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ABSTRACT The current rapid growth in the use of nanosized particles is fueled in part by our increased understanding of their
physical properties and ability to manipulate them, which is essential for achieving optimal functionality. Here we report detailed
quantitative measurements of the mechanical response of nanosized protein shells (viral capsids) to large-scale physical defor-
mations and compare them with theoretical descriptions from continuum elastic modeling and molecular dynamics (MD). Specif-
ically, we used nanoindentation by atomic force microscopy to investigate the complex elastic behavior of Hepatitis B virus
capsids. These capsids are hollow, ~30 nm in diameter, and conform to icosahedral (5-3-2) symmetry. First we show that their
indentation behavior, which is symmetry-axis-dependent, cannot be reproduced by a simple model based on Föppl-von Kármán
thin-shell elasticity with the fivefold vertices acting as prestressed disclinations. However, we can properly describe the
measured nonlinear elastic and orientation-dependent force response with a three-dimensional, topographically detailed,
finite-element model. Next, we show that coarse-grained MD simulations also yield good agreement with our nanoindentation
measurements, even without any fitting of force-field parameters in the MD model. This study demonstrates that the material
properties of viral nanoparticles can be correctly described by both modeling approaches. At the same time, we show that
even for large deformations, it suffices to approximate the mechanical behavior of nanosized viral shells with a continuum
approach, and ignore specific molecular interactions. This experimental validation of continuum elastic theory provides an
example of a situation in which rules of macroscopic physics can apply to nanoscale molecular assemblies.
INTRODUCTION
Nanoparticles are increasingly being used in awidevariety of
applications in physics, chemistry, medicine, and materials
science (1,2). For example, protein nanoshells are used in
surface patterning or as nanocontainers and nanoreactors to
encapsulate guest material for drug delivery and material
synthesis (3,4). Despite their widespread applicability,
however, a thorough understanding of their physical proper-
ties is still lacking, and it is increasingly being recognized
that the ability to control such properties in an exact manner
is essential for achieving optimal functionality (5). To fill this
gap, we focused on the structure and mechanics of nanosized
protein shells, i.e., icosahedral viral capsids. Empty viral
shells (capsids) are valuable model systems for investigating
the physical properties of nanosized objects because of the
uniformity and high regularity of their structures. To date,
most studies on the deformation of capsids have revealed
a remarkably linear elastic force-indentation response that
sometimes ends with abrupt failure of the shell (6–13).
In the study presented here, we examine Hepatitis B virus
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(HBV) capsids, which reveal a different behavior, namely,
a nonlinear but continuous response. HBV capsids exhibit
two distinct icosahedral geometries (T¼3 and T¼4) that
are self-assembled from 180 and 240 identical protein
subunits, respectively. Because both capsid types are made
up of the same building blocks, an a priori expectation is
that any differences in mechanical response can be explained
solely by their different geometries. We set out to quantita-
tively measure and model the mechanical response of these
protein shells via a combination of atomic force microscopy
(AFM), continuum elasticity theory and engineering struc-
tural analysis techniques (i.e., finite-element (FE)modeling),
and coarse-grained (CG) molecular dynamics (MD).
Focusing on the nonlinear and orientation-dependent inden-
tation behavior, we sought to determine whether these CG
modelingmethods could adequately describe themechanical
response of these ~4 MDa nanocontainers over a large range
of deformations.
MATERIALS AND METHODS

Atomic force microscopy

AFM experiments were conducted as described previously (14). Briefly,

they consisted of experiments in liquid with a Nanotec Electronica

(Madrid, Spain) atomic force microscope operated in jumping mode,
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FIGURE 1 AFM images and FZ curves from

experiment and FE models. (a and b) Whereas

the AFM image of a T¼3 particle (a) shows

a relatively unstructured particle, that of a T¼4

particle (b) shows substructures, presumably

spikes (see Fig. S1 for a discussion about these

spikes). The inset in b is a reconstruction of

a T¼4 particle, showing the spikes on its surface.

(c and d) Individual experimental indentation

curves on glass are printed as thin lines for the

T¼3 (c) and T¼4 (d) particles. The average of

these curves (Experiment) is plotted as a thick

green line, with the error bars (SEM) in black.

