates a=fb+ye, which is analogous
to eith;ar Eq. (2a) or Eq. (2b), is desecribed by (see
Fig. 2 )

ei¥8= it irrre .

26)
To extract the angular components of the free particle '
motion we expand each term in this equation in partial
waves using®?

i =Z *J,(pa) ein(i—i) 27)

and exploit the orthogonality property of e to obtain

.
J.(pa) o!mta-h =.Z T r(DBON (p7e) eiteh (28)
:
This equation is known as Graf’s addition theorem, 1*
and it holds for the whole family of similar triangles
defined by pa=pgb+ pyc for any positive p. We will
average Eq. (28) over all similar triangles by integrat-
ing over dp/p, which of course leaves the angular func-
tions unchanged. The weighting function 1/p is neces-
sary to make the integral on the left side independent of
a and the integral on the right depend on yc/gb only.
After changing the order of summation and integration,
we get

®dx tm(a-5)
Io p Julx)e

=(sgup)n ) eté-h [ 4X J,,,-.(y)J.(Z‘E y) . (29)
N o ¥ Bb
By virtue of'$
, dx 1

j: Lr=x  m>o0, (30)

Eq. (29) may be rewritten ’
- = yc - - -

eiu =(sgnﬁ)"‘ .-Z‘ F:(E_b_)ei(m t)beuc , (31)
where the expansion coefficients are defined by

Folx)= L dy 2 0, 53 © (32)

F1G. 2. Definition of angles
© and ¥,

S

1.
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This definition holds for the case m>0. For m<0, a
factor (- 1)® has to be inchided on the right side of Eq.
(32). The integral in Eq. (32) is of the Weber-Schaf-
heitlin type and can be evaluated analytically.** One
finds for the case m >0, k=0, and IxI=1,

2
FT(x) =(m;/ )x',F,(%, k —’—;—; k+l; x’) .
(™{?) denotes the generalized binomial coefficient

("’k/ 2)=r(1 +im)/ T+ T +bm =~ F) ,

(33

and 4F,(a, b; a+b+1;x%) stands for the hypergeometric
function. The symmetry properties to be derived for
the F7(x) allow one also to apply formula {(32) to the re-
maining cases, k<0, etc., as will be seen below. It
might be noted that the case m=0 is trivial,

F:(x) = 60. .3

Equation (31) together with Eq. (33) constitutes the
main result in the course of deriving the coupling alge-
bra for two-dimensional reactant—product angular mo-
mentum states. Equation (31) has to be looked upon as
a new addition theorem for the rotational wavefunctions
e'™. The functions ¢’ are the elements of the ma-
trices forming the representation of the two-dimension-
al rotation group. The partial waves J,(pa) '™, how-.
ever, are the elements of the matrix operators forming
the representation of the Euclidean group. Noting that
the rotational wavefunctions can be embedded in the
representation of the Euclidean group

(34)

T ima ,:7 - éﬂJ imd
e m_’: » ,(pa)e ’

the Euclidean group addition theorem for two-dimen-
sional partial waves, Eq. (28), could be applied to yield
a new addition theorem for two-dimensional rotational
wavefunctions. This line of derivation can be applied
in an obvious manner to derive a similar addition the-
orem for the three-dimensional spherical harmonics in
Sec. IV.

‘We will now examine the functional properties of the
expansion coefficients F(x). From Eq. (32) follows
immediately )

Frlx}=(-1)'Fp(-x} . (36)
Two symmetry properties can be easily derived. Com-
paring Eq. {31) with its conjugate complex shows

Fpx)=F3{x) . '

On application of the symmetry property of Bessel func-
tions, J{x}=J_,(-x), one obtains from Eq. (32)

(37)

M prit(y) . (38)

m-2k" "
Interchanging the order of Bessel functions under the
integral in Eq. (32) and rescaling the integration vari-
able results in
FJMx)=(sgnx)"Fo_(x*) .

Because of these symmetry properties, one can always
relate F7{x) to a FJ (x') with m’ 20, ¥’ =0, and Ix’I=1.

Frx)=

(39)

(35)
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Hence, the formula Eq. (33) is sufficient to evaluate
F7(x) in every case.

There exist two important sum rules for the FJ{x). _
Multiplying Eq. (31) by its conjugate complex and reor-
dering the summation on the right results in the follow-
ing orthogonality property:

.Z FR(x)FR(x) =8, . (40)

In the collinear limit (all angles zero), (31) reduces to

> FMo=1.

buow,

From Eq. (31) a generating function can be obtained
for the FJ(x) by noting that for a=pb+rc

(41)

where x, =8b, x,=v¢, z =e'e® and
N=(sgnx,)" for |x|> |x|,
N=(sgnx,)" for |x,|> !"1* .

Comparing (42) with (31) thus gives
[Il—ff?z-;]m=§r:(x)z‘ |x}=1. (43)

This result could be derived directly using the defini-
tion of hypergeometric functions. For x=1, (43) goes
over to

S
zall= Z F:(l)z‘ , (44)
Ruve
so that for m even
Fy(1)=58,,,, (453)
and for m odd
. _L -
Fpo)-Sinm =k (45b)

TaGm-k)
From the theory of hypergeometric functions, the re-
cursion relationship
*(k — $m - DFE,(x)
=k + (& - m)P)Fy(x) - x(k ~ 3m + 1) Fr,(x)
results. . ‘ '

A method to evaluate the series of functions Fj(x)
most efficiently is represented in Appendix A.

(46)

Now that the properties of the expansion coefficients
F7{x) have been worked out, let us see how Eq. (31)
can be applied to set up the reactant-product transfor-
mation for the total angular momentum wavefunction
{25). The reactant orbital and molecular angular mo-
mentum states e*¥~"¥1 and ™" respectively, can be
expressed in terms of product coordinates by use of Eq.
{31) in connection with coordinate transformations (2a)
and (2b):

-

iUy _ (- Z Ff""(-z'\:ztanﬁ) pit-mer )Ny iRy ,
by N2

(47
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tmg = (- 1)- Z F- (Jw) l(--hz)-g euzﬂg (48)

These equatxons multiplied together give the desired
resuit:

Yulm; Nyy i) = D 1CMr Npu mp)Yu ('3 Ky ) (49)
with

L ed . - N
C Ny mg) = (=10 Y F¥m (—%tanﬁ)l‘,(—ltanﬁ) .

P 2 np

(50)

The explicit mass dependence of the arguments appear-
ing in the F coefficients might be stated

_ 13 my(m; +my + my)

1’1
ta Ry, my(m,+ "'s) (51a)
_ztanp _R (_"_’LLL"J.)_ (51b)

n; 2 m -
The transformation coefficients ,CX.. (N,,n,) show prop-
erties similar to those of the Fy(x),

Z Cnme V) = (- 1),

z': 3c:"(h,;’ nz)zcz'-l,'(Nz, n,) = 6' 0

(52)

(53)

Formula (49) together with (50) allows one to express
the reactant total angular momentum wavefunction in
terms of product total angular momentum wavefunc-
tions. This result can be applied directly in reactive -
scattering calculations as shown in Sec. II. Transfor-
mation (49) conserves total angular momentum and,
hence, total parity. '

It has been pointed out in Sec. II that for collisions
with small angular momentum quantum numbers, one
should employ solid spherical harmonics rather than
spherical harmonics to transform from reactant to
product states. Hence, we will derive now a transfor-
mation formula for two-dimensional solid harmonics.

