
i

Neural Computation and Self-Organizing Maps - An Introduction

by Helge Ritter, Thomas Martinetz, and Klaus Schulten Addison-Wesley,
New York, 1992

About the Book:

This book is a comprehensive introduction to neural networks and neural
information processing. It describes the most important models of neural
networks and how they contribute to our understanding of information and
organization processes in the brain. One of the few generally recognized orga-
nizational principles of the nervous system, the development of cortical fea-
ture maps (brain maps), is described in detail, and the reader is introduced to
the biological background and the mathematical properties of self-organizing
maps as important functional building blocks of the brain. Examples show
how neural networks can solve important information processing tasks, in-
cluding the development of sensory maps, the traveling salesman problem,
and visuomotor control of robots.

About the Cover:

The images portray (from left to right): (I) a robot arm, learning movement
control by using self-organizing maps: (ii) a model of mapping from the hand
onto the somatosensory cortex of the brain: (iii) a theoretical study of phase
transitions in topology-conserving maps.

ii

iii

FOREWORD

The wave of interest in the artificial neural networks (ANNs) that started
in the mid-1980s was inspired by new prospects not visible ten years earlier.
First of all it should be realized that ANNs have been intended for a new
component technology. There are many computation-intensive tasks such
as preprocessing of natural signals, pattern classification and recognition,
coordination of movements in complex mechanisms, decision making on the
basis of extensive but uncertain data, and high-definition animated graphics
that can no longer be handled by digital computers. Even supercomputers
are soon unable to cope with the growing dimensionality of such problems. It
has become more and more obvious that one has to resort to special analog
computing methods; with the aid of modern VLSI technology and optics it
will be possible to produce analog picowatt circuits by the billions, and so
the cost of massively parallel computation can be cut to a fraction. The
breakthroughs in the analog semiconductor and active optical component
technology around 1980 were thus crucial for the acceptance of the ANN
computing principles.

Before digital technology can be replaced or at least augmented by the “neu-
romorphic” technology in practice, one must fully understand what and how
to compute. As even the most fundamental operations are different from
those of digital computing, and the innumerable system parameters of the
ANNs are time variable, designers are faced with new phenomena, and they
have to learn how to deal with them. This revolution in the paradigms
and standards will not be easy; however, if the ANNs prove cost-effective in
practice, this change will be inevitable. Therefore, we must welcome every
teaching effort in this new field. Books, especially monographs, of which the
present one is an excellent example, are invaluable aids in education of these
new technologies.

The excitement about the ANNs has also been accompanied by certain beliefs

iv

that we finally understand how the brain works. The collective computations
thereby performed, and the automatic adaptive changes of the system pa-
rameters and structures have often been identified with mental processes
and learning ability. However, it may already have become clear even to the
most enthusiastic supporter of these ideas that mere increase in the parallel
computing capacity is not sufficient for the duplication or even imitation of
the brain functions. Every biological cell makes use of tens of informations
processing principles of which only two or three have been utilized in the
ANNs and the immensely complex structures of the biological nervous net-
works have been formed in innumerable cycles of evolution, under continuous
bombardment of complex signals from the environment and other sources of
natural information. There exists yet nothing similar in the ANNs, which
are usually only dedicated to some restricted tasks.

While it is obvious that the ANNs cannot accurately imitate even the sim-
plest biological circuits, it is also necessary to realize that the functions and
processes at work in the nervous systems are not at all that mysterious; since
they are based on physical and chemical phenomena, it is possible to ap-
proximate their behavior, at least on some level of abstraction. For their
understanding it will then be sufficient to set up a model that takes into ac-
count a number of the basic operations and relationships of the elementary
functions in the spatial and temporal domain. If certain essential model-
ing assumptions are made, one cannot avoid starting to see phenomena that
very much resemble those observed in the biological systems. This is an
irrefutable fact, and can certainly be interpreted as partial explanation of
these phenomena.

When working with the ANNs, it is therefore necessary to realize that while
the principles and components thereby applied have been inspired by brain-
theoretic considerations, the artificial implementations need not necessarily
do exactly the same as their biological counterparts. It may not be possible
to achieve the complexity, flexible learning ability, and capability of high-
level abstraction of experiences characteristic of biological organisms. On
the other hand, the stability and accuracy of the artificial components can
be orders of magnitude higher than those of the biological ones. In some
tasks it can be a significant advantage that the ANNs do not exhibit fatigue,
and are not panicked in alarming situations. It is plausible that in the future
the computing capacity of the ANNs can be increased much beyond that of
the biological systems. All this gives us promises of development that we

v

may not yet fully foresee.

Teuvo Kohonen

Professor, Helsinki University of Technology
Research Professor at the Academy of Finland

vi

PREFACE

The understanding of biological brains—with their capacity for learning as
well as for the processing of sensory impressions and the control of movements—
is one of the most fascinating research challenges of our time. In the still-
young discipline of Neural Computation, scientists from such distinct fields as
biology, information theory, physics, mathematics, psychology, and medicine
have joined forces to pursue this challenge. Neural Computation seeks to
simulate “biological intelligence” in artificial “neural networks” the structure
and dynamics of which attempt to imitate the function of biological neural
systems.