Also shown are the 3D FE simulation curves (thick

blue line) and thin-shell curves (thick red line),

which are both weighted averages of simulations

along the two-, three-, and fivefold axes with

respective weights of 30:20:12. The Supporting

Material shows a zoom-in at the beginning of the

curves (Fig. S2) and an analysis of the statistical

relevance of the observed nonlinear effects

(Fig. S3).
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with 0.052 5 0.002 N/m (5 SD) rectangular OMCL-RC800PSA

(Olympus) cantilevers. We attached cp149-3CA HBV capsid mutants

(14–16) to hydrophobic coverslips (6) by incubating a droplet of capsid

solution (4.2 mM monomer concentration in 50 mM Tris, pH 7.5) for

20 min on a coverslip before starting the measurements. The presented

data consist of the first AFM deformation curve (for each T¼3 (n ¼ 31,

where n is the number of particles) and each T¼4 (n ¼ 25) particle)

obtained using glass as the support material. Subsequent indentation curves

were not used in the analysis presented here, because of effects of plasticity

in the deformation. These effects are discussed in Arkhipov et al. (17). Test

experiments on mica (n ¼ 7) yielded similar nonlinear deformation curves.

Errors are stated as the standard error of the mean (SEM) unless otherwise

mentioned. All data were taken at a fixed loading rate (~1 nN/s). Order-of-

magnitude changes in the loading rate are expected to elongate or contract

the force scale at which the deformations occur by<10% (7). Because such

changes are hard to distinguish within our scattered nonlinear curves, it is

currently not feasible to check the loading rate dependence for this system.
Finite-element simulations

To create meshes for both the T¼3 (data from a pseudo-atomic model) and

T¼4 (PDB-ID 1QGT) forms of the HBV capsid, we used the method

described by Gibbons and Klug (18) for generating coarse three-dimen-

sional (3D) tetrahedral FE meshes from x-ray crystal structures. The capsid

deformation is modeled by finite-deformation continuum hyperelasticity,

with a neo-Hookean constitutive law extended to the compressible regime

(19,20). The strain energy density function is calculated as

WðCÞ ¼ m0

2
ðI1 � 3Þ þ l0

2
ðlogJÞ2�m0logJ;

where I1 ¼ tr C and J ¼ det C are invariants of the Right Cauchy-Green

deformation tensor C ¼ FT F, the metric associated with the gradient F

of the deformation mapping, and l0 and m0 are the linearized Lamé

constants, which can be related to the Young’s modulus E and Poisson’s

ratio n as l0 ¼ En=½ð1� 2nÞð1þ nÞ� and m0 ¼ E=2ð1þ nÞ. The Cauchy

stress is computed as s ¼ FSFT=J from the second Piola-Kirchhoff stress

tensor S ¼ 2vW=vC. The vonMises stress
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3sijsij=2

p
is a scalar invariant of

the deviatoric part of the Cauchy stress s ¼ s� ðtr sÞI=3, commonly used

in failure criteria for ductile materials.
Biophysical Journal 99(4) 1175–1181
Nanoindentation is simulated in a displacement-controlled fashion by

vertically deforming the FE model between a flat substrate and a round

AFM tip (R¼ 20 nm), both of which are modeled as rigid. Contact between

the capsid and a rigid surface is modeled as rough, such that tangential slip-

page between contact surfaces is disallowed. The T¼4 model has an

average radius of 14.22 nm and an average shell thickness of 2.24 nm,

comparable to the values reported by Wynne et al. (21). The T¼3 model

has an average radius of 12.40 nm and the same average thickness as the

T¼4 model.
Binning experimental FZ curves using FE
simulations

By analyzing the 3D simulated curves for the three orientational axes

(see Fig. 3) and their weighted average (Fig. 1, 3D simulation curves),

we extract the following characteristics to bin the experimental curves in

three orientational categories: 1), curves starting below the average are

the twofold curves for T¼3 and threefold curves for T¼4; 2), the threefold

curves for T¼3 and twofold curves for T¼4 start and end above the aver-

aged curve; and 3), the fivefold curves of both morphologies start above

the average and cross it at a relative indentation of ~0.7 and ~0.4 for

T¼3 and T¼4, respectively. A similar comparison was performed for the

thin-shell FE curves, such that all curves below the average were assigned

to the fivefold axis for both T¼3 and T¼4 particles. The two- and threefold

curves are binned together because of their similar indentation behavior.
Thin-shell simulations

The thin-shell simulations model the capsid as an icosahedral shell surface

with elastic energy described by Föppl-von Kármán (FvK) thin-shell

elasticity as

F ¼
Z �

k

2
ð2HÞ2 þ l

2
ðEiiÞ2 þm

�
EijEij

��
dA;

where k is the bending modulus as described above, and l and m are the 2D

Lamé constants (22). As described by Klug et al. (8), the stress-free refer-

ence shell surface is discretized with triangular subdivision-surface FEs and
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the energy is relaxed by numerical optimization using the Broyden-

Fletcher-Goldfarb-Shanno (BFGS) method (23) to determine a prestressed

equilibrium shape, which is then subjected to displacement-controlled

indentation between a rigid plate and a rigid hemispherical AFM-tip surface

of radius equal to the average capsid radius. Contacts between the capsid

and rigid surfaces are modeled as rough, just as in the 3D simulations.

