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Synopsis. We consider the visually guided control of the grasping move-
ments of a highly hysteretic five- joint pneumatic robot arm. For this
purpose we apply a modified version of the so-called topology represent-
ing network algorithm, a vector quantization algorithm that also learns
to represent neighborhood relationships. The notion of neighborhood re-
lationships allowed us to average the behavior of neurons which represent
similar tasks, both during the training and in generating control signals in
the mature state. Based on visual information provided by two cameras,
the robot learns to position and orient its end effector properly for the
object to be grasped. For simplicity, we consider the grasping of cylindri-
cal objects only. The control is comprised of two stages. In the first stage,
the end effector approaches the side of the cylinder facing the robot base;
and in the second stage, the end effector grasps the cylinder. Training of
the first stage involves a brief episode of supervised learning to prime the
network. The control is achieved through a visual feedback loop: for both

* stages of the motion the system detects the error to target and applies a
linear correction. This correction is achieved through a training that yields
a vector-quantized representation of a zero-order signal of joint pressures
and a first-order correction through Jacobian tensors which relate the error,
expressed in terms of camera coordinates, to correct joint pressures. The
network is trained satisfactorily after about 300 trial movements, with a
residual average error of 1.35 camera pixels. Besides a demonstration of the
technical feasibility of control through topology representing networks, this
chapter provides a tutorial for technical applications of such networks. The
algorithm behind a topology representing network, its training and employ-
ment for task control, is described in complete detail to provide the reader
with a comprehensive view of this important class of neural networks in
the context of a technical application.

1Department of Physics/Beckman Institute, University of Illinois, Urbana, IL
61801, USA.
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8.1 Introduction

In the early days of research in neurocomputing, networks were seen as de-
vices that were capable of computing logic functions [1]. Such a mechanistic
view of neurocomputing became popular mainly because of the fact that
computation traditionally was viewed in light of logic gates and switching
algebra. However, we have gradually come to know the bottlenecks of the
traditional deterministic computer; we observe that the human brain can
easily outperform today’s supercomputers in tasks where it processes mul-
tidimensional analogue data and probabilistic, noisy information. It is now
generally believed that an understanding of boolean logic and switching
algebra may not enhance our perspective about neuronal information pro-
cessing in the brain. The quest for a theoretical framework to quantify the
underlying computation process has brought computer scientists, physi-
cists, and biologists together. Vigorous research efforts during the last two
decades have helped to develop a different perspective about neurocomput-
ing. This interdisciplinary effort has resulted in many promising real-world
applications such as speech processing [2], optimization (3], complex control
systems [4, 5], and more. .

Grasping of objects is one of the most common tasks frequently per-
formed by human beings. Even though this seems to be easy and often
spontaneous to most of us, from the control system perspective grasping
is complicated. The object to be grasped has to be identified in the envi-
ronment by its location and by other features. Then the trajectory of the
arm movement has to be planned in such a way that it does not collide
with any obstacle. Recently, many efforts have been made [6-10] to under-
stand the control mechanism of such complex maneuvers and to make use
of these fundamental control techniques to develop viable artificial neural
control systems. In this chapter we focus mainly on the control of the ex-
ecution of grasping motions, assuming an extremely simplified solution for
the recognition of the target and the arm’s current posture: we provide a
set of suitable light-emitting diodes (LEDs) on the arm and the target in
an otherwise darkened space.

Nevertheless, the problem of executing motions to grasp a cylinder placed
in all possible positions and orientations in a robot’s workspace is a dif-
ficult one. The motion must involve at least five degrees of freedom and
be sufficiently precise. The precision must be achieved for an arm that is
subject to random and hysteretic behavior. In fact, in the present case, the
controlled arm is driven pneumatically with effectors which are subject to
strong hysteresis and oscillations as characterized in [11, 12]. The required
control only can be achieved when the network, besides learning the con-
trol signals for a sufficiently fine set of arm postures, also learns tensors
which allow the arm to linearly correct deviations from the target due to
hysteresis and other effects.

The corresponding control problem, in principle, can be formulated in
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terms of a table look-up algorithm that provides for each target cylinder a
table entry which produces the suitable air pressures to move the arm. As
was already stated, the entries of the table need to be a set of pressures
to move the five degrees of freedom of the arm (see Section 2) as well as
a tensor, the Jacobian connecting the deviation from the target, expressed
as a vector of five coordinates, to the vector of pressures driving the arm
(see Sec. 3). Obviously, such a table look-up program cannot be arbitrarily
fine. However, even a coarse grid of, say, 10 points along each coordinate
for a five-dimensional space leads to a very large number (100,000) of table
entries. Obviously, an optimal choice which, for a given number of entries,
produces the smallest error is very desirable. An important ingredient of
the criterion stated is the probability distribution of arm postures under
normal working conditions. The neural networks used in our study obey
such criterion in that they assign their table entries as a result of a training
in which arm postures are requested with a frequency distribution which
matches that occuring in normal working conditions. In fact, the algorithm
allows life-long learning such that the table entries can be continuously
adjusted to the work experience.