In the past few years, a number of promising successes have been achieved in
this endeavor, triggering lively research activities in diverse research groups.
The present book took shape during this period. Its aim is to provide an
introduction to the field of neural computation and it is equally intended for
those working in the fields of computer science, physics, biology, mathemat-
ics, engineering, psychology, and medicine, as well as for all those readers
with an interest in computer models of neural networks and of the brain.

The first part of the book gives a general overview of the most important
current models of neural nets together with a short sketch of the relevant
biological background. The second part of the book is devoted to the cen-
tral question of how functional neural circuitry in the brain can arise by
means of a self-organizing process. It is shown how, by means of a few simple
mechanisms, neural layers can learn representations or “maps” of important
stimulus features under the influence of nothing more than a random se-
quence of sensory stimuli. A series of examples demonstrates the simulation
of observed organization processes in the brain. However, these examples also
show how solutions of abstract tasks from traditional information science can
be obtained by the same mechanisms. The third part of this book is con-
cerned with the question of what extensions of these mechanisms are required

vii

in order to enable the learning of simple motor skills, such as the balancing
of a pole or the control of eye movements. Building on this foundation, the
fourth part of the book describes several studies concerning problems of robot
control. It is shown how a neural network can implement the coordination of
robot arm movements under visual feedback control. Finally, the last part of
the book treats important theoretical questions connected with the learning
process, in particular the question of convergence and the influence of the
element of chance during the learning phase.

At several points, a basic mathematical knowledge of elementary analysis
and linear algebra may be useful to the reader, but they are not required
in large parts of the book. Only in the last part, which is concerned with a
more thorough mathematical analysis, some familiarity with vector analysis
will be helpful.

Here, we would like to thank all those who have contributed to the creation
of this book. We are grateful to the friendship and advice we received from
Hans-Ulrich Bauer, Joachim Buhmann, Anita Govindjee, Leo van Hemmen,
Karl Hess, Teuvo Kohonen, Christoph von der Malsburg, Sabine Martinetz,
Jeanette Rubner, Zan Schulten, Werner von Seelen, Larry Smarr, Paul Tavan,
and Udo Weigelt. We want to mention particularly our colleague Klaus
Obermayer, whose work on self-organizing maps enriched our own views in
many important ways, and who provided two of the color pictures on the
front cover. Daniel Barsky, Ron Kates, and Markus Tesch have helped us
tremendously with the translation from the original German text. Allan
Wylde and Pam Suwinsky of Addison Wesley have been patient supporters.
The book would have been impossible without grants which we received
over the years from the National Science Foundation, the National Institute
of Health, the State of Illinois, as well as from the German Ministry of
Research and Development. Thomas Martinetz received a fellowship from
the Volkswagen Foundation. Computer time and much good advice had been
available to us from the National Center for Supercomputing supported by
the National Science Foundation.

We are especially grateful to the Beckman Institute of the University of Illi-
nois where we had the privilege to work and in whose stimulating atmosphere
the book could be completed.

This book was written with the TEX typesetting system and the program
Textures. Typesetting and graphics were produced on a Macintosh II com-

viii

puter.