The addition theorem for two-dimensional solid har-
monics a™e'™* is the binomial expansion of ge' = be't
+ce** and may be written, for m>0, as

v
Vo

.
8t
)
8

e

8 R
] Y
mmmam— -..3:;,-

e R TR A,

1
——e

B

FIG. 2. Values of the coefficients Fi%(x) and tx)=y=F(x).

e, y=FRxh; coe) y=0.05 G(x); +++, y=0.05 0,521 G}
(x71); x=0,52,
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anelni = (8b)" Z G:(%%) el(-&)ieﬂi , (54)
ra0

where

Gl(x)= ( ’:) «*
The Gj(x) coefficients exhibit the same symmetries as
the coefficients F(x):

Grx) =GRk, (56)

Glx)=Ga,(x") . (57

In the following we will define (%) in Eq. (55) to be the
generalized binomial coefficients so that we can extend
in Eq. (54) the summation formally over all integer k.
Applying Eq. (54) to the coordinate transformation (2a),
(2b) then gives

Nl 'Yy m; Ny, 7y) = [(cosRING]™* [ (cosan,]'™

for m=0. (55)

| XZD'-'(Nz:":)'yH(’"'3ﬁz’ fia)

(58)
with

D Wy mg) =3 G....,..,( ﬁmns)c:(%tana) .

Let us now compare the series of coefficients FJ(x) and
Gr(x): For-small x the Fy(x) are centered around k=0
[F T(0)=8,,). As x increases the Fi(r) spread out over
the range — <k <3{m and are slowly convergent in the
immediate neighborhood of x=1. However, for even m,
F7(1) is completely localized at k=m/2 [F7(1) =8, /)
The series Fy(x™) is the mirror image of F}(x) with
respect to k=m/2, as follows from Eq. (39). Hence,
for x> 1 the series Fy(x) shifts abruptly over to the
range 3m<k<w, For large x, the Fi(x) are confined
around k=m. In Fig. 3 the series Fi%x) and Fi%(x"!)
are represented for x =0.52. '

The functional behavior of the series GJ(x) is quite
different. First, this series is not normalized, so that
the values of Gy(x) can exceed = 1 by orders of magni-
tude, whereas the Fy(x) vary between + 1 only. Second,
the series GJ(x) is always confined within the finite
range 0=<%k=m, peaking near k=0 for small x and near
k=m for large x. In Fig. 3 the two series G}%x) and
G}%x™) are represented for x=0.52. Note that the se-
ries Gi%x) and F1%x) both assume their largest value
for k=3.

(59)

We will now present for some sample reactions the
reactant—product angular momentum coupling coeffi-
cients ,C¥ ... Most of the calculations on molecular re-
active collisions have dealt with the reaction H+ H,

- =Hy+H. In Fig. 4 we give the coupling coefficients

2C3.s of this reaction for the three atom configurations
indicated (Ry =7,, 0=<¢é = 27) and assuming M =5 as the
total angular momentum quantam number and m =2 as
the reactant rotational quantum number. One observes
that the coefficients peak around m’ =2, so that the cou-

_pling 10 a final rotational anguiar momentum state 2

appears to be strongest. However, the coupling coeifi-
cients spread over a wide range, so that coupling to
product rotational states up to about m’ =10 seems to be
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Cl :
'400“”2'“ HeH, = Hy+H

Z i
| i g N \
Q50+ . P2 .
; : {30201
0»25*- . O \ )'z /

-3 2% -10 ] 10 20 ko] 40 SO

FIG. 4. Absolute values of :C3,¢ for the rcaction H+H,=H,
*H(R2=7’2, 0< -7 < 27,

important. This is in agreement with quantum mechan-
ical calculations on the planar H, system, where it has
been found that closed rotational states have to be taken
into account in order for the reactant—product trans-
formation to be unitary.!® Figure 5 shows the same
coupling coefficients for the reaction H+D,=HD+D
which are very similar to those coefficients for the Hy
system.

The reaction K + HBr =KBr +H is known to occur via
electron jump from K to Br which takes place at very
large distances. The coupling coefficients for this re-
action are given in Fig. 6 for the configuration (R,
=2.57,, 0=¢ =27) and the reactant angular momentum
quantum numbers M =40 and m=2. One expects for this
reaction that the reactant orbital angular momentum
(M - m = 38) which involves mainly the relative motion
of the K and Br atoms goes over to the product rota-
tional angular momentum. This is indeed shown by the
coefficients in Fig. 6, which indicate that the reactant
angular momentum state Y(2; Ny, #iy) couples most
strongly to the product angular momentum state v ,o(38;
Az,nz) the coupling decaying rapidly for higher product
rotational states.

In Fig. 7 we present coupling coefficients for the re-
action Cl + HBr = HC1 + Br for the configuration (R, =73,
0 =¢ =<27) and for the reactant quantum numbers M =20
and m=2. In this case the reactant orbital angular mo-
mentum (M - m =18) is expected to be carried into
product orbital angular momentum. This is indeed re-
flected by the coupling coefficients which peak at m’ =1
S0 that the product orbital-angular momentum state
M -m’ =19 is preferentially coupled to the reactant
state. The coupling coefficients for the reaction
Li+HF =LiF +H are of interest because in this reaction

R \"j\\
» : [efz
C50- i DO—1—0H !
! 72 g
. \

fol-38 4 \\//

rerssrsarasas TTTITTT YT Y e I3 EAS ERLETN AR ATFESTIRIIITIALEIITTI—— O (3
TR s - ~ ~ a <z~ an i
-3 - i) 22 <L

FIG. 5. Absolute values of ,C3, for the reaction H-D,=HD
‘D(Rg=f'_\, 02 05 ¢ 2r).

2925

ICm!
1.00 }
KoMBrz KBro i x
ors |
Ry £ 2507, '
050 |
025 ¢+ '
. = .
ot N m

20 -0 0 © 220 20 4 5
FIG. 6. Absolute values of ;C{%+ for the reaction K+HBr
=KBr+ H(R,=2.57), 056 < 20,

with a heavy transferred atom one expects that the re-
actant rotational angular momentum becomes product
orbital angular momentum, and vice versa, the reac-
tant orbital angular momentum goes into product rota-
tional angular momentum.* The coupling coefficients
in Fig. 8 evaluated for the configuration (Ry=7;, 0=¢
= 27) and for the reactant angular momentum quantum
numbers M =9 and »t = 3 reflect this exchange of angular
momentum quantum numbers though there is a consid-
erable spread over product rotational states m’'.

A word should be said about the origin of the spread
of product angular momentum values predicted by the
reactant-product angular momentum transformation in
Figs. 4-8. Comparison with the equivalent classical
transformation shows that to a pair of reactant angular
momentum quantum numbers (M, ») can be attributed
one pair of product quantum numbers (M', m') for a
specific value of the angle &;. Since the transforma-
tion derived assumes an average over all angles ¢, -
(0= ¢, =2q), the product quantum numbers spread over
a whole range of values (M’, m’). Hence, each section
of the (M, m') distribution can be identified as origi-
nating from a “scattering” event connected with a cer-
tain relative orientation ¢, of the colliding particles.'?