The problem to optimally assign a finite number of table entries to a con-
tinuous space, often of very high dimension, is called the vector quantization
problem. The neural network algorithm adopted here provides a solution
for vector quantization as discussed in [13]. However, there is another im-
portant attribute of the control problem that also must be captured by
the look-up algorithm in order to be efficient, namely tlie ‘topology of the
control space. This implies that the table entries develop threads between
each other which connect entries assigned to arm postures which are very
close to each other. These threads serve two purposes, one during training
and one after training. The threads can be employed when the table en-
tries are generated, i..e., when the networks are trained. Entries connected
through threads contain similar information, and, hence, they can share
the improvements to their entries during the training period. The result
is a dramatic decrease of the training period since any training episode is
shared by many table entries. A particularly important aspect of the shar-
ing of information among table entries is that this feature makes the system
much less sensitive to the initial, usually random, entries in the table. In
many instances, when table entries are trained separately, convergence to a

suitable control program depends on the initial table entries, i.e., the radius
of convergence of the training algorithm is not infinite. However, the shar-
ing of table entry updates increases the radius of convergence enormously,
as was demonstrated in [14]. '

The threads between entries are also very beneficial after training, when
the system is used to control the arm. The threads allow one to average the
control signals (pressures) to the arm over table entries connected through
a thread. Such an average improves performance at the early stages of
training and can also increase the accuracy of the control: if N units are
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Fig. 8.1. Block diagram of the SoftArm robot system [11).

pooled, each with an error ¢, the error after averaging (assuming, for the
sake of simplicity, that the table entries are coded for exactly the same
posture) is ¢/v/N. \

The threads between the table entries reflect the topology, i.e., neighbor-
hood relationships, of the control space. In the presént case, the topology
of the control space is obviously that of R® since all arm postures required
to grasp a cylinder form a manifold embedded in the five-dimensional Eu-
clidean space. In fact, in the algorithm presented below, the threads be-
tween the table entries are never actually established. Rather, we use the
Euclidean metric to establish a closeness ranking among table entries and
use this ranking instead of threads. However, in many cases, a dimension
or metric is not obvious and needs to be established while a system is
confronted with training tasks. In an early neural network scheme for con-
trol based on Kohonen networks [15, 16], such a dimension needed to be
specified beforehand. Theses schemes preserved the given dimension (topol-
ogy) in that they assigned table entries to the task space while keeping
the threads, e.g., those representing a two-dimensional grid, intact. Exam-
ples addressing the control of robots in computer simulations are found in
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(17, 10, 18, 19, 14]. A comprehensive presentation of these networks in a
variety of applications, ranging from brain maps to robot control, can be
found in [20]. This textbook also discusses at length the statistical mechan-
ical analysis of the convergence properties of the network and fluctuations
of the network’s table entries. A particularly interesting application of these
networks to visual brain maps can be found in [21)].

When we attempted to apply neural network algorithms to control real,
i.e., not simulated, robot arms, we established that networks with an a
priori topology, like generalized Kohonen networks, are not optimal. In-
stead, we appended the vector quantization scheme described in [13] with
Hebbian rules which provided the required threads between table entries.
The resulting topology representing the network had been introduced in
[22] and discussed at length in [23]. The network has been applied succes-
fully to control an industrial robot with precise response to control signals
[24, 25] and also to a pneumatically driven robot [11], the same as the one
employed in the present study. -

In this chapter we present an extension of our previous work [11] on the
control of a pneumatic robot arm by incorporating a control mechanism for
the grasping of cylinders of arbitrary orientation. In the following section
we first characterize the control problem describing the arm geometry and
the ideosyncracies of the pneumatic actuators of the robot arm used. In
Sec. 3 we present the topology representing network algorithm employed
for control. The section provides all of the algorithmic steps involved in
complete detail, but it does not explain the algorithm’exhaustively as is
done in [23]. However, the detailed presentation of the algorithm in the
present contribution might be considered by many readers a better expla-
nation of topology representing networks than any general exposition. In
Sec. 4 we demonstrate how the algorithm, after training, performs grasping
motions.