Urbana, Illinois, and Bielefeld, Germany
October 1991

Thomas Martinetz, Helge Ritter, Klaus Schulten

Contents ix

CONTENTS

0. Introduction and Overview . 1

1. Contemporary View of Brain Function 9

2. Biological Background . 12

3. Neural Network Models . 20

3.1 Early Approaches . 20

3.2 The Perceptron . 21

3.3 Associative Memory . 27

3.4 Linear Associative Memory 33

3.5 The Pseudoinverse as a Memory Array 34

3.6 Gradient Descent for the Computation of the Memory Matrix 36

3.7 The Correlation Matrix Memory 37

3.8 The Hopfield Model . 40

3.9 The Back-Propagation Algorithm 46

3.10 Self-Organizing Maps . 53

4. Kohonen’s Network Model . 56

4.1 Neurophysiological Background 56

4.2 Simplification and Mathematical
Definition . 62

Contents x

4.3 Simulation Examples . 65

5. Kohonen’s Network for Modeling the Auditory Cortex of a Bat 74

5.1 The Auditory Cortex of a Bat 75

5.2 A Model of the Bat’s Auditory Cortex 77

5.3 Simulation Results . 79

5.4 Mathematical Description of the “Cortical Representation” . . 82

5.5 “Cortical Representation” in the Model of the Bat’s Auditory
Cortex . 87

6. Application to the “Traveling Salesman Problem” 92

6.1 Paths as One-Dimensional Maps 92

6.2 The Model for a Discrete Stimulus Distribution 93

6.3 Application to the
“Traveling Salesman Problem” 97

7. Modeling the Somatotopic Map 101

7.1 The Somatotopic Map of the Body Surface 101

7.2 Simplification of the Dynamics 102

7.3 Results of the Simulation . 104

7.4 Development of Receptive Fields 108

7.5 Simulating the High-Dimensional Model on a Parallel Computer113

8. Extension of Kohonen’s Model 118

8.1 Motor Maps . 118

8.2 Supervised and Unsupervised Learning 121

8.3 The “Pole-Balancing Problem” 123

8.4 Supervised Pole-Balancing . 125

8.5 Unsupervised Pole-Balancing 130

Contents xi

9. The Oculomotor System: a Biological Example 135

9.1 Oculomotor Control and Superior Colliculus 135

9.2 A Stepwise Method for Learning Saccades 138

9.3 A Computer Simulation . 142

9.4 The Convergence of the Learning Process 147

9.5 Measurements on Human Subjects 151

10.Problems of Robot Control . 153

11.Visuomotor Coordination
of a Robot Arm . 156

11.1 The Positioning Action . 158

11.2 The Learning Method . 163

11.3 A Derivation of the Learning Method 166

11.4 Simulation Results . 169

11.5 Control of a Robot Arm
with Redundant Degrees of Freedom 178

11.6 Simulation Results . 182

11.7 The Neural Network as a
“Look-Up Table ” . 185

12.Control of a Manipulator by a
Hierarchical Network . 188

12.1 The Robot for the New Task 188

12.2 View through Cameras . 192

12.3 Hierarchical Arrangement of Kohonen
Networks . 194

12.4 The Output Values and the Positioning Process 198

Contents xii

12.5 The Learning Method for the Output
Values . 200

12.6 Simulation Results . 201

12.7 A Simple Grasping Strategy 206

13.Learning Ballistic Movements
of a Robot Arm . 212

13.1 Problem and Model Approach 212

13.2 A Simulation . 215

14.Mathematical Analysis of Kohonen’s Model 222

14.1 Overview . 222

14.2 Vector Quantization and Data Compression 223

14.3 Self-Organizing Maps and Vector Quantization 226

14.4 Relationship to Principal Component
Analysis . 228

14.5 Principal Curves, Principal Surfaces and Topology Preserving
Maps . 231

14.6 Learning as a Stochastic Process 235

14.7 Fokker-Planck Equation
for the Learning Process . 237

14.8 Convergence Condition on Sequences of Learning Step Sizes . 243

14.9 Uniform Signal Density Restricted to a Rectangular Box . . . 245

14.9.1 Long-Range Interaction 250

14.9.2 Short-Range Interaction 253

14.9.3 Comparison with Monte-Carlo Simulations 254

14.10Interpretation of Results . 258

14.11Appendix . 260

Contents xiii

15.Local Linear Mappings . 262

15.1 The Learning Algorithm
for Local Linear Mappings . 263

15.2 Convergence Behavior without Lateral
Interaction . 264

15.3 Improvement of Convergence through
Neighborhood Cooperation . 271

15.3.1 One-Dimensional Case 274

15.3.2 Multi-Dimensional Case 275

Bibliography . 279

0. Introduction and Overview 1

0. INTRODUCTION AND OVERVIEW

The emergence of the electronic computer and its incredibly rapid develop-
ment have revived humankind’s age-old curiosity about the working of the
brain and about the nature of the human mind. The availability of the com-
puter as a research tool has raised hopes of at least partial answers to these
questions. There are three reasons for regarding this hope as justified.

First, the accomplishments of computers have forced us to define, in a precise
manner, our concepts of the phenomenon “mind” — in this context generally
under the heading of “intelligence.” The rapid evolution of computers also
demands a redefinition of the previously clear and unproblematic concept
of “machine.” In particular, the high flexibility made possible through pro-
gramming has led us to regard the capabilities of computers as being separate
from their material substrate, the hardware, but rather as residing in their
program, the software. This “hardware-software duality” has enriched our
conceptual framework on the relationship between mind and matter.

Secondly, as a tool, the computer has tremendously accelerated scientific
progress, including progress in areas that are important for a better under-
standing of the brain. For example, computers made it possible to carry out
and evaluate many neurophysiological, psychophysical, and cognitive exper-
iments. Other relevant branches of science, in particular computer science
and its subfield “ artificial intelligence” (“ AI”) came into being as computers
became available.

Thirdly, with the ability to manufacture computer hardware of high enough
performance, discoveries concerning the functioning of the brain, in addition
to their former purely intellectual benefit, have also become valuable for their
technical applicability. This circumstance has opened up important resources
for theoretical studies of the brain, and will probably continue to do so.

However, the demand for practical applications of artificial intelligence made
evident the limitations of previous concepts of hardware and software. Char-

0. Introduction and Overview 2

acteristically, today’s computers solve problems that are difficult for humans,
but fail miserably at everyday tasks that humans master without a great
deal of effort. This circumstance, so far, has limited the use of computers
to narrow problem areas and indicates a fundamental difference between AI
methods and the operation of biological nervous systems.