L

IV. REACTANT-PRODUCT TRANSFORMATION FOR
THREE-DIMENSIONAL ANGULAR MOMENTUM
STATES

We are now going to derive the decomposition of re-
actant angular wavefunctions into product angular wave-
functions for the case of three-dimensional collision
processes. First we observe that Eq. (35), relating
angular wavefunctions and partial waves, can be gen-
eralized to the three-dimensional case,

ook Caoyt Cl+HBr=CIH + B

-
-
. o
. f\,_\
nre_ et
i / <

/
ks
HC 2
1o Cl
L \
' \\_/
.
WCETRARIE, .llllll‘l‘lllllll!lll-l—— lllll‘l s3¥zLE lllllllllllllllllllullllllulu—.
50

-I% -Z3 -3 - Z o) 3z &G

FIG. 7. Absolute values of .C¥,. for the reaction Cl+HBr
=ClH+Br{R,=7,, 0< ¢z < 27
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A +3 - -
Y@= T (T2 o). 60

Hence, the three-dimensional spherical harmonics
Y,(@) can be embedded in the representation of the
three-dimensional Euclidean group given by the spheri-
cal waves j,{pa)Y,.(@). For these spherical waves,
again, an addition theorem can be derived. Starting
from the vector addition a afb +yc or from its quantum
mechanical eguivalent,

§1(pa)YalE) = VaT Z [(207 + 1)(20"* + D)2(= 1)S3e1 21202

This equation closely resembles the two-dimensional
addition theorem (29), except for the coefficients on the
right, which appear in the course of the coupling of
three-dimensional angular momentum states. We sug-
gest as an exercise to the reader to compare in detail
the derivations of Eq. (29) and Eq. (62) to observe that
any algebraic manipulation of the exponentials of the
two-dimensional angular momentum states corresponds
to the coupling of three-dimensional angular momentum
states (summation over Clebsch—Gordan coefficients).
As in the two-dimensional case, the addition theorem
(62) together with Eq. (60) can be appiied to yield a new
addition theorem for spherical harmonics. This addi-
tion theorem will allow us to derive the formulas for
the coupling of three-dimensional reactant—-product
angular momentum states.

Again, Eq. (62) holds for the whole family of similar
triangles given by pa = pgb + pyc for any positive p. With
the help of Eq. (60), the radial dependence can be aver-
aged out by integrating (62) over dp/p to get the desired
addition theorem

Viule)= VT (sgnd)t 2 FL ,..(%»E (1,175, 8) . (63)

. The expansion coefficients are defined by

Fhetd =50 Mwm(cl) o l(')')[(?l'+1)(21u+1)]1/z
Crlaeaval (ds. o .
. Tr{/2) b ¥ l'(})]:"(x IR (64)

This is, for Ixi<1,"?

—

va : el%al’* [ A
Flop () =—-1@0 + @I’ + D) B(= 1)1 ”z(o. 0 o)

ri+3)/2] riwsrn/2] .
T({/2) T+’ -1 +3)/2])

R T
sz,(’ et 1;z"er%;x’). (65)

Equation (63) may be simplified by a transformation
that aligns b with the z axis and rotates the triangle
a=5b+yc into the x~z plane. By virtue of

Z‘ Yim (1',1"; 5, Z‘)D.‘,‘-M(Os , 9» 5 w)

’ 1/2
= {%?“l] (ror'mlim)Y,. (£, 0), (66)
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ei? = o1BrV irre .

we expand each term in thxs equation in partial waves
according to'®

e'rt =4n Z: i'j(pa)Y (@)Y 1. (D) . (61)

Then, making use of the orthogonality properties of the
Y (D), we obtain after some calculation!™*

; lo lo )Jl'(PBb)jl"(PYC)'y:.(l',l";5, °). '(52)

|
where the rotation matrix elements D}., are defined as
in Rose,'® and w= =¢0.-d;, we get

Yin(®,0)=(sgng) D (21'+ D)Mol m|im)
l'."'

X F}. ,..( Bb) Yyeem(,0) . (67)

The angies ¢ and # are defined in Fig. 2.

Equation (63), the three-dimensional counterpart of
Eq. (31) in the previous section, will provide the basis
for the recoupling of reaction complex angular momen-
tum states. These equations together with the coordi-
nate transformation (2a), (2b) can be directly applied to
express reactant angular momentum states in terms of
product angular momentum states.

Before we proceed, let us examine the properties of
the expansion coefficients Fl.,..(x). It should first be
pointed out that the F}.,..(x) do not depend on magnetic
quantum numbers. The reason for this can be seen
from Eq. (67), which shows that the addition theorem
relates only functions depending on the internal vari-
ables of the triangle a =fb+yc¢, namely, the angles ¢, 4

" and the ratio of the two sides yc/pb. Since these vari-

ables are independent of the orientation of the triangle
in a space fixed coordinate system, the expansion coef-
ficients Fi.,..{x) in (67) cannot depend on the magnetic -
quantum number m.

Two symmetry properties can be derived from Eq.
(64). One can see immediately
F;v,u‘x)=(- 1)'. 'c,n("x) . ) (68)
Changing the order of Bessel functions under the inte-

9
Hoig

‘rarrexr w IO LG .

36 22 0 ¢ o X X 4D

FIG. 8. Absolute values of ,C},,, for the reaction Li- FH=LiF
+HRy=7,, 050,521,
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gral in (64) and rescaling the integration variable gives
F,.,--(x) (s@x)‘F ..,.(x ) (69)
Thus, we need to evaluate (64) for Ixi=1 only.

There exist two useful sum rules. In the collinear

limit, Eq. (67) reads

| ” " Vet rrr
'Z;{(u + 122" + 1)) F.,..(le) 00 0
In Appendix B we derive the orthogonality properties

Z (lf L X)(l" L A {L' r R}
A0 0 0/\o o o/lrr L 1
L'L

x[(2 + 1)1 + DIV2F o (x)

);<- 1. (10)

x[2L + 1)L + VP /2FL e i(x) =659 (n)
which in the case A=0 reduce to

Y FL =1 (1)

v v

For the purpose of practical applications of Eq. (63),
let us specify the summation over !’ and '’ in more de-
tail. The parity coefficients appearing in Eq. (65) make
the F.,..(x) vanish unless 7+’ +1’’ is evenand |1~ vl
=[r'=<[+/'. We might therefore change the summation
indices in (63):

(5
Yl-(a) \f—{swp z ZFl-ton,lm %"3)
Z (Lmylm, ‘JM)'yL-,_(Lu Ly; Ny, #2)Y 1, (L1 Lp; Ny, iiy)

$=0 n=0
Mpsmy

_
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L3sLs

XY ll-ien, i+n; b, &) . (63"
In Appendix A we show that the series of functions
F{_M'M(x), n=0,1,2,°°* can be generated easily by
recursion.

We will now set up the transformation that connects
reactant and product total angular momentum wavefunc-
tions. To do so, we first express the reactant orbital
angular momentum state Y,,,L(N‘) and the reactant mo-
lecular angular momentum state Yy, (%) in terms of
reactant coordinates by use of Eq. (63) together with
the reactant-product coordinate transformation (2a),
(2b):

Yymg (Ry) = Va7 (- 1) g’; _Ffl,,:(—;—;:tanﬂ)

XYy (L1y Lgs Ny, i) (122)
Y () = Va7 (- 1)} Z F,g,l(N:tanp)
Bielp :

XYy (s Las Ny fig) « (72b)

Since the F coefficients which desecribe the radial de-
pendence of the transformation do not depend on the
magnetic quantum numbers, they do not affect the cou-
pling of angular momentum states. By virtue of

, ~\L 1Tl
oLy S (ko L) L & ‘)\L, I, L'S[@L+ 1)L, + 1ELy + D@L’ + 12T +1)
“Z\o oo OOO?L,I,I'
X(21y + 1)(2 + 120 + V1YY, (L, V; Ny, 7) (73)
we get the final formula
‘yn‘L’Z;I:'u ) =L;' sCLusze1(Ngs ng)Ysu(L’s U; Ny, i) (74)
where the expansion coefficients are
oCFrpep (Nyymg)= ;2 [(2L + 1(2L, + 1)(2Ly + 1)L’ + 1)(20+ 1)(21, + 1)(2L, + 1)(21 + 1)}/2
s :
'SL 1 J[ :
Ly 4 L'\[Ly L, 1
><?L1 A L'( 01 (; 0)((}* o o)thﬂz( b—’-::tanﬁ) }m(_ltan.e) (75)

Ly, o)

Note that these transformation coefficients connect only
total angular momentum states of the same total parity
(- 1)¥{~-1)'=(-1*'(- 1)*'. However, they allow for a
change of the partial parities of orbital and rotational
angular momentum which are not separately conserved.