8.2 Problem Description

The robot—camera system is shown schematically in Fig. 8.1. This system
has been described in detail in [11]. The robot contains a pneumatic arm
with five joints. At each joint, two or four rubber tubes are connected by
chains across sprockets. The rubber tubes are supplied with compressed air
from an air compressor. When differential air pressures are supplied to the
tubes, differing equilibrium lengths result, which induce a rotation of the
joint to a new equilibrium point.

There are five servo drive units for five joints, each of which takes signals
from the host computer and sends current output to the servo valve unit.
The servo valve unit then converts this electrical signal to pressure infor-
mation, i.e., it controls the pressures inside the rubber tubes by opening or
closing the electrical valves. Two cameras observe the location of the end
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Fig. 8.2. Pressure versus position plot for joint 1. Hysteretic behavior of joint 1,
of the softarm. The pressure difference in the agonistic and antagonistic tubes of
joint 1 was first increased and then decreased.

effector or the cylinder to be grasped and send back the information to the
host computer, which then finds the image coordinates in pixels with the
help-of two parallel image processors.

The servo drive units can be used to control the robot arm in two modes,
a pressure-control mode and a position-control mode [11]. The present work
has been carried out in the pressure-control mode. The relation between the
joint pressures and position is highly nonlinear and also exhibits hystere-
sis. When the pressure is increasing, the pressure—position relation follows
a particular path, but it follows a different path while the pressure is de-
creasing again. Figure 8.2 shows such type of behavior for joint 1.

The end effector of the robot arm is a two-fingered one and is presented
schematically in Fig. 8.3. The movement of the end effector is controlled
by the fourth and fifth joints. Each joint produces a motion which is a
combination of rotational motions about the axes XX’ and YY’. Pure
rotation about XX’ and Y'Y’ also can be produced, but each of them is a
function of both the fourth and fifth joint pressures.

In the present work, we consider the grasping of cylindrical obJects only
In order to grasp such an object, several issues need to be addressed. First,
the point of grasping should be very close to the center of mass of the
cylinder. If the center of mass is far from the chosen grasping position, the
generation of undesirable torques makes it difficult to hold the cylinder.
The angle between the axis of symmetry(ZZ’) of the cylinder and that of
the end effector(X X’) is another important factor. The end effector should
be placed perpendicular to the symmetry axis of the cylinder. In other
words, axis ZZ' should be perpendicular to the plane containing axes X X’
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Fig. 8.3. A sketch of the end effector (gripper) and the cylinder to be grasped.

and YY’. These two aspects have played the role of prime significance in
all of our grasping algorithms.

8.3 Topology Representing Network Algorithm

The visually controlled motions for grasping cylinders placed in the arm’s
workspace are carried out in two stages: In the first stage, the arm’s gripper
is placed in front of the cylinder at a proper orientation as shown in Fig.
(8.3); in the second stage, the arm moves toward the center of the cylinder
and actually grasps it by closing the gripper’s fingers. The training proce-
dures of each stage will be described separately below. Control of the first
stage is by far the more difficult problem.

8.3.1 TRAINING OF FIRST-STAGE MOTION

The goal of the first stage of the grasping motion is to generate a set of
pressures in the arm’s tubes which place and orient the gripper in front of
the cylinder in a configuration suitable to carry out the second stage of the
grasping motion and actually grasp the cylinder. We refer to the suitable
configuration reached at the end of the first grasping stage as the target
configuration. This configuration is realized through application of a set of
vectors to the tubes of the arm which are collected in a pressure vector P.

The target position for the initial placement of the gripper is determined
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as follows: As is shown in Fig. 8.3, we fix two lights at the positions p
and q such that the line joining p and ¢ is coplanar as well as parallel to
the cylindrical axis ab. The images of these lights give the representation
of the endpoints of another imaginary cylinder of the same size as the
original, which, however, is placed at a small distance in front of the original
one. The lights appear in the two cameras at points characterized by the
coordinates (u1,ugz,us,us)T and (us,us,ur,us)?. As a result, the position
of the target is characterized through an eight-dimensional vector uzsrget =
(u1,u2, us, ug, us, ug, U7, ug)T. The set of all vectors U¢arget in the robot’s
workspace form the so-called feature space V C R8. We seek a training
procedure which, for the first stage of the grasping motion, develops a map
Usarget € V' — P(Utarget) € F which assigns to Uarget the proper pressure
vector for P, positioning and orienting the gripper in front of the cylinder.

The robot arm is moved through ten tubes which pairwise act in an
agonistic-antagonistic manner to rotate the arm’s joints. The sum of the
two pressures in each agonist—antagonist tube pair determines the stiffness
of the motion. In the present study, the total pressure for each joint was
kept constant during the operation of the system. As a result, the arm
was moved through five independent pressures, one for each joint. The
corresponding pressure vector P is then five-dimensional and the space F
of joint pressures is then embedded in R°.