Mesh refinement studies showed that a mesh of 2562 nodes and 5120

elements gave reasonably converged, mesh-independent results. Using

Eq. 1 and inserting the averaged particle radius as extracted from the crystal

structures, we determine an effective mechanical thickness of 2.48 nm for

both the T¼3 and the T¼4 particles of the FvK simulations. This value,

which is comparable to that obtained from the crystal-structure geometry,

represents the effective thickness of a uniform icosahedral shell having

the same mechanical stiffness as the nonuniform shell used in experiments.
Molecular dynamics simulations

The MD simulations were performed as described previously (17). In brief,

they consisted of a shape-based CG (SBCG) model (24) employing 15 CG

beads to represent each monomer of the T¼4 HBV capsid (i.e., ~150 atoms

per bead), distributed according to the protein shape (PDB ID: 1QGT) (21)

by a topology-representing map algorithm (24,25). One SBCG monomer is

replicated to construct the full capsid (240 monomers). Within the mono-

mer, the total mass and charge of the atoms constituting the Voronoi cell

of each bead are assigned to that bead, and two beads are connected by

a bond if the two Voronoi cells are connected by the protein backbone.

The T¼4 capsid consists of dimers formed by closely associated monomers

(21) (in the SBCG model, such monomers are connected by three bonds;

beyond that, no intermonomer bonds are established). The solvent is treated

implicitly as a viscous medium (24). The substrate and AFM tip are

modeled as cubic lattices of CG beads (with a period of 1.5 nm). The sub-

strate is a single sheet of such a lattice, and the tip is carved out of the lattice

into a hemisphere with a 15 nm radius. The SBCG beads interact with each

other through Lennard-Jones (LJ) and Coulomb potentials, and harmonic

potentials are introduced for all bonds, as well as for angles formed by

triples of bonded beads. The bonded potentials (bonds and angles) are

parameterized to reproduce the protein stiffness observed in an all-atom

simulation of a monomer. The nonbonded potential (LJ and Coulomb) is

tuned so that the SBCG capsid simulated without the AFM tip and substrate

will maintain its correct spherical shape, diameter, and thickness (21).

Of interest, CGMD simulations suggest that native contacts between mono-

mers remain preserved in the T¼4 capsid even in the case of very strong

deformation: the number of native contacts remains in the range of

75–89% in the cases of both reversible indentation of 0.35R and irreversible

indentation as deep as 1.25 R (as reported previously (17)). Thus, appro-

priate modeling of interactions in the native structure of the T¼4 HBV

capsid is essential for capturing the deformation dynamics. The dynamics

of the SBCG system is described by the Langevin equation (24), with

a damping constant of 2 ps�1. Simulations are done at a temperature of

300 K and an integration time step of 150 fs. The AFM tip is moved in

the z-dimension at a velocity of 2.3 nm/ms using steered MD (26). SBCG

MD simulations cover 5–10 ms for one indentation round, depending on

the chosen indentation depth and relaxation time for the capsid after the

AFM tip is retracted. The simulations were performed with NAMD (27)

and the molecular graphics (see Fig. 5) were generated using VMD (28).

RESULTS AND DISCUSSION

Using AFM, we first image and subsequently indent the
HBV shells while recording the force-distance (FZ) curves
(6,11,29,30) (Fig. 1). When we indent the particles with
forces below 0.8 nN, both the T¼3 and T¼4 capsids behave
reversibly upon indentation, and no material fatigue occurs
after multiple indentations at these small forces (14). Inden-
tation experiments at significantly higher forces (~2 nN)
result in a continuous indentation response that exhibits
subtle but noticeable nonlinearities (Fig. 1, c and d), with
similar results obtained on glass and mica. The robustness
of the nonlinear response was tested statistically as shown
in Fig. S3 of the Supporting Material. As the nonlinear
behavior is seen at rather large indentations (approximately
one-half the capsid radius), it cannot be attributed to the
small-strain, Hertz-like stiffening stemming from increasing
contact area with the tip (29,31). Rather, nonlinear softening
is consistent with the geometry of thinner spherical shells,
signifying a transition of the load-bearing mechanism
from in-plane stretching to transverse bending (31).