Formula (74) together with (75) allows one now, for
the case of three-dimensional collisions, to express
reactant total angular momentum states in terms of
product total angular momentum states or vice versa.
This result can be applied directly to reactive scatter-

ing calculations, as shown in Sec. .

The coefficients yC{,;,.;» obey two sets of sum rules
equivalent to the sum rules (70) and (71) for the
Fl...{x). We first observe that in the collinear limit,
i.e., all angles being zero,

(

Yull, )= [(2J+1)(2L+1)(21+1)]"2(1‘ l J)%

000
(78)
Equation (74) reads then '
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(L'lJ

Zl(ZL’+1)(21’+1)]m 0 0 o)scu.z'ru\z»"z)

F AN

“={L +1)(21f1)]"‘(

L J) (77

000

The orthogonality properties of the yC7,.;.,.(N;, n,)
derived in Appendix B are given by

3 3 (-1YleLr+ 1)EL” +1)@F 1)1 1)]1“
gL
Lll 'Ol

LI L" A ll l" l l" l" A
(5 % o)(o 0 0){L' A J}’Ci'u"'m‘"’z)

XyCryspeeges(Nyyng) = (2L +1)(21+1)855 . (78)
In the case that A=0, this is
Z 2 @I+ DLy e (N mg)l? = RL+ 1)1 41) . (787)

AN
These sum rules provide a very useful means to check

the accuracy of any evaluation of the transiormatxon co-
efficients.

We pointed out in Sec. II that the angular momentum
transformation now derived gives to zeroth order the
probability amplitude for the reactive transitions. For
mathematical convenience the transformation has been
derived in the total angular momentum basis. In the
basis (Lmy, Im,), the transformation is

TI.-;:- ,:L'n'Ll'-l’,(Nz’ ’lz)

= Z (Lmgdmy | IM)sCLy poge (Ngs %)UMIL'mil'm' .

(79)
Hence, this expression gives the probability amplitude
for the transition (Lmy, Im;) = (L’ml'm}) and allows the
study of the polarization of the final anguiar momentum
states of the reaction products. If we are interested in
the transitions (L, 1)~ (L', '), we average over the mag-
netic quantum numbers m, m,; and sum over the final
Sﬁtes MypeyMyel

1 ,
| Prise e Nom) =5 Va1 1) ) (Timpimpr mti'my)?

)
mim
(2J+1)
B ; m [’CU.L' 1+(Ny, nz)]

(80)
- From Eq. (78’), one can cbserve that the sum of all

probabilities is one. The probabilities defined in Eq.
(80) are of course not obtainable from experimental ob-
servations which do not select orbital angular momen-
tum states. Recognizing that the probabilities for re-
active transitions depend on the reactant orbital angular
momentum quantum number L, we may include a
weighting function i{L) to define the probability for the
transition I- 7,

Pyy= Z I(LYPrspepe -

LeL’

In Sec. V we will evaluate zeroth order transition prob-
abilities for some sample chemical reactions.
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For systems that allow only small angular momentum
values to occur in reactive collision processes, the
transformation can be based on the decomposition of
three-dimensional solid spherical harmonics. This
transformation can be deduced from an addition theorem
which will be derived now.!*® We start from the obser-
vation that a'¥,,(a) is 2 homogeneous polynomial of de-
gree [ in the Cartesian coordinates a,, a,, and a, of a.
By use of a,=Bb; +7c,, We can replace the variables q,
to get a homogeneous polynomial of the same degree
in the variables Bb, and Ycy. Since the functions
(B5)' Yo (8) and (rc)"' Yyoops (2) form a complete basis
for these polynomials, we can expand

a'Y,. (@)= Z a\ (B (Y P Y aae (B) Voo (6) - (81)

Aym ym**
However, the left side of this equation transforms like
an angular momentum state (7, m), and the right side
has to do so as well, which is the case only for the lin-
ear combination ’

Yul -4, %58,8)= 2 (1-2am! Am” |Im)Y, ;e (BVY e (B

m,m

Hence, we can write

.

a'Y, (@) = ‘[5 B(BD) MycP Yl =2, 255,8) . (82)
As

To obtain the coefficients b,, we note that this equation

has to go over in the collinear limit to a’ ={8b +yc)’ and
conclude after some calculation

@'Y, (@) = »/“osn;)'z:cx &5 =l =2 5,8, (83)
where
1/2
=iy () "0 0

The finite expansion (82) is clearly simpler than the in-
finite expansion (63) and therefore seems more desir-
able to apply in calculations. However, as will be
pointed out in Sec. VI, for large angular momentum
quantum numbers, the simplification gained with expan-
sion (82) gives rise to difficulties in transforming the
translatiomal-vibrational part of the scattering wave-
function. ' To obtain the reactant~product transforma-
tion for the total angular momentum state, we apply the
addition formula (83) to the coordinate transformation
(2a), (2b) to get from

A’fYL.L(J\‘") = \/4—'[(- cos8 ,[\',JL chfl (" i!,:‘tanﬁ)
t

XYy (L =Ly, Ly; Ny, 1) (85a)
and from
1Y (1) = Va&7[(~ cosB)n,) Z G}l(l—;—atanﬁ)
Ty 2
X Yy {8y, 1= 135 Ky, 115) (85b)

the desired expansion
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N{'u{'yu(L.l;l\‘h.i;)-‘-(-COSﬁNz)"(—cosﬁng)' Z SDz.I;L"X’(‘Vh"l)fyll(L', I',ﬁ;;ﬁg) s (86)
A o
where ‘ :
- - ’ !
Diy ey ng) =751 2 (" b ! ol‘ ’6)(’3 ’5 0)[(2L+1)(2L,+1)(2L —2L,+ 2L + 1)(2+1)
Lly
) L 1 J N
x (2 + 121 -2, + 121+ VPR L-L, L L G",(-}-?-tanﬂ)cﬁx(;ltanﬁ) . (87
2 2

Ly

-1, I'

The conservation of total pa.rity’ holds for this transformation too.

V. TRANSFER OF ANGULAR MOMENTUM IN SOME
SPECIFIC REACTIONS

The usefulness of the reactant-product angular mo-
mentum coupling coefficients

:Civu.' x'Wz: ”z) =(y:n(Lr I ﬁu ;'i)l'y.r):(L', U; N, ;lz»

lies in their application as a calculational tool in the
quantum mechanical theory of molecular reactions.
The analytic representation of the +Ci1,11 coefficients
reduces the explicit evaluation of the more general ma-
trix elements

(Y (Lo 3; Ny, )| Polcosd ) Y sy (L, 175 Ny, 1))

to a problem of ordinary angular momentum coupling.
This role of the coupling coefficients which motivated
our work has been explained at length in Sec. II. Itis
possible, however, without engaging in a full scale re-
active scattering calculation, to learn a great deal about
the rotational motion in molecular reactions from the
sC{1;pep coefficients alone.