The goal of the training of the N neurons controlling the first stage of
the grasping motion is to develop first a set of Voronoi cells covering the
feature space V with centers wi € V, k= 1,2,... N, and then to develop
a map V — F. The latter map is established through local affine maps
in each of the Voronoi cells, i.e., in the Voronoi cell assigned to neuron k,
through

P(utarget) = Py + Ax- (u - Wk), (81)

where P}, and Ay are constants (a vector and a tensor) which are acquired
through the training.

As was stated earlier, the neurons actually achieve their control through
averaging their output P(userget). The average involves the neurons that
have Voronoi cells adjacent to each other in the feature space V. To de-
termine the corresponding average, one first needs to determine a ranking
among the neurons which describes which neuron’s Voronoi cell contains
the target vector Usarget, Which Voronoi cell is second closest, third closest,
etc. Such ranking is achieved as follows: One determines for each neuron
k, k=1,2,...N, the distance

Dk(utarget) = ” Utarget — Wk “ (8-2)
and then determines a ranking ko, k1, ... kn—1 such that

ka (utarget) < Dk,,, (utarget) for m < n.
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One then defines

k(rr utarget) = ky (8.3)
r({, Utarget) = m, where k,, = /. (8.4)

This ranking can be employed to achieve the desired averaging. We choose
for this purpose the functional form

N
—P-(utarget) = Z a(r(k, utarget)) (8.5)
k=1

X [Prir,Usarges) + Ak(r,Ueargee) * (Utarget = Wi(rUsarger))]
with
a(r) =e™ /10 (8.6)

The softarm poses a challenging control problem due to drift in the re-
lationship between pressures applied to the arm’s joints and the resulting
arm configuration. This drift manifests itself on various time scales; on a
very short timescale it is characterized by the hysteretic behavior of the
arm shown in Fig. 8.2. On longer time scales a drift arises due to tem-
perature sensitivity and dependence on time of usage of the mechanical
characteristics of the arm’s tubes. Finally, over the lifetime of the softarm
the characteristics of the tubes are subject to wear. The long time changes
can be overcome by retraining the arm. In fact, the algorithms for training
and control of the arm are essentially identical, such that retraining can be
realized during actual usage of the softarm.

The hysteretic properties of the softarm require that one linearly cor-
rects the arm posture to reduce the error d = ||x — X¢qrget||, where x
characterizes the current arm posture and X¢grget is the desired posture.
As was specified above, and for the second-stage gripper movement further
below, the posture is characterized by certain vectors of camera coordinates
such that d is measured in units of camera pixels. The corrections of arm
postures seek to reduce the error d below a tolerance

tol(t) = 0.1 + 100 e~*/120 pixels . (8.7)

Here t counts the number of training steps. The tolerance is chosen large
at the beginning of the training and reduces towards a small final value.
Obviously, one cannot enforce an overall accuracy of less than a camera
pixel. In fact, the remaining final average error measures a little less than
a pixel for each network, and a little over one pixel for the two networks
controlling stage-one and stage-two movements combined (see Sec. 4). To
reduce the error d below the tolerance [Eq. (8.7)] usually requires several
linear correction steps. Accordingly, the control system linearly corrects
the arm posture repeatedly until the tolerance is met. In the course of
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the training, when the tolerance is already at a small value, e.g., after 200
training steps, the system typically requires eight correction moves, whereas
it requires only about two to three such moves after training is completed.

The final result of a training procedure is optimal quantities wy and
Py, Ax for all N neurons k. At the beginning of the training, these quan-
tities need to be assigned initial values. In many cases [10, 14], the initial
values of quantities to be acquired are chosen randomly. However, such
choices lead to long learning periods that are particularly unfavorable in
cases where “real-world” systems are trained. In the present case, the robot
arm requires about 30 s for a single training step, a period that can lead
to long overall training times. Furthermore, the radius of convergence of
a training procedure [14] might not be infinite, such that some initial as-
signments, will not lead to convergence. Averaging as in Eq. (8.5) increases
the radius of convergence [14], but the radius need not necessarily become
infinite. A finite radius of convergence would require that the initial values
of wi and Py, Ax be chosen closer to the correct values. For this reason
and, in particular, to speed up the overall training period, we acquired ini-
tial values in a supervised learning scheme. The learning was continued,
after a brief phase, in an unsupervised form. For the sake of a more sys-
tematic exposition of the training schemes chosen, it is more suitable to
present first the unsupervised learning scheme adopted here and then the
supervised scheme, -even though the schemes were applied in the opposite
order.