Most computers, until recently, were based on the so-called von Neumann
architecture. They derive their performance from one or only a few central
processors which carry out long sequential programs at extremely high speed.
Therefore, signal-propagation times within the computer have already begun
to emerge as limiting factors to further gains in speed. At the same time,
efforts to master multifaceted problem situations, e.g., those encountered
in driving a car, by means of conventional programming techniques lead to
programs of a complexity that can no longer be managed reliably.

A way out of this dilemma requires an abandonment of the von Neumann
architecture used up to now, and instead to apply a large number of compu-
tational processors working in parallel. For the programming of such com-
puters, new kinds of algorithms are required that must allow a distribution of
computational tasks over a great number of processors. In order to keep the
necessary task of integrating such algorithms into complex software systems
manageable, the algorithms must be error tolerant and capable of learning.
These features seem to be realized in biological brains with nerve cells as
processors, which, by technical standards, are slow computational elements
and of only limited reliability, but which on the other hand are present in
huge numbers, processing sensory data and motor tasks concurrently.

In order to make this “biological know-how” available, the interdisciplinary
research area of Neural Computation has developed in the last few years.
While its main aim is an understanding of the principles of information pro-
cessing employed by biological nervous systems, this discipline also seeks to
apply the insights gained to the construction of new kinds of computers with
more flexible capabilities. In the pursuit of this goal, Neural Computation
combines the efforts of computer scientists, neurobiologists, physicists, engi-
neers, mathematicians, psychologists, and physicians.

Although we are still far from a true understanding of how the brain works,
a great deal of progress has been made, especially in the last few years. On
the experimental side, modern techniques are opening new “windows into
the brain”. Today, optical dyes allow one to stain living brain tissue such

0. Introduction and Overview 3

that the optical properties of the dyes provide a measure of the electrical
activation of the nerve cells. In this way, optical recording of neural activity
patterns has become possible. Other staining methods allow precise recon-
structions of the three-dimensional shape of single nerve cells. By means
of modern computer tomographic methods (PET, NMR) the momentary
metabolic activity level of brain tissue can be recorded up to spatial reso-
lutions in the range of millimeters. Sensitive magnetic field detectors based
on superconducting devices (SQUID’s) can measure the spatial distribution
of brain currents with a similar resolution from outside the head. This has
made it possible to monitor patterns of brain activity with noninvasive meth-
ods — and, therefore, also in humans — and to investigate its dependence
on experimentally preselected mental tasks.

Nevertheless, the task of integrating the multitude of experimental data col-
lected up to now into predictive theories of information processing in the
brain is anything but simple. The first efforts go back to 1943, when McCul-
loch and Pitts originally postulated that nerve cells play the role of “ logical
elements,” i.e., evaluate Boolean (logical) functions. With the advent of dig-
ital computers, a strong additional motivation for the further development of
these ideas arose, since quantitatively formulated models were suddenly no
longer dependent on mathematical analysis alone, often both very difficult
and feasible only to a limited degree, but could now be investigated in com-
puter simulations. At this time the “ perceptron” was being developed by
Rosenblatt (1958). Rosenblatt derived a network model capable of learning
to classify patterns making use only of simple principles for the change of
connection strengths between neurons. These resembled the principles pre-
viously suggested by the psychologist Hebb (1949) on theoretical grounds
to explain memory performance. Thus, the “perceptron” represents one of
the first “brain models” that could successfully demonstrate the ability to
“learn.”

At about the same time the availability of computers led to the advent of a
competing research direction, which regarded orientation toward the struc-
ture of biological nerve systems as of little aid in the investigation and simula-
tion of intelligence. Instead, this direction attempted a more direct approach:
by introducing sufficiently elaborate programming based on “problem solu-
tion heuristics,” it was hoped that ultimately the goal of intelligent machines
would be reached. Due to rapid initial successes, this research direction, now
forming most of traditional AI, managed to push the investigation of neural

0. Introduction and Overview 4

networks for a number of years into obscurity. Even so, a series of impor-
tant insights were gained in the theory of neural networks during this period:
examples are the discovery of models for associative memory (Taylor 1956;
Steinbuch 1961), models for self-organization of feature detectors (von der
Malsburg 1973) and of ordered neural connections (Willshaw and von der
Malsburg 1976), as well as pioneering studies concerning mathematical prop-
erties of important classes of network models by Amari, Grossberg, Kohonen,
and numerous other researchers.

A highly significant stimulus for the further development of the subject was
contributed by Hopfield (1982). Exploiting the formal equivalance between
network models with “Boolean” neural units and physical systems consisting
of interacting “elementary magnets” or “spins” (Cragg and Temperley 1954,
1955; Caianiello 1961; Little 1974; Little and Shaw 1975), he showed that
the dynamic of such networks can be described by an energy function and
that patterns stored in these networks can be regarded as attractors in a
high-dimensional phase space. As a consequence, a whole arsenal of math-
ematical methods of statistical physics became available for the analysis of
such network models. Many questions previously approachable only by com-
puter simulations found an elegant mathematical solution (see, e.g., Amit et
al. 1985ab, Derrida et al. 1987, Gardner 1988, Buhmann et al. 1989). At the
same time, new kinds of network models were found, two of which deserve
special mention because of their promise: The backpropagation model (redis-
covered several times, most recently by Rumelhart et al. 1986) constituted
a significant improvement of the earlier perceptron models. In spite of a few
aspects that are implausible from a biological point of view, its extremely
broad applicability triggered considerable new research activity. Kohonen’s
model of self-organizing neural maps (Kohonen 1982a) represented an im-
portant abstraction of earlier models of von der Malsburg and Willshaw; the
model combines biological plausibility with proven applicability in a broad
range of difficult data processing and optimization problems.