The coupling coeificients in the ordinary theory of
angular momentum coupling provide the quantum me-
chanical description for the addition of angular momen-
tum vectors in classical mechanics. The reactant—
product angular momentum coupling coefficients
3C% o1y similarly provide the quantum mechanical de-
scription of the decomposition of reactant angular mo-
menta into product angular momenta. The decomposi-
tion of reactant rotation into product rotation is of
course the basis for the transfer of rotational motion in
molecuiar reactions. The actual rotational motion of
reactants and products will, in general, be perturbed
by nonspherical interactions, and thus by the release of
exothermic energy into rotational degrees of {freedom.
Nevertheless, the reactant-product angular momentum
coupling coefficients provide an interesting zeroth order
description of rotational motion in molecular reactions.
Hence, in this section we will discuss some “zeroth
order” distributions of the product rotational states ob-
tained from an explicit evaluation of the 3C{;.;p’s.

In Appendix D we derived the coupling coefficients for
the limiting cases 8= 7 (heavy atom transfer reaction
L,+HL,=LH+L,) and 8=0 (light atom transfer reac-
tion H, + LH,=H,L + H,). For the first case one finds

’Cu e =(= )

i.e.. the reactant ordifal angular momentum goes over
into product rofational angular momentum and the re-

-I'O!L' L

actant rotational angular momenium goes over into
product orbital angular momentum®! (see also Fxgs. 9
and 10). In the second case one finds

acu.t.'r(l\z: n3)

=(=1)"F Z {(zz. #1022+ 1)(22 + 1)L +1)]/2

' L'z,L(Lz,L') (R4
"{1 J z'} 0 0 o)Frn r,)'
i.e., reactant orbital angular momentum contributes

only to product orbital angular momentam, whereas the
reactant rofational angular momentum contributes to

. both orbital and rotational angula.r moment2 of theprod-

ucts. -

The distributions of product rotational states are de-
fined through

‘?n]+1) 4;

ALt.L‘ = ng:' (ZL + 1)(21+ 1) (QCLI.L‘

(product orbital angular momentum distribution) and

(2J+1)

Brur = ,ZL, mucu.z'ﬂ

(product rotational angular momentum distnbutxon)

The summation over the total angular momentum quan-
tum number J may be interpreted as the averaging over
all relative orientations of the reactant angular momen-
tum vectors L and 1, since, for example, 1,C{}l,. ;12
gives the distribution of L’ and I’ for L and ! being par-
allel, and 1,C}5;% /12 gives the distribution of L’ and /'
for L and 1 being antiparallel.

Figure 9(a) presents the product rotational distribu-
tion of the reaction Li+ FH=LiF +H for L =10 (orbital
angular momentum) and /=3 (rotational angular momen-
tum). Since this reaction is of the type Ly +HL,=L,H
+L,, one expects an exchange of orbital and rotational
angular momentum in the course of the reactive colli-
sxon. % Indeed, the L’ distribution is cemtered around

=3, while the [ distribution is centered around I’ =10.
An increase of the reactant rotational angular momen-
tum from =3 to [ =6 does not shift the product rota-

tional angular momenta, but broadens their distribution

[Fig. 90}

In evaluating product rotational distributions the value
of 7,/R; may be chosen corresponding o a saddle point
of the reaction potential surface. The value r,/R, en-
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Only if these arguments are close to 1.0 does the
rotational distribution depend sensitively on the
choice of ro/R,. To elucidate this we compare in Fig.
9(c) the rotational distribution for 7,/R;=0.5, 1.0, and
2.0. In these cases the arguments of the F coefficients
are (9.87, -7.43), (19.73, - 3.71), and (39.46, - 1.86),
respectively. The last argument is close to one, hence,
the deviation of the 7,/R, =2.0 distribution in Fig. 9(c).

As a second example we give the product rotational
distributions for the reaction K+HBr =KBr +H. The
distributions are similar to those of the previous reac-
tion, i.e., they exhibit the typical exchange of orbital
and rotational angular momenta in heavy atom transfer
reactions.’ The reaction has a large cross section'!
(~ 34 A®) and is therefore governed by large orbital an-
gular momentum values (~100/#). We chose this reac-
tion to demonstrate that even such large angular mo-
menta can be dealt with accurately. Figures 10{a)

(L =40, 1=2) and 10() (L =200, I=2) show the expected
shift of the product rotational angular momentum from
1'=40 to "= 200.

Let us illustrate again the dependence of the product
rotational distribution on r,/R,. In Fig. 10(c) we com-
pare distributions corresponding to 'rz/R, values 2.0,
3.0, and 4.0. The arguments of the F coefficients are
(161. 34, - 1.53), (242.02, - 1.02), and (322.69, - 0.76).
Since arguments for this reaction are close t0 1.0, a
stronger r,/R, dependence of the product distribution is
expected. This dependence, as can be seen from Fig.
10(c), smears out the fine structure of the distribution
but ‘does mot change its average behavior.

Figure 11 shows the product angular momentum dis-
tributions for the reaction C1+HI=ClH +] with L =64
and I=5. For this light atom transfer reaction, one
expects that orbital goes into orbstal angular momentum
and rotational goes into rotational angular momentum
upon reaction. The product orbital angular momentum
distribution is indeed centered around L'=64. The
product rotational angular momentum distribution is
centered around I =2, which indicates a loss of rota-
tional angular momentum (A7’ =3—4) in favor of orbital
" motion. Hence, one finds the broadening of the L’ dis-
' tribution by 20,

At this point it should be discussed how the zeroth
order distributions A;;, ;.and By,.;.are related to the
“exact” distributions which woutd come out of full scale
calculations. Trajectory studies by Polanyi and co-
workers'? give, for the reaction C1+HI=CIH+1 with
L =64 and I=5, product distributions centered around
L'=69 and I’ =14. This indicates that in the course of
this reaction (at least as far as the chosen potential
surface is concerned) the repulsive release of energy
between H and I leads to a high rotational excitation of
the reaction products (Al’=12). For our calculations
we have chosen two transition geometries, 'rz/Rg =0.55
and r,/R,=0.40, corresponding in a collinear arrange-
ment to transition points in the entrance and in the exit
potential energy valley of Ref. 17. In comparing Figs.
11(a) and 11(b), cne finds that the distributions are
rather insensitive to the change of transition geometry.
The zeroth order transition probabilities account for
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(b) L=64,1=5, r,/R,=0.40; trajectory results of Polanyi

et al., ! shaded area,

neither the exothermicity of a reaction nor for the spe-
cific mechanism of the exothermic energy release, so
that one has to expect in general that the zeroth order
distributions are shifted to higher quantum numbers,
the shift indicating the amount of reaction energy being
stored in the rotational degrees of freedom. Further,
one has to expect that the zeroth order distributions are
broadened by nonspherical interactions in the reactant
as well as in the product channels.

In the light of this discussion, the results presented
in Fig. -12 for the reaction H+Cl, =HCI+Cl with L =10
and 7=20 are interesting. Polanyi ef al.'’ have de-
scribed this reaction on a potential surface identical to
that of the previous Cl+HI=ClH +I reaction, i.e., these
authors just changed the masses of the reacting par-
ticles of this reaction. Hence, we have chosen for our
calculation the same transition geometries as above, to
which correspond »,/R, values 0.8 and 0.5. The prod-
uct orbital angular momentum L’ distributions obtained
both center around L’ =20, but the rotational angular
momentum ?’ distributions are shifted {rom a peak at
I’=8 to!"=6. A comparison with the classical trajec-
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tory results shows that for this mass combination there
is no release of exothermic energy into the rotational
degrees of {reedom as in the reaction Cl1+HI=CIH +I
proceeding on the same potential energy surface.