Unsupervised Learning Scheme

The unsupervised learning scheme consists of several hundred training
steps, each of which results in an update of the quantities wy and Py, Ag.
The values of these quantities before the learning step are defined as wg'?
and P¢l4, A9 and after the learning step as wi*” and PRe¥, ARev.

We now outline how any particular step proceeds. The learning steps are

numbered t = 1,2,..., and each learning step consists of ten substeps.

1. A cylinder is placed in a new, usually randomly chosen position in the
workspace of the arm. To ascertain that the cylinder is actually placed
in the workspace, one often adopts a “split brain” procedure [24],
having the robot itself position the cylinder, but then “forgetting”
the control signals (joint pressures in the present case). The cameras
detect the cylinder and provide the vector (v1,...,vg)T characterizing
the cylinder position. For the following we define

Viarget = (1)1, V2, V3, V4, Vs, Vs, V7, 'US)T . (8'8)

Actually, the position Vigrge: used for the stage-one motion does nqt
coincide with the cylinder position, but rather is a position between
the robot base and the cylinder, close to the cylinder as defined above.
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. The closeness ranking k(r,Viarget) Of the neurons and its inverse
7(k, Vtarget) is determined, as described in Eqgs. (8.3) and (8.4) above:
k(0) is the index of the neuron with its wg! closest to Viarget, k(1)
is the index of the neuron with its w§'¢ second closest to Vigrget,
etc. Conversely, r(119) is the rank of the neuron with index 119, i.e.,
r(119) = 5 implies that the particular neuron 119 has its w3 sixth
closest to Viarget-

. The vectors (weights) wg!¢ are updated according to
Wi = wit + 7y (r(k, Viarget), t) - (Vtaryet —wid). (8.9)

7w is a function that decays exponentially with the number ¢ of the
learning step as well as with the closeness rank r(k, Viarget)

et/ (8.10)

r/o

Yw(ryt) =€-€”
with € = 0.7, ¢ = 5, and A = 100.

. The pressure that is supposed to move the robot arm toward the tar-
get Viarge: then is determined according to the averaging procedure

[Eq. (8.5)]

, N '
F(Vtarget) = Z a[(k, Vtarget]] (8.11)
k=1

X [Pk(r:vtarget) + Ak(r:vtarg;tj '(V - wk(ravtarget))] ‘

. The pressure [Eq. (8.11)] is applied to the robot arm’s tubes and
the robot moves its gripper. The resulting gripper configuration is
detected by the cameras and the vector of camera coordinates v; € V
is supplied. This motion was termed in our previous studies [11] the
coarse movement of the arm.

. The values P2 then are updated according to

Pzew = led + (T(k),t) . rp-(vtarget) - led - Ak(vi - wk)] 3
(8.12)

where _ls(vta,.get) is the pressure determined in substep 4 and
Yp(r,t) =€ -e"T/7e~t> (8.13)
with ¢ = 0.8. '

. The system now determines an improved vector of pressures which
attempt to correct the remaining differences between vigrge: and v;:

S
isfine = f)-(Vtav‘get) + Za(r) [Ak(r) : (u - Vi)] ) (814)

r=0
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where P-(vta,.get) is again the pressure determined in substep 4 and
a(r) is given in Eq. (8.6).

The pressure P s;n is applied to the arm’s tubes and the robot arm
assumes a new gripper position. This position is detected by the cam-
eras and corresponding camera coordinates v are supplied. This mo-
tion had been termed fine movement in our previous studies [11].

. The system employs the remaining error between vy and vigrget to

update the tensors Ay according to
AP = AQ4 4 y;(r,t) - (AP — A Av).AVT || Av]| ™%, (8.15)
where
vi(rt) =€ -e/7e7t (8.16)

with €’ = 0.01 and where we defined AP = Pfine — P(Viarget),
P(Viarget) 88 again being the pressure vector of substep 4, and Av =
V§— V.

The system determines the error d = IVs — Viarget|| between the
present gripper position and the target position. In the case where d
exceeds the tolerance [Eq. (8.7)], another correction move is executed
and, accordingly, the system carries out steps 7-9 again; otherwise,
the system goes to the next step. In the case where steps 7-9 are
exeguted once more, one first redefines PP¥ — P24 and A7*¥ —
Agld,

The unsupervised learning scheme either terminates when a set num-
ber of steps has been executed or starts another round of substeps,
beginning with substep 1 above.

Supervised Learning Scheme

The supervised learning scheme described now was employed to obtain bet-
ter starting values for the quantities wy and P, Ax, which specify how the
neurons k, k = 1,2,... N control the initial stage of the grasping motion.
The supervised learning scheme defines a sequence of target camera coordi-
nates Vigrget by actually moving the gripper to the respective configuration
and communicating the respective pressures to the learning scheme. The
procedure, applied in the first ny,p, = 50 steps of the learning scheme, is as
follows:

1.
2.