All of these models provide us with a much more refined picture of the func-
tion of the brain than could have been anticipated a few decades ago. Nev-
ertheless, most of the work has yet to be done. Compared to the capabilities
of biological systems, the performance of our present “ neurocomputers” is
quite rudimentary. We still are unable to relate more than a relatively small
number of experimental observations to properties of our models. There
are still enormous gaps between the complexity of the brain, our theoret-

0. Introduction and Overview 5

ical models, and the capacity of today’s computers. However, the modest
amount of “biological know-how” which has been accumulated in order to
bridge these gaps is already promising and suggests that further research
will be rewarding. In particular, a new generation of computers with thou-
sands of processors has put us in a position to simulate at least small areas
of the brain in much greater detail than previously possible, and to use for
the first time realistic numbers of neurons and synapses for such simulations
(Obermayer et al. 1990a-c, 1991).

The first part of the book furnishes an overview of the major concepts on
which much of the current work in Neural Computation is based. In Chap-
ter 1, our present view of the brain as a “ neurocomputer” is briefly out-
lined. The second chapter contains a sketch of the biological background,
emphasizing its significance in understanding the various brain models. The
third chapter introduces the most prominent model approaches of neural net-
works, including the perceptron model, the Hopfield model, and the back-
propagation algorithm. A particular type of network, Kohonen’s model of
self-organizing maps, is the focus of Chapter 4. This network model is ca-
pable both of reproducing important aspects of the structure of biological
neural nets and of a wide range of practical applications. It will serve as a
basis for much of the discussion in the later chapters.

The later parts of the book take the reader through a series of typical issues
in neural computation. We devote each chapter to an information-processing
task that is characteristic of those confronting a biological organism in its en-
vironment. It is not our intention in the later chapters to present a complete
survey of the by now large field of neural computation. Rather than a broad
overview of the many different approaches, we present a highly focused and
detailed description of network models based on self-organizing maps.

As an introductory example, it is shown in Chapter 5 how an adaptive “
neural frequency map” can be formed in the cortex of a bat, which enables
the bat to perform an extremely precise analysis of sonar ultrasound sig-
nals. Chapter 6 is concerned with the relationship of this example to the
solution of a task appearing completely different at first glance, namely the
determination of a route that is as short as possible in the “ traveling sales-
man problem.” A further example (Chapter 7) considers the creation of an
ordered connectivity between touch receptors of the hand surface and the
cortical area responsible for the sense of touch in the brain. Here, as in the

0. Introduction and Overview 6

case of the bat, we are concerned with the processing of sensory informa-
tion. However, in nature this is never an end in itself. The processing of
sensory information always has as its eventual goal the triggering and con-
trol of motor functions, probably the oldest task of biological nerve systems.
This points to the need for the investigation of strategies for neural control
and for learning to execute movements; it also brings us to the theme of the
third part of the book.

The task of balancing a pole already contains a number of important features
of motor control problems, and it is therefore discussed thoroughly in Chapter
8. We show how a neural network can learn the task of balancing a pole,
first in a version with the help of a “teacher,” then in an improved version
by “independent trial and error.” The main point of this task is to learn how
to maintain an unstable equilibrium. An equally important aspect of motor
function is the support of our sensory perception. In vision, for example,
this purpose is served by unconscious, sudden eye movements. The precise
“ calibration” of these movements is provided by a permanently operating
adaptation process, and Chapter 9 describes a simple neural network model
demonstrating such capability in a computer simulation.

It is clear that, for the control of their movements, biological organisms and
intelligent robots are confronted with tasks that are in many respects similar.
Hence, in Part IV of the book, we turn our attention to issues of robotics
(Chapter 10). In Chapter 11, it is shown how a robot arm observed by two
cameras can learn in the course of a training phase to position its “hand”
within the field of view of the cameras by means of visual feedback. Here, by
trial and error, the network gradually learns to take properly into account
the geometry of the arm and the visual world “seen” by the cameras.

The capability of proper positioning forms the basis for the more complex
motor behavior of object gripping. Chapter 12 demonstrates that this abil-
ity can also be acquired by a network through learning. However, in view
of the higher complexity of the procedure, a network with a hierarchical
construction is required. Chapter 12 offers an interesting example of the
implementation and training of nets structured in this way.