As a final example, in Figs. 13(a) and 13(b) we com-
pare distributions for the reaction F+Dy=FD+D with
classical trajectory results of Blais and Truhlar.!'®*
For L=5and /=3, the product distributions in Fig.
13(a) center around L’ =5 and I’ =3, where we assumed
a 7,/R, value of 0.6 corresponding to the transition
point on the potential energy surface of Ref. 18(a) with
bond angle F-D-D 180°. The trajectory results®* ex-
hibit a shift to higher rotational states and a broadening
of the distribution. This is also observed for the case
of initial ancular momenta L =10 and /=3 in Figs. 13(b)
and 13(c). Here we have chosen »,/R, values corre-
sponding to the transition points of both the 180° and
100° F~D~D bond angle potential surfaces.
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VI. REACTANT-PRODUCT TRANSFORMATION FOR
RADIAL AND VIBRATIONAL WAVEFUNCTIONS

In the previous two sections, expansions have been
derived which allow one to express the rotational part
~f the reactant scattering wavefunction in terms of prod-
uct rotational states. The translational-vibrational
part of the reactant wavefunctions also contributes to
the product rotation. This is expressed in the case of
planar reactive collisions by the expansion

FuonN)p1) = Y Fomommst Nz ndyolt Ny, 1), (88)

where the functions Fy.u,m,s,¢(Nps #12) are Fourier-cosine
transforms of the radial functions

Fgomymon,t(Nas ny)=2 _L Fya(N))0pu(ny) €oStd,do, . (89)

For the definition of the coordinates, see Fig. 1. In
the case that the transformation based on the solid har-
monics is employed, the expansion (88) reads

Fura 0P 20n0) L5 G myelt S (687

where
gy""'v"ﬂd'(‘-\'z' nz) = 2'[0 -EAI,?-(:N}! ﬁé'lll-)'COSt ozdoz ) (89')

The evaluation of the integrals in Eqs. (89) and (89') is
the crucial step in evaluating the reactant-product
transformation for a particular scattering case. Equa-
_tions (89) or (89) have to be evaluated for the whole se-
ries =0,1,2,+++ at every (N,, n,) necessary for the
caiculation scheme.

Because the reactant—product coordinate transforma-
tion conserves the length of the 4-vector (N,,n,), i.e.,
N2 =N}+n}, the integration in Egs. (89) and (89) is
along a circle around the origin in the Ny, n, plane with
the radius (N} +#»2)'/%. The end points of the integration
path are

(IN;cosB* n, sindl, | N, sing nycosgl) .

An integration path for a possible choice of (Ny, n,) is
presented in Fig. 14. A rough estimate as to around
which # the series Fy.n m,q,¢(N2s 72) (Syam,myn,s(N2s12)]
will have the dominant contributions can be made as
follows: Let n, be the number of oscillations of the
translational wavefunction Fy_.(N,) along the integration
path 7 and let 2, be the number of oscillations of the vi-
brational wavefunction v,.{(n,) along the integration path.
The main contribution of the series then arises around
t=2(n, +n,). Since the number of oscillations n, and n,
increase with the local translational and vibrational mo-
menta, respectively, a rise of the reactant transla-
tional or vibrational energy will shift the series
Fyom,momyt{N2s 112) OF Sy . u,s(N2, 72} to higher # values.

-

The direction of the integration path in the Ny, n, plane
{see Fig. 14) determines which degree of freedom, the
transiational degree of freedom or the vibrational de-
gree of freedom, will contribute more to the product
rotational state. For example, if the integration path
is tilted towards the N, direction, the reactant transla-

“IdD

F1G. 14. Integral transformation of the radial and vibrational
wavefunction—integration path in the Ny, »; plane.

tional motion will couple more strongly with the product
internal rotation. H the integration path is more tilted
towards the n, direction, the reactant vibrational mo-
tion will couple more strongly with the product internal
rotation. The direction of the integration path, how-
ever, depends solely on the angle 8 and, therefore,
solely on the masses of the colliding particles.

Let us illustrate the present discussion by consider-
ing as an example a reaction process (1)+(2, 3)~ (1,3)
+(2), in which the transferred particle (3) is light com-
pared with particles (1) and (2). In this case 8 is found
to be small, so that the integration path in Fig. 14
would be tilted strongly towards the direction of the vi-
brational coordinate n,. Hence, we can expect in the
case of this reaction that the reactant vibration couples
strongly with product rotations, whereas the coupling of
reactant translation and product rotation should be weak.
Furthermore, the discussion in Sec. V shows that in
this case the orbital angular momentum of the reactants
will preferentially go to the product orbital angular mo-
mentum, contributing only little to the product rotation-
al angular momentum.

Since the evaluation of the integrals (89) and (89') is
the critical step of the transformation procedure, the
choice between either the transformation (88), (89) or
(88"), (89’) should be made on examination of the inte-
grals in (89) and (89’). In case of large angular momen-
tum values, the series of functions Sy.,,m,n,¢(Ngs 72
will be more slowly convergent than the series
Fyom.mn, ¢ (N2s2)e A exception is the case for which
the rotational barrier is dominam over the potential
terms in the collision complex region so that Fy_,(N,)
~ N and 1, (n) ~ni™'. However, because of the
long range character of molecular potentials, this case
will hardly occur. Hence, the range of angular mo-
mentum values will be the criterion for a choice be-
tween the two transformations. In the case that the or-
bital angular momentum values are large and the mo-
lecular rotational angular momentum values are small,
it would be most appropriate to combine the two trans-
formations.
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Finally, for the case of three-dimensional reaction
processes, we will give the integrals which allow us to
evaluate the functions &, , , (N, n,) and G L Lot (N2 1)
defined in Egs. (16) and (16'):

sFan.c(l"'z: ny)

=(=1) == 2’ L j dcosey Fry(Nyyuy(n,)P(cose,) ,
. (90)
S s (Vg my) = (- 1)t 2L

el
XI dcosd ff-g‘{-’ﬂhﬁ’ﬁp (cosd,) .
-l
(90")
The discussion about the integrals for the two-dimen-
sional case holds for the integrals in Eqs. (90) and

(90°), too, since (89), (89') and (90), (90’) are related
through®®

Py{cosd) = :Zo %(2:)(2:::5) cos{t —2s)o .

Vii. SUMMARY

A transiormation for three-particle reactive scatter-
ing wavefunctions in the coordinate representation
which connects reactant and product states has been de-
rived. For the purpose of the transformation, the
wavefunction has been separated in a translational-vi-
brational and a rotational part. It has been shown how
this transformation is contained implicitly in most ap-
proaches taken to solve the three-particle scattering
problem. Further, it has been pointed out that this
transformation can give rise to propensity rules for re-
active transitions concerning the rotational states. The
matrix elements of the reactant—product transforma-
tion in the total angular momentum basis are given in
an analytical form. The accompanying transformation
for the translational-vibrational wavefunction is of in-
tegral type, reflecting the nonlocal character of this
transformation. Evaluation of the transformation ma-
trix elements for the angular momentum state functions
reveal that closed rotational channels have to be taken
into account in order to make the reactant-product
transformation complete. Algorithms have been de-
rived to evaluate the angular matrix elements, even for
very large quantum numbers which occur m many mo-
lecular reactions. SR

APPENDIX A: EVALUATION OF HYPERGEOMETRIC
FUNCTIONS

Here we evaluate the functions Fi(x) and Fi_,,, ...(%),
which are defined in Eqs. (33) and (65), respectively.