As can be seen in Fig. 1, there is substantial variation
between the individual FZ curves. In one other recent study
on a different icosahedral virus (minute virus of mice
(MVM)), variation in the linear capsid mechanical response
was linked to anisotropy in genome packaging (30).
However, whereas for MVM no orientation-dependent
indentation behavior was observed for the empty capsids,
here we consider the hypothesis that the spread of FZ curves
reflects the different orientations in which empty HBV
capsids are affixed to the substrate. Because the diameters
of an HBV capsid along the two-, three-, and fivefold
symmetry axes are nearly identical, assignment of a given
indentation curve to a particular symmetry axis cannot be
done on the basis of height data alone. Furthermore, no orien-
tation-specific features could be imaged on the capsid
surface. This ambiguity prompts the question as to whether
capsid orientations can be distinguished by other means.
In particular, recent modeling studies of the indentation of
the cowpea chlorotic mottle virus (CCMV) predict that the
mechanical response may show orientation dependence at
large indentations where nonlinear effects are pronounced
(18). Here, nonlinearities in the experimental response of
HBV capsids provide an opportunity to address the
suitability of indentation response as a reporter for capsid
orientation, as well as a means to test the predictive validity
of the continuum elasticity models.

Following our hypothesis regarding the orientation-depen-
dent indentation behavior of HBV shells, we performed
simulations using 3D topographically detailed, FE models
derived from crystal structures using the methodology
described by Gibbons and Klug (18). Indentation was simu-
lated on capsid models in three distinct orientations, with the
indentation axis aligned with the two-, three-, and fivefold
symmetry axes (Fig. 2). These models incorporate a simple
homogeneous, isotropic, nonlinear elastic stress-strain
response that scales in proportion to the initial Young’s
modulus. To obtain the correct Young’s modulus, we first
average the simulated indentation curves along the different
symmetry axis with the correct weighting for the relative
occurrence of the symmetry axis (30:20:12 for the two-,
three-, and fivefold axes, respectively) and compare this
curve with the averaged experimental curves (Fig. 1, 3D
Biophysical Journal 99(4) 1175–1181



FIGURE 2 Snapshots of 3D FE meshes. Inden-

tation of T¼3 (a) and T¼4 (b) HBV capsids along

their two- and threefold symmetry axes. Capsid

shapes for two different relative deformations

(indentation/radius, d/R) are shown. Whereas for

small deformations the von Mises stresses

(depicted in MPa) are mainly apparent at the

contact points with the tip and the surface

(top and bottom), for large deformations they are

significant in considerable parts of the deformed

shells. In particular, at larger deformations, as

shown in the lower panels, the stresses are

maximized at the inner and outer surfaces of the

capsid wall with smaller values in the interior,

consistent with bending as the primary load trans-

fer mechanism.
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simulation). The y-axis scaling of these simulated indenta-
tions yields a Young’s modulus E¼ 0.26 GPa for both shells
(T¼3 and T¼4). Similar Young’s moduli were expected
because both particle morphologies are constructed from
the same protein building blocks.

Next, having determined the Young’s modulus of the
system, we can compare the orientation-dependent FZ
response obtained for the 3D FE model with the experi-
mental results. Fig. 3 shows a large variation in FZ response
when the virus is indented along different axes. Guided by
the characteristic shapes of the different model curves, we
can now bin (see Materials and Methods) the experimental
FZ curves into three orientations (Fig. 4). Because the rela-
tive occurrence of the various symmetry sites is known,
when the icosahedral capsids attach randomly to the
substrate, the expected frequency of FZ curves will be high-
est for the predicted twofold symmetry axis force response,
intermediate for the threefold force response, and lowest for
the fivefold response. A distribution that matches the
different occurrences of these symmetry axes is indeed
what we observe for both the T¼3 and T¼4 shells using
depicted inside an icosahedral cage (black) and with quasi-sixfold symmetry sh

FE simulation results, where the axes are identical to those of the main graphs.
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the model-based binning procedure (Table S1). After sepa-
rating the individual FZ curves in the different orientations,
we observe a relatively small spread for each category
(Fig. 4). This result indicates that the large spread of the
experimental data, as seen in Fig. 1, indeed seems to origi-
nate from the symmetry axis-dependent indentation
behavior of the particles.