For the control problems of Chapters 11 and 12, consideration of purely geo-
metrical relationships, i.e., the so-called kinematics of the robot, is sufficient.
However, for sudden movements, arm inertia also plays a role. Chapter 13
shows how the network can take such dynamic aspects into account. Here,

0. Introduction and Overview 7

the network learns the control of “ ballistic arm movements” in a training
phase by triggering short torques about the joints of the robot arm.

The preceding examples attempt to illustrate the multitude of tasks that bi-
ological brains have learned to master in the course of evolution. At best, we
can solve a few isolated tasks today, and in many cases we must develop new
solution heuristics which are often ad hoc and without substantial theoretical
foundation. This may be compared to the situation prevailing in chemistry
during the middle ages, when many chemical reactions were indeed known
empirically, but it was not yet appreciated that the huge number of distinct
chemical substances could be attributed to barely one-hundred chemical el-
ements. The number of different “ neural modules” in the brain appears
to be of the same order of magnitude as the number of chemical elements.
This suggests that in the area of information processing, a reduction of the
great variety of phenomena to a manageable number of “elements” might
also exist.

Our present level of understanding provides us with little more than a vague
idea of which principles might be fundamental in this reduction. However,
we have available some network models that are encouragingly versatile. The
present book illustrates this by demonstrating that the solution of the tasks
discussed above can succeed using only a few variants of a single network
model, Kohonen’s “self-organizing neural map” (Kohonen 1982a). The bio-
logical basis for this model is the organization encountered in many regions of
the brain in the form of two-dimensional neuron layers. These layers receive
their input signals from nerve fibers emerging either from other neural layers
or from peripheral sensory receptors. As a rule, the activities in the individ-
ual nerve fibers encode different features of the input stimulus. The nerve
fibers coming into contact with a neuron thus determine which input fea-
tures are particularly effective in exciting this neuron. As experiments show,
the connections between neurons and incoming nerve fibers are frequently
structured in such a way that adjacent neurons respond to similar input
features. This corresponds to a mapping of the (usually higher-dimensional)
space of stimulus features, which are coded in the nerve fibre activities, to the
two-dimensional neuron layer. Important similarity relationships of abstract
stimulus features can be translated into spatial relations of excited neurons
of a two-dimensional layer in the manner of a “ topographic map.” Koho-
nen’s model explains the creation of appropriate connection patterns and
the resulting “ maps” of stimulus features as a consequence of a few simple

0. Introduction and Overview 8

assumptions. The connection pattern forms step by step during a learning
process requiring as its only information a sufficiently long sequence of input
stimuli. By means of appropriate variants of the basic model, this procedure
can be exploited for a broad spectrum of interesting information-processing
tasks.

Our book is not limited to the discussion of a series of examples. Rather,
each example serves to introduce a mathematical analysis of some particular
aspect of the model and, in the course of the discussion, serves as an illustra-
tion of the application of a number of important mathematical methods to
concrete questions of Neural Computation. The mathematical aspect takes
center stage in Part V of the book. First, in Chapter 14, the relationship
of the model to procedures for data compression and to factor analysis for
the determination of “hidden variables” is presented. This is followed by a
discussion of those aspects of the model whose investigation requires a higher
degree of mathematical sophistication. The learning process is treated as a
stochastic process and described by means of a partial differential equation.
Statements concerning convergence properties and statistical fluctuations of
the learning process can then be made. The capacity for automatic selec-
tion of the most important feature dimensions is discussed mathematically in
greater depth, and the relationship to the periodic structure of certain sen-
sory maps in the brain is pointed out. Finally, Chapter 15 discusses the use
of local linear transformations as output (needed to solve control tasks), and
provides a mathematical analysis of the improvement of the learning process
as a consequence of “ neighborhood cooperation” between processing units.

1. Contemporary View of Brain Function 9

1. CONTEMPORARY VIEW OF BRAIN FUNCTION

The brain plays a most particular role among all of our organs: in contrast
to other organs, it does not process metabolic products, but rather a “sub-
stance” that did not become the subject of systematic scientific investigation
until this century, namely information. As late as in the eighteenth century,
the brain was considered to be a gland whose secretions were distributed
throughout the body along the nerve pathways. The structure of the brain
as a complex intertwined fabric of multiply networked cells exchanging sig-
nals with one another was first recognized during the past century, principally
through the research of Golgi and Ramón y Cajal.

With this modern point of view, the specialization of the brain into areas, so-
called cortices, responsible for particular activities, such as vision, hearing, or
the movement of muscles, was soon discovered. Countless experiments and
studies have extended and refined this picture in many respects; the invention
of the computer has augmented this refined view of the concrete “machinery”
with an equally refined view of its abstract task, the processing of “data.”
According to our present understanding, these data are represented on at
least two distinct functional levels, differing in their time scales. One level is
characterized by rapid changes (on the scale of milliseconds to seconds), the
other by much slower processes (taking seconds to years).