Let us first consider the evaluation of the series
Fr{x), n=0, £1, 22, -+ {m>0,lx1<1). According to
Eq. (33), two vectors of contiguous hypergeometric
functions are needed:

zﬂ(’;,n—%z-,rul x) 7=0,1,2,....N,, (A1)

J,( ’;,n+';,n+1 x) n=0,1,2,...,N, . (A2)

K. dchuiten ana . L. LOIgoON:. Angusar momentum coupung in reacuve colhsions

For m even, series (Al) is finite (N, =3m), since F2(x)

=0 for kZ3m. For m odd, F7(x) decays quickly to

zero for k?;m. so that series (1) in this case can be
terminated shortly beyond k¥ =(m+1)/2; Series (A2),
however, has to be generated over a wide range, espe-
cially if x lies in a small neighborhood near 1.

The scheme presented now for the evaluation of the
series of hypergeometric functions (Al) and (A2} coes
in three steps and is based on the contiguity relationship

2Fi(a, —a+n-l;n;x’)=[1+ n- 2",;3:}1,51(@-a+n;n+ 1;x%)

————-—-————-(" aln-a+l) , e, —a+n+1in+2; x%
nin+1)
(A3)
which is stable only in the direction of decreasing n.

_Step 1: Evaluate Z=F(2,-a+N,N+1;x%)/Fla. —~a+N
-1,N;x% given by the Gauss continued fraction for-
mula?®

P 1
Q. M (A4)
1e—%
Taorns
where

Ay =(a+s—1)a+s)x*/(N+25-3}{N+2s-2)
@y =(N+s—a-1{N+s-a)?/(N+2s-2)(N+2s ~1) .
The continued fraction (A4) is calculated best as

Z =lim,_.(P,/Q,), where the P, and @, are defined re-
cursively by*

Py=a,Pyg+P,,; Pp=1; P,=1,
Qn'—TanQn-2+Qn-l; Qo=1; Qx‘l"'a‘ .

Step 2: Set fy,;=Z and {y=1 and generate the vector
f,, n=N-1, N-2,...,0 employing the recursion rela-
tionship (A3). The {, all differ from the hypergeometric
functions F(a, - a +n;n+1;x?) by a constant factor c,.
Similarly, the series f, =c, Fi{~a,a+n,n+1;2%) can be
evaluated. However, for n=0,

to/c,=1y/cs ;
hence, setting t,:fn implements c; = ¢,.

(A5)

Step 3: The unitary property of the F(x) expressed
by Eq. (40) reads

N

rq+m/2) z
g (xn Tn+ )P ~n+m/2) " f )

A2
T'{n+m/2) ) =ct. (A6)

N
+ Z: ((-x)n Tn+1)T(m/2) f_"

n=l

Thus, the unknown factor ¢, is determined and, finany,

Ay n (1 +m/2) -
0 =" Fo i irQ - nemya) 1/ n=0

(A7)
my T(-n+m/2) - -
FMx)=(~x) Tens TG/ f../¢c, n=<0.

Note that in the numerical scheme presented, the ex-
plicit evaluation of the hypergeometric functions that
define the coefficients F(x) is not necessary! How-
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ever, to determine the normalization constant ¢, prop-
erly, it is important to choose N large enough to assure
convergence of the sum in Eq. (AS6).

In the three-dimensional case, the transformation
coefficients for reactant orbital and rotational angular
momenta F,,, ia(x), i=0,1,2,++1; n=0,1,2,..., are
proportional to

34,=3F,(i-z;1, é+n,z+n+g,x’) R (A8)

The &,, form a (I+1)xX~-matrix F of contiguous hyper-
geometric functions. Because of their unitarity, the

F, ..(x) must converge to zero over a finite range;
}

2935

hence, one needs to construct F only over a finite NXN
range, for some properly chosen N. From Eq. (65)
one can conclude that the convergence of Fi.,,, ..(x) is
governed mainly by the factor x***, so that the coeffi-
cients can be expected to.converge equally fast in the i-
and the n direction. As in the two~-dimensional case, F
has to be known only within a constant factor ¢, which
can later be obtained from Eq. (71’), which states that
the F}_,,., 1a(x) should be normalized to one. For that
reason, the hypergeometric functions that make up the
matrix F need not be calculated explicitly; only their
reiative ratios need to be determined. The numerical
procedure to obtain the F}_,,, (%) is then as follows:

(1) Evaluate the ratio Z = Fyn/Fy n-1 by applying the Gauss continued fraction formula (A4). Set Fyy=Z and

3" V'l = 1.
(2) Evaluate the row Fy,, i=0,1,2,...,N -2 through recursive application of the contiguity i'elationship
: c=14+(b~-a)f

JFi(a, b-l;c-l;x')=-——(—:{—1)—“l— Fila,b; c;f)-b—‘f——‘fi’-’)f—zr.(a,bu;cu;x’) , (A9)
which relates 5,,.,,,, Fyy and Fy ;.. To evaluate the neighboring row Fy 4, i=N,N-1,...,0, use the contiguity .
properties

Fila-1,b¢~ l;xz)-ga ;’; x% ,Fy(a, b; c; 23 +,Fy(a; b = 1; ¢ - 1;2%) , (A10)
which relates 3,;", 5’,'..1, and 8',,_,',, md

Fil . " b{c—a) .2 L2

2 la-l,b,c-l, )='— (C 1) 3F1(a,b Cx)+¢F‘(a,b+1 c+1 ), (All)

which relates Fy,, 5,,,,;,. and Fy.;,(. Generate from the Nth and the (N - 1)th rows all remaining elements by re-
cursion down the columns applying formula (A9) with a and b mterchanged. The elements 5}’,, of § have to be mul-

tiplied by the factor

(=)t Jz; [@21-2i+2ns @i+ 20+ D)2 ;P[géjz)';’ﬂ TG +n+§/(’zt)+rl['gi 7z =i] ((l) B ") (a12)
in order to obtain F )y, sun(¥)
.Rewriting the parity coefficient i
(l I-i+n i+n)___ 1 (1)l - [ T{l+n+l) T(n+1/2) Tli+1/2) I‘(l-'i-f—l/Z)]”z (A13)
0 o© 0 )" V7 @+2n+10%{T(I+n+1/2) Tlh+1) TE+1) T-i+1) ’

(A12) can be expressed in the form (A14), which is more suitable for numerical evaluation.

(3) Perform the multiplication on the ¥, according to

1/2+43/2~s[s=-1/2

l~s

: 1 /e
Frastr=c {1 2] "

s+1/2

x((21—2i+2n+ D(2i+2n+1)

(21+2n+1)

]x/:}
s dA~s-1/2

12 £ t+1/2 - 1[: -1/2 1+t ]“* '
) H{(' D1zl 1 Te-1z) fTe- (A19)

tsl

Because of the unknown factor ¢ contained in §,,, the transformation coefficients F,_,m,...(x) in general will not be

normalized, but
E [Fl-ion.iﬂz(x)]z =c3 .

fen

{Al15)

Hence, it remains to divide the transformation coefficients by the constant ¢ thus obtained. The proper signof c is

obtained through the collinear sum rule, Eq. (70).