Although nonlinearities in the indentation response of the
3D model are chiefly caused by variations in shell thickness
and contact geometry of the tip with the topographically
nonuniform shell, these features are not the only potential
sources for orientation-dependent mechanics. Recent FvK
thin-shell elasticity studies that modeled capsids as icosahe-
dral shells containing prestressed disclinations at the fivefold
icosahedral vertices (8,22,32–34) also showed orientation
dependence in the indentation response. Here, we evaluate
the usefulness of this description for interpreting the
nonlinear deformation behavior of HBV capsids. In thin-
shell theory, local stretching of the surface induces strain
energy scaled by the 2D Young’s modulus Y ¼ Et, with t
denoting the shell thickness. The energy of out-of-plane
FIGURE 3 Separation along symmetry axes for

the T¼3 (a) and T¼4 (b) morphologies. The

main graphs show the 3D FE simulation and

the averaged experimental results. The threefold

orientation of the T¼3 particles and the twofold

orientation of the T¼4 particles show the stiffest

curves. Of interest, both these orientations coincide

with the quasi-sixfold symmetry axis, resulting in

the highest contact area. For the T¼4 conformation

at large indentations, the force curves for both the

two- and fivefold orientations noticeably soften as

a result of the transition from stretch-bending to

pure bending. This transition is amplified due

to the ease of bending the thinner areas of the

capsid, which occur in a circular ring around the

contact area. This effect has been observed in

CCMV as well (18). The upper-left insets show

the respective HBV capsid models viewed along

their twofold symmetry axis. The capsids are

own as red hexagons. The lower-right insets show the respective thin-shell



FIGURE 4 Experimental curves grouped by

apparent orientation. Individual experimental

curves are grouped according to the binning proce-

dure based on the curves obtained from the 3D FE

model (see Fig. 3 and main text). The experimental

curves for the T¼3 (a) and T¼4 (b) capsids are

plotted together with the corresponding model.

The grouping results in a reduced spread of the

experimental indentation curves, and inferred

orientation statistics that are consistent with the

hypothesis of orientation-dependent indentation

behavior.
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bending of the surface is scaled by a flexural rigidity k, which
is classically given as k ¼ Et3=½12ð1� n2Þ�, with n denoting
Poisson’s ratio, for which a value of 0.4 is used here (31). The
FvKnumberg¼YR2/k, with the particle radiusR, is a dimen-
sionless parameter that emerges naturally as a measure of the
ratio of the in-plane elasticity of the shell to its out-of-plane
bending rigidity. Considering a thin-shell model as approxi-
mating a homogeneous 3D shell, the FvKnumber can then be
expressed as

g ¼ 12
�
1� n2

��R
t

�2

: (1)

Numerical simulations based on thin-shell elasticity
reveal a strong variation of the force-indentation response
with FvK number (8). Simulations of capsids with
g ( 150 show a linear response (Fig. S4) (8). For large
g (T800) the FZ curves are roughly linear up to an inden-
tation of ~0.4 times the radius, at which point the shell
buckles, as indicated by a precipitous drop in force. In the
intermediate range (150 ( FvK ( 800), the response
becomes increasingly nonlinear but does not involve buck-
ling. The theoretical FvK values for the two HBV shells
are ~250 for T¼3 and ~400 for T¼4 using Eq. 1 and re-
ported dimensions (14,15). To verify the predicted existence
of a continuous nonlinear elastic response for HBV shells,
we simulated FZ curves for a range of FvK values. The
best fits to the experimental data were obtained with FvK
values of 250 and 330 for T¼3 and T¼4, respectively, close
to the theoretical values (Fig. 1). Despite the good match
among the orientation-averaged thin-shell curves, a detailed
examination of the curves for individual symmetry axes
shows that the uniform thin-shell theory (Fig. 3, insets)
and the nonuniform 3D models make different predictions
of orientation dependence (Fig. 3). Specifically, the thin-
shell theory predicts that the response along the fivefold
axis will always be softer than that along the other axes,
whereas the 3D models predict that the twofold (T¼3)
and threefold (T¼4) axes will have the softest response.
However, attempts to bin the experimental data using the
thin-shell simulation results produced a ratio of the number
of capsids lying on the various symmetry sites that is incon-
sistent with the frequency of these sites occurring on an indi-
vidual capsid (Table S1). This suggests that prestress at the
fivefold icosahedral vertices of the capsid, predicted by thin-
shell disclination models (8,22,32–34), is, for HBV, not the
dominant mechanism in determining the orientation depen-
dence of the mechanical response.