A random pressure vector Piarge: is chosen.

Piarget is applied to the tubes of the arm and the arm moves to a
new position. The gripper configuration is detected by the cameras
and the corresponding camera coordinates Vigrget are supplied.
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The closeness ranking k(r, Viarget), (k, Vtarget) Of the neurons is de-
termined as in the unsupervised scheme.

old

The vectors (weights) wg'® are updated, as in the unsupervised

scheme, according to

Wit = wild + vy, (7(K, Viarget), t) - (u — wid), (8.17)
where 7, is as defined in Egs. (8.3) and (8.4).
The pressure vectors P¢4 are updated according to

Pre¥ = P4 4+, (r(k, Viarget), t) ‘ (8.18)
X [Ptarget - led — Ay (Vtarget - wk)] ’

where 7, (r, t) is as defined in Eq. (8.9).

. The system then determines a pressure vector

N
F(Vtaryet) = Za[r(ksvtaryet)l ) [Pk(r,me) (8.19)
k=1

+Ak(r,V¢,,,.g,¢) * (vtarget - wk(r))] .

This pressure is applied to the arm’s tubes, and as a result, the arm
moves its gripper to a new position. :

The cameras detect the new gripper position and supply the corre-
sponding camera coordinates v;.

The system now determines an improved vector of pressures which
attempt to correct the remaining differences between Viarget and v;:

S
Ffine = F(Vtarget) + Ea(r) * (Ak(r) * (Vtarget - Vi)) . (8'20)

r=0

The pressure _P—f,-ne is applied to the arm’s tubes and the gripper
moves to a new position.

The cameras detect the new gripper position and supply the corre-
sponding camera coordinates vy.

The system then updates the tensors A" according to
AR = AR 4 i(r(k, Viarget), t) (8.21)
X [(Ptarget - F,)"ine(vtargc':t) - Azl(?‘) (Vtarget - Vs ))]

X (Vtarget - Vf)T”Vtarget - Vf”_2 .
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Note that both expressions updating Pg'¢ and Ag", i.e., Egs. (8.18)
and (8.21), include Pigrget, i.e., knowledge of the pressure which
would have guided the arm, except for hysteretic effects, exactly to
the target gripper position characterized by Viarget-

13. The system determines the error d = ||V — Viarget|| between the
present gripper position and the target position. In the case where d
exceeds the tolerance [Eq. (8.7)], another correction move is executed,
and, accordingly, the system carries out steps 9-12 again; otherwise,
the system goes to the next step. In the case where steps 9-12 are
exiguted once more, one redefines first PP — P¢¢ and A7*¥ —
AZe.

14. In the case where ng,), training steps have been completed, the system
terminates; otherwise, it begins another round of substeps beginning
with substep 1 above.

8.3.2 TRAINING OF FINAL GRASPING OF THE
CYLINDER — SECOND STAGE OF MOVEMENT

After the gripper has been placed and oriented properly in front of the
cylinder (see Fig. 8.3) in the first stage of the movement, the gripper needs
to be translated toward the cylinder until the fingers of the gripper enclose
the cylinder sufficiently, i.e., until the center of the gripper coincides with
the center of the cylinder. This translation is referred to as the second stage
of the gripper movement. Since this movement does not require rotation of
the gripper, only three degrees of freedom are active in the second stage
of the movement. This considerably simplifies the control problem which
requires, hence, a lower resolution of the neural network representation such
that 200 neurons suffice.

The algorithm employed here for control and training of stage-two move-
ment has been described in [11]; for the sake of completeness and consis-
tency of notation, we review the algorithm below.

The aim of the algorithm is to guide the center of the gripper g to the
center of the cylinder. The latter is characterized through two sets of camera
coordinates, (c1,c2) and (cs, cs), corresponding to the image of the gripper
center in the left and in the right camera, respectively. For the control of
stage-two movement, the map

c—p (8.22)

is required, where ¢ = (c1, ¢z, €3, C4) is a four-dimensional vector and p de-
fines the set of pressures to translationally move the gripper. Since the last
two joints of the five-jointed softarm are involved in gripper rotation, they
are not required for the second-stage movement and only three pressures
need to be specified. Accordingly, the map to be determined is ®* — ®3.
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The embedding spaces R* and R® define a (Euclidean) metric ||--- || that
will be employed.