APPENDIX B: PROOF OF ORTHOGONALITY RELATIONS

The orthogonality relationship for F}.,..(x) is as follows:

Multiplying (67) by its conjugate complex and summing over m gives
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. . ’ r
i= [(21’ + 1)(2LI + 1)]1/2(- l)l’ol"ol.'ol" i l )
4% P L L, 0 m -m

L r" 1 : . - 2 . 2
X 0 m -m F,c,t.l(X)FLtL"(x)Y'u"(C—b, O)Yz:'.(c-b, 0) - (Bl)
Coupling together the spherical harmonics by virtue of

[(21"+1)(2L"+1)(2X+1)]"3(1" L x)(z" L' a
4y m ~-m Q0/\0 0 O

 Yenl(&=5,0¥3 (@~ 5,00=(-1)" Y

EY
and carrying out the sum over m using®

)Y..,(a -5,0), (B2)

(P )(L' L ) oL A)_(L’ r x) Loroa
Z( 1 (0 m-m/\0 m - m -m 0/°\0 0 o/}i L 1(* ®3)
one gets
1 Ay oLy 1) L Z'V R) LI a
74':"; ,.,,..;,.,,,..(o 0 o/\o 0o {z" L z}
' x[(21’ + D@+ VIR (2L + 1D@LY + DIY2FL, ()Y, o(E - 5, 0) . (B4)

From this, (71) follows immediately.

Orthogonality relationships for 4Cy, ;.,.(Ny,n,): To derive the orthogonality relationships for the $C11, 101 (Nyymg),
we start from . ~

?;'y,,,(z,, LR, i)Y (L, Ny, ny) ='(21.4» 1M21+1)/(4x)® . . (B5)

Application of Eq. (74) to replace the reactant angular momentum wavefunctions by i)roduct angular momentum

- wavefunctions gives, after performing some coupling algebra,

(_2IL_‘|"_'142”(__21_1;}_)= E JZ Lg' (- 1)’(2.,4‘ l)gci'.za‘a ,C:,.Lu,n

Loettee

L L A\fr v a\\fir A'i L
0 0 0) 00 0 {L' L J}yoo(hrk;Nz’ng).

(B6)

x[(2x + 1)L’ + 1(2L" + 1)U + 1)(20"* + 1)]V/2

- Observing that the left side of this equation is constant while the right side exhibits an angular dependence, we are

- e—

led to Egs. (78).

APPENDIX C: EVALUATION OF 9/ COEFFICIENTS®

The convolution of Ffl 1,{x,) and F{,,:(x,) according to Eq. (75) to yield the coefficients yC7;, ;.. (Ny, #,) can
volve very large angular momentum quantum numbers. Formulas (A14) for the series of Ff:"t(F 5‘,:) coeffi-
cients and (A13) for the parity coefficients are stable for large quantum numbers, so6 that no special consideration
needs to be given to the evaluation of these quantities. However, to our knowledge no general method exists for the
evaluation of 8j coefficients containing large quantum numbers. We suggest the following algorithm to obtain 8 j
coefficients quickly and accurately for all ranges of quantum numbers. We start from the expansion: :

\r 72 | K Go FulfX ds dal f % Ju Js
B ;:\-Z - ‘2"“”{;', e _js}{js s 11}{:', 2 i;} '

To evaluate the 9 coefficient, three strings of 67 coefficients

fx 1 .
W & f:} max{|ly - 4|, [5~ |} sk =minfl+ 4, 55415},
are needed. The elements in these stringé can be generated by use of the recursion relationship?*

{IK ;z ;3}=[(K-1)2(K+lz+ls+1)(K-lg+l;)(x+lz-l,)(—K+lz+13+1)(K+is+15+1)(x—15+ls)(x+ls-I,)(—x+ls'+ls+l)]'uz
1 45 dg)

X [—- (2k = 1)2{L(2, + D5l + 1) + 1y(Iy + 1)16{0 +1) =kl = 1)1,(1, + 1)] = [0, + 1) 4 14(2y + 1) = k(k - 1))

xi15(15+1)+z,(1,+1)—x(x—l)]{”l'1 ;2 ;‘}-[xz(x+lz+l,)(x—Iz+l,-1)(x+lz—l,—1)»
4 s ¢8 -
va)c=-2 L 1
K=kl aly+2) (k4 ls+ 1)k =I5+ 1= 1 4 Ig = g = 1)(= K + [g + Iy + 2)] {l ! l}] (C1)
. : 4 s le)

J. Chem. Phys., Vol. 64, No. 7, 1 April 1976



K. Schulten and R. G. Gordon: Angular momentum coupling in reactive collisions 2937

once proper starting values are given. The start of the
recursion can be simplified by observing that if x is set
to Iy +1 {I,,,+1), the recursion involves only the first
(last) two 6j coefficients. Since the recursion formula
is linear, one may arbitrarily set

znu lz 13 =1
N, L1, ’

so that all 6j coefficients generated are off by 2 com-
mon factor. This factor can be determined from the

unitary property
2
Z (2¢+ 1)(2z,+1){" L L =1 (C2)
x _l( IS ZG
together with the phase convention
sgn {nu ls 13 )z(_)tgdylsﬂg . (C3)

To assure numerical stability, the recursion should
be performed from both ends of the x range. Hence,
one starts from

lnh 12 l3 =1
lh Ll

and from

loas b L,
L s 1
towards a middie x value, matches the recursion series

thereby rescaling one of the series, and finally nor-
malizes the 67 cceificients by use of Egs. (C2) and(C3).

APPENDIX D: EVALUATION OF ,C¥ . AND ,C" o
FOR THE TWO LIMITING CASES OF HEAVY ATOM
AND LIGHT ATOM TRANSFER REACTIONS

In the case of heavy atom transfer reactions, i.e.,
my—~ =, the arguments (51a) and (51b) entering into the
evaluatxon of the coupling coefficients are (N,/n,) tang
=« and (n,/N,)tan8=~«, For the two-dimensional
case we have from Eq. (39) together with Eq. (33)

lim Fy{ax) = (sgna)™s, , ,

Fe

hence
2C:ll' =(= I)M-HZ 5&.-'-,-.11--5.3 3(- 1)’.-51.'..-‘ .
2
For the three-dimensional case we f:ave, from Egs.
{(88) and (65),
lim F:: I (ax) = (sgna)'&,.ob,u, H

Tm-
hence.
Cinpr ==L+ )21+ 1)(2L'+ 1Er+ D
ng ; I:’,((o l L’)(L 0 1')
?LOZ'\_OOO 000

From

f0 1 L'\fL 01 . 1/2g
(0 0 0)(0 0 0) (-~ DE @1+ 2L + D))V 35,8,

and

Vo1
JLor

we get ,C{,.L-r ={= 1)‘“'

={(20+ IM2L + V)Y (= 1)7*20 |

Bz Oz

In the case of light atom transfer reactions, i.e.,
my =0, the arguments (51a) and (51b) are (n,/N,) tanf=0
and (Ny/n,)tanB=~R,/r,. We have then, for two-di-
mensional reactions from F1(0)=8,,,

2CY oo (Npmy) = (= DVFY__, (. fr’f) ,

and for three-dimensional reactions from Fi i1y
=812,0150:

:CZ L1y (Nzymp)

=(=17*F" D (2L + 1)(20 + 1)(21, + 1)(2L’ + D]P/2
iy
vy Ll\fL i 1 R
{L B (L8 L, (B,
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