The success of detailed FE modeling in quantitatively
recapitulating the measured deformation of these nanosized
objects prompted us to ask whether similar results could be
obtained by starting the simulations from atomic interac-
tions. Hence, we set out to apply a SBCG MD model (24)
to capture the indentation behavior of the T¼4 HBV capsids
as previously described (17). A previous MD simulation of
FIGURE 5 SBCG MD simulation results. (a)

SBCGMD representation of an AFM tip indenting

a T¼4 HBV capsid at the same relative indenta-

tions and along the same pushing directions as

those shown in Fig. 2 b for the FE model. Capsid

protein monomers are shown in alternating colors.

(b) MD indentation curves (averaged over time

windows of 150 ns and all simulations, n ¼ 5)

along the two-, three-, and fivefold symmetry

axes, and average of all experimental indentation

curves. The experimental indentation curves are

divided by their measured radius and then aver-

aged. The averaged MD curves are divided by

the outer radius used for the simulations.

Biophysical Journal 99(4) 1175–1181
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a viral shell captured deformation on a nanosecond time-
scale using a nonrealistically small indenter (35). In our
MD simulation (accounting for solvent through a Langevin
approach), we obtained the deformation behavior of a capsid
on a microsecond timescale using a tip similar in size to
a regular AFM tip (Fig. 5 a). Note that another recent study
(36) reported CG simulations of nanoindentations of CCMV
and CPMV capsids, and demonstrated an agreement
between these simulations and the continuum elastic model
in terms of the force response.

Deformation of the capsid in SBCG MD simulations is
illustrated in Fig. 5 a by snapshots from two representative
trajectories. The deformation is similar to that observed in
the FE simulations (Fig. 2 b). It is important to note that
individual SBCG MD simulations follow different trajecto-
ries, whereas FE simulations provide an average description
of the indentation. Several SBCG MD trajectories were
obtained for each pushing direction, and whereas the
dynamics of the capsid differ slightly from one trajectory
to the other, overall the observed deformations are approx-
imately the same for all trajectories that employ the same
pushing direction (see details in Arkhipov et al. (17)). The
unscaled MD indentation curves along the three major
symmetry axes in Fig. 5 b reveal a good fit to experimental
data, especially at the beginning of the indentation curves.
Because the MDmodel is tuned simply to reproduce a stable
undeformed capsid of the correct dimensions, the best fit is
also expected for small deformations. Next, the symmetry
axis-dependent deformations seen in these simulations
show that capsids are stiffest near the twofold axes, and
that deformations near the fivefold axes plateau around
a relative indentation of ~0.4. These observations are in
line with the detailed FE predictions (Fig. 3 b) and the
experimental results (Fig. 4 b).
CONCLUSIONS

The observed agreement between the CG MD curves and
the experimental data is especially satisfying considering
that the MD model was parameterized without any knowl-
edge of its deformation or interaction with the AFM tip or
substrate. Hence, whereas the FE results need to be scaled
to fit the experiments, the MD simulations can reproduce
the experimental results without using experimental inden-
tation data to tune parameters or perform scaling. This
outcome suggests that even when few experimental data
are available, CG MD simulations can be used to provide
an estimate of the material properties of nanostructures.

To conclude, the indentation responses of HBV along
individual symmetry axes seem to be more accurately repre-
sented by the 3D FE model than by the thin-shell model.
We show that this observation can be exploited by using pre-
dicted 3D FE modeling curves to assign the experimental
data into separate data sets, each reflecting indentations
along different symmetry axes. In addition, we show that
Biophysical Journal 99(4) 1175–1181
CG MD simulations based on atomic interactions within
the 4 MDa viral nanostructure can also faithfully describe
the elastic nonlinear response of a viral nanoshell to com-
pressive deformation. However, the success of the 3D
models in simulating the more detailed response for large
indentations indicates to us that the nonuniform surface
topography included in those models can have tangible
effects on the force-indentation profile, to a degree that
increases as indentation proceeds. Thus, continuum models
can describe not only quantitatively linear features, but also
key nonlinear features. These results support the idea that
the length scale over which heterogeneous atomic/molec-
ular interactions average out to a more homogeneous
continuum-like elastic behavior is rather small, perhaps
comparable to the size of the individual proteins.
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