The strategy of the present neural network approach, as outlined in [11],
is to represent the relevant three-dimensional manifold 2 of gripper centers
¢ € R* through vector quantization involving n neurons, where n = 200.
The neurons labeled ¢,£ =1,2,...n are to be assigned positions w; € R,
which represent the manifold Q of possible gripper centers. To each of the
neurons we also assign a pressure vector p; € R3 and 3 x 4-tensor ag. The
latter are to be chosen to establish affine maps

p(c) = pe + ag-(c —wp), . (8.23)

which optimally approximate the exact map [Eq. (8.22)] in the Voronoi cell
of neuron £ in the manifold 2, i.e., in the space of all gripper centers ¢ with
lle = well < |le —wmll, m=1,2,...n.

In order to determine the pressure that guides the gripper to the cylinder
center Ciqrget in stage two of the movement, one determines, in analogy to
the case of stage-one movements, the closeness ranking ¢(r, Ctarget) and, in-
versely, 7/(£, Ciarget). As in the case of a stage-one movement, the pressures
supplied to the robot arm are actually averages of the pressures [Eq. (8.23)]
contributed by neurons of neighboring Voronoi cells. The corresponding av-
erages for the control of stage-two movements are given by

n

ﬁ(ctdrget) = Za(r’(é, ctargct)) | IR | (8'24)
=1

x [pe(""ctarget) + ae(rvctarget) ' (ctarget - wl(ryctarget))] )

where o(r) is as defined in Eq. (8.6).

The final result of the training procedure is optimal quantities w, and
P¢, a¢ for all n neurons £. At the beginning of the training procedure these
quantities are assigned random values. Stage-two movement control does
not require supervised learning to improve the initial values and cuts down
the training period; the reason for this is that the three-dimensional posture
control of a robot arm with averaging of control signals converges rapidly
with an infinite convergence radius, as is demonstrated in [14].

Learning Scheme

The unsupervised learning scheme consists of several hundred training
steps, each of which results in an update of the quantities w; and py, ae.
The quantities before the learning step are defined as wg!é and pgH, ag',
and after the learning step w}** and p}*¥, a}¢*. We now outline how any
particular step proceeds. The learning steps are numbered ¢t = 1,2,...,

and each learning step consists of nine substeps.

1. A target position ciorget is chosen randomly to operate the robot in a
“split brain” fashion: a random set of pressures (pi, p2, p3) is applied
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Fig. 8.4. Positioning and orientation error versus number of steps. This figure
shows the learning curve for the network controlling the first stage of the gripper
movement.

to the tubes of the first three joints of the softarm. The arm moves
to a corresponding position. This position is detected through the
cameras. and communicated to the system in the form of the four-
dimensional vector C;qrget. This procedure ascertains that the chosen
positions Cigrget actually belong to the workspace of the arm.

2. The closeness ranking £(7, Ctarget) and its inverse (£, Ciarget) are es-
tablished.

3. The values wg'? are updated using the expression
wg = w?'d + Yw(r(£ Ctarget), t) * (Ctarget — wgld) ) (8.25)

Here 4y (r,t) is chosen as

Yu(ryt) = e~/o3 e~ VU0, (8.26)
where o = 5.

4. The pressure vector B(Ctarget), Which is supposed to move the gripper
center toward Ciqrget, then is determined according to the averaging
procedure in Eq. (8.24).

5. This pressure is applied to the tubes of the robot arm and the arm
moves the gripper. The resulting position of the gripper center is
detected by the cameras and the vector c; of camera coordinates is
supplied.
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6. The values p"’d are then updated according to

P;™ = P§? + 7(r(l Crarger),t) (8.27)
X [p(ctarget) - p‘”d agld(ci - wgld)] ’

where P(Ctarget) is the pressure vector determined in substep 4 and
where
To(r(£, Ctarget), 1) = € -7/ g~V (8.28)

with ¢” = 0.8 and g9 = 5.

7. The system now determines an improved vector of pressures which
attempt to correct the remaining differences between c;grge: and c;:

n

ﬁfine = -ﬁ(ctarget) + Za(""(e; ctarget)) *Qg(r) (Ctarget - ¢;),

r=1
(8.29)
where P(Ctarget) is again the pressure vector determined in substep 4
and where a(r) is as defined in Eq. (8.6).

8. The pressure By, is applied to the arm’s tubes and the arm assumes
a new gripper position. This position is detected by the cameras and
the corresponding camera coordinates ¢ ¢ are supplied.

9. The system employs the remaining error between cta,get and ¢y to
update the tensors a$'?: ,

ape? = gl 4 e~/ . ag‘d(cmget —cp)AcT||Ac)™®  (8.30)

1"

with €’ = 0.01, 0 = 5, and Ac = ¢y —c;.