The “fast” level consists of the instantaneous activity state of single neu-
rons. The corresponding patterns of activity encode data that can change
continuously and are presumably responsible for the contents of our short-
term memory as well as for our immediate sensations. Our sensory receptors
determine a part of these activity patterns through incoming nerve bundles
by imprinting their activity more or less completely onto some subset of the
neurons. The remainder of these changes is determined by the interactions
among the neurons themselves, which can be either “ excitatory” or “ in-
hibitory” in nature.

1. Contemporary View of Brain Function 10

The connection pattern, which determines the rapid activity changes in a
decisive way, is not static, but can gradually evolve. It thus constitutes the
second, “slow” level and codes those data which change either gradually or
not at all. In particular, our long-term memory belongs to this level. Changes
on this level concern the effectivity of the connections between neurons and
take place primarily at the synapses, the neural “contacts,” whose capacity to
change and adapt forms the basis for the brain’s learning ability. According
to a hypothesis going back to Hebb (1949), the efficacy of a synapse changes
depending on the correlation between the activity of the presynaptic neuron,
i.e., the neuron that triggers the activity of the synapse, and the postsynap-
tic neuron, i.e., the neuron that is affected by the synapse. This hypothesis
has been experimentally verified at individual synapses (Kelso et al. 1986).
Changes on the fast and the slow level are thus coupled in both directions:
The rapidly varying activity states of neurons gradually mold and change the
network of connections between neurons, and these gradual changes in turn
exert a back-reaction on the activity states of the neurons themselves.

According to our current understanding, the coupled, nonlinear dynamical
processes for neuron activities and synaptic strengths form the basis for the
functioning of the brain. This concept departs completely from the way
sequential computers work. Thus, although the reaction time of a neuron
(typical timescale 1 ms) and the signal propagation velocity along a nerve
fibre (typical value 10 m/s) are extremely slow by the standards of mod-
ern computers, nature more than compensates for this disadvantage by the
massive parallelism of the neural network. The underlying strategies of infor-
mation processing must be significantly different from those of present-day
computers. For example, only a few dozen sequential processing stages can
possibly be involved in the observed, rapid formation of complex percepts,
such as the visual recognition of a scene in a fraction of a second. This rep-
resents an important constraint on what can be considered as possible brain
algorithms.

Since an individual neuron plays a minor role in what is happening globally, a
high level of error tolerance results. A further property is the nearly complete
lifting of any distinction between data and algorithm: an algorithm is em-
bodied in the unfolding of the system dynamics and, hence, is determined by
the synaptic strengths as well as by the instantaneous neuron activities. At
the same time, the synaptic strengths also determine which activity states
can be attained and thus determine which memories can be recalled. In-

1. Contemporary View of Brain Function 11

terestingly enough, in programming languages used for artificial intelligence
such as LISP, the rigid distinction between data and program has also been
relaxed.

The framework provided by the coupled dynamics of neurons and synaptic
strengths is still enormously broad. Obtaining concrete insights into the
capabilities and properties of such information-processing systems requires
the identification of important paradigmatic classes of such systems and of
the problems that they can solve. The following chapters give an overview
of some important and typical models of neural networks. However, it is
reasonable to begin with a brief (and hence by necessity very fragmentary)
sketch of the biological background. The reader may obtain more thorough
information on this subject in the books by, for example, Creutzfeld (1983),
Kandel, Schwartz (1985), and Brooks (1981).

2. Biological Background 12

2. BIOLOGICAL BACKGROUND

The site of the intelligent capabilities of the brain is the neocortex; from an
evolutionary point of view the most recent and in people the most highly
developed part of the brain. Viewed superficially, the human neocortex con-
sists of a layer of nerve cell tissue of about 0.2m2 in area and on the average
2–3 mm in thickness, strongly convoluted to save space, and forming the
exterior of both brain hemispheres. Within this layer, various areas can be
distinguished which are specialized for specific tasks such as visual perception
(visual cortex), motor control (motor cortex), or touch (somatosensory cor-
tex) (Fig. 2.1). Additional areas (association areas) link information affecting
multiple sensations.

In the human neocortex, about 100,000 closely interconnected nerve cells,
called neurons, lie under every square millimeter and constitute the “com-
putational units” of the cortex. Fig. 2.2 shows a vertical cut through the
neocortex of a cat and gives some impression of the complexity of the cor-
tical circuitry. Of the neurons actually present in the slice, only a fraction
is shown in Fig. 2.2, in order that single neurons be recognizable for the ob-
server. The actual neuron density is a factor of about 100 larger and would
correspond to a completely black picture of the slice.