10. The system determines the error d = ||c; — Ciarget|| between the
present gripper position and the target position. In the case where d
exceeds the tolerance [Eq. (8.7)], another correction move is executed
and, accordingly, the system carries out steps 7-9 again; otherwise,

" the system goes to the next step. In the case where steps 7-9 are
repeated, one first redefines p7*¥ — pg'¢ and aP*¥ — qgld.

11. The learning scheme either terminates when a set number of steps
have been executed or starts another round of substeps, beginning
with substep 1 above.

8.4 Experimental Results and Discussion

8.4.1 ROBOT PERFORMANCE

Target locations for the training were selected by moving the end effector
to a position that was chosen by supplying random pressures to the joints.
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Fig. 8.5. Positioning error of the end effector for the neural network controlling
the second stage of gripper movement.

Maximum and minimum pressures for each joint were stated such that
the robot arm picked target positions within a workspace of size 375 mm
X 750 mm x 750 mm.

The camera viewed the resulting position and orientation of two lights
that were fixed at positions p and g (Fig. 8.3) and sent the corresponding
Viarget t0 the system.

In each learning step, after the target location Viarget Was chosen, the
robot arm went to a particular arbitrarily chosen position from where it
tried to reach the target location vierge¢ using one coarse movement and
several fine movements.

All of the weights wy, pressures P, and Jacobians Ay initially were
assigned randomly. The initial s, = 50 learning steps followed the super-
vised procedure, introduced in Sec. 3, in which the knowledge of the pres-
sures Pyqrget corresponding to the target positions Viarget Were provided.
After the first 50 steps, the robot started to learn in an unsupervised mode,
i.e., the pressures Pigrget 1O longer were provided. Each trial, on average,
took 30 s to complete. Two networks were trained separately in this way.
One network, consisting of 1000 neurons, was employed for stage-one move-
ments which positioned and oriented the gripper in front of the cylinder.
For S, introduced in Egs. (8.14) and (8.20), a value of 400 was chosen.
The robot learned a set of five pressures Py and a set of 5 x 8 Jacobian
matrices. A smaller network of 200 neurons was employed for second-stage
movements leading to grasping. In the later case, only three joints were
used, and here the robot learned a set of 3 x 4 Jacobian matrices in an
unsupervised way, as was already described in [11]. The tolerance level for
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Fig. 8.6. Grasping error versus number of trials; the figure here shows the com-
bined error for both of the networks. ‘ o

error (Usqrget — Vy) for each learning step was an exponential function of
time [Eq. (8.7)). :

As in Eq. (8.7), in the initial stages the tolerance was set to a high level,
and as the network became mature it became lower and lower. Both of the
networks took 400 steps to reduce the error for both the positioning and
orientation below 3 pixels. Figures 8.4 and 8.5 show error levels for both
of the networks after 1000 learning steps. For a mature network, three fine
movements were sufficient to reduce the error below the tolerance level.

8.4.2 COMBINATION OF TwO NETWORKS
FOR GRASPING

After the training was completed, the mature networks were tested for
grasping a cylinder. The combined network, trained first by the supervised
and then by the unsupervised algorithm, was used to place the robot grip-
per in front of the actual cylinder by sending visual inputs from two lights at
positions p and g (Fig. 8.3). After this initial positioning, the visual inputs
were changed to the images of the center of line ab. The network consisting
of 200 neurons then became activated and the gripper approached that cen-
ter slowly by small movements. The results for the two networks then were
combined and are shown in Fig. 8.6. Figures 8.5 and 8.6 demonstrate that
the network is satisfactorily trained after only about 300 trial movements,
with a residual average error of 1.35 camera pixels.
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8.4.3 DISCUSSION

Control of positioning and grasping movements of robot arms often has
been addressed in the literature, in particular by researchers in control
theory and artificial intelligence [26]. The major problem with the control
theory and the artificial intelligence approaches is that they both depend on
the domain knowledge and, therefore, require cumbersome efforts to design
the control system. Moreover, these approaches are not robust when one
deals with real life, e.g., hysteretic, robots. In this work we have taken a dif-
~ ferent approach which is based on our understanding of the map-generating
mechanism in human brains [21]. Our previous effort to control the position-
ing of the end effector of a pneumatic robot [11] was successful but limited
to a restricted set of target configurations. In the present study we allow
arbitrary orientations of a target cylinder to be grasped and thereby have
made the problem of grasping control more difficult to accomplish. Never-
theless, the topology representing network algorithm along with supervised
tuning accomplished control of grasping after only a modest number (300)
of training episodes. Presently, we extend this study to network architec-
tures that closely resemble biological motor pathways, in particular those
that involve cortical as well as cerebellar components. We also employ a
more sophisticated method for visual recognition of target and arm posture.
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