Three main structures can be distinguished in a typical neuron: dendritic
tree, cell body, and axon, roughly corresponding to the input, processing,
and output functions, respectively. The dendritic tree, a branched structure
of thin cell extensions, forms the main input pathway of a neuron. It is
spread out within a region of up to 400 µm in radius around the neuron
and sums the output signals of the surrounding neurons in the form of an
electric potential, which it then sends to the cell body (soma) of the neuron.
If this potential exceeds a certain threshold value, the cell body produces a
short electrical spike, which is then conducted along the axon, a nerve fibre
ranging from a fraction of a millimeter to several meters in length. The
axon also branches out and, in this manner, conducts the pulse to several

2. Biological Background 13

Abb. 2.1: Lateral (schematic) view of the human left-brain hemisphere. Its
convoluted surface is composed of a 2–3mm thick cortical area (neocortex).
Various cortical areas specialized to specific tasks can be distinguished on this
layer.

thousand target neurons. The contacts of an axon are either located on the
dendritic tree or direcly on the cell body of the target neuron and are known
as synapses. Most synapses are “chemical contacts,” i.e., at the synapse,
the electrical pulse of the axon causes secretion of a transmitter substance
(neurotransmitter), which in turn leads to a change in the potential at the
dendritic tree or cell body of the target neuron. Depending on the type
of synapse and its state, an incoming pulse causes a more or less strong
potential rise (excitatory synapse) or potential drop (inhibitory synapse) at
the target neuron. Hence, the synapses act like analog switches regulating the
communication between neurons and, thus, represent sites where important
information is stored.

Two main classes of cortical neurons are distinguished on the basis of their
shape: pyramidal cells (Golgi Type I neurons, comprising about 60% of the
total) and star-shaped “stellate cells” or astrocytes (Golgi Type II neurons,
about 40%). The pyramidal cells usually have long-range axons with synapses

2. Biological Background 14

Abb. 2.2: Vertical section through
the neocortex of a cat (the thick-
ness dimension of the cortex lies in
the vertical direction of the figure).
The pyramidal cells (A–G) are recog-
nizable from their conical cell body,
their root-like dendrites, and their
long axon which extends to the sur-
face of the cortex (in the upper part
of the figure). In contrast, the ex-
tensions of the stellate cells (H–M)
are spread out only in the immediate
neighborhood. Only a fraction of the
neurons in the figure section is repro-
duced. The true packing density is a
factor of about 100 higher (Ramón y
Cajal 1909).

acting excitatory, whereas in the stellate cells the axon, with its stellate
branching, affects only its immediate environment, acting usually in an in-
hibitory fashion (see Fig. 2.3). It is commonly believed that the important
information is coded in the activity state of the pyramidal cells, and the
astrocytes serve as stabilizers of the system by inhibiting activity around
excited regions (lateral inhibition). In many regions of the cortex, groups
of adjacent neurons give evidence for aggregation in higher functional units
(Mountcastle 1978; Blasdel and Salama 1986). These units, known as micro-
columns, usually include the neurons of a small vertical cylindrical volume
in the cortex of typically tenths of a millimeter in diameter or smaller. Such
a cylinder can serve to analyze some particular stimulus feature, such as the

2. Biological Background 15

Abb. 2.3: Structure of a neuron (schematic). Besides the “pyramidal cell”
shown, numerous other kinds of neurons occur in the brain.

orientation of an edge of an image (as in the primary visual cortex), or the
innervation of a common muscle (as in the primary motor cortex). Adjacent
microcolumns cannot be precisely separated, but rather there is a gradual
transition in the membership of individual neurons.

At the next higher level of organization, microcolumns of one type are ar-
ranged in specialized areas. Today, about 80 such “cortical areas” are known
in the human cortex, each of which represents a highly parallel “special pur-
pose” module for a specific task. For example, one can identify in the visual
cortex areas for the analysis of edge orientation, of color shades, and of ve-
locity fields, while other cortical areas host modules for various aspects of
speech comprehension, recognition of faces, spatial orientation, and planning
and execution of movements. To the extent that simple features can be iden-
tified relating to the properties of cortical neurons, one often finds a regular
variation of these features along the two directions parallel to the surface
of the layer, i.e., there is a continuous, two-dimensional feature map. The
formation — and the benefits — of such a representation of, e.g., sensory
data, constitutes one of the subjects of this book.

2. Biological Background 16

Most cortical areas can be assigned to one of three groups: (i) primary and
secondary sensory areas, whose input stems directly (via noncortical “relay
stations”) from sensory receptors or primary cortices, (ii) association fields,
in which the various sensory signals which have been preprocessed by primary
and secondary cortical areas converge, and (iii) primary and secondary motor
areas, which (again via noncortical intermediaries) are connected with the
musculature or the primary motor areas. Each of these cortical areas is also
connected to and interacts with numerous additional cortical areas as well
as brain and nerve structures outside of the cortex. This leads to a highly
coupled and parallel global system. In spite of the differences between the
tasks addressed by different cortical areas, the cortex possesses a surprisingly
homogeneous structure. For example all cortical areas consist of six layers
(I–VI), one above the other, which differ from one another in their relative
thickness. At the risk of oversimplifying, one can say that layer IV generally
serves as the input layer of a cortical area. Next to this, association fibers
project out to other, distant cortical regions. The main source of output is
layer V. Layer VI sends out “feedback” nerve fibers to the neurons, which are
directed to the input layer IV. Layers II and III are the main output location
for short-range association fibers to surrounding cortex points. These fibers
themselves form the upper layer I.

The circuitry connecting individual modules with one another is generally
subject to a common “topographic” organizational principle: adjacent neu-
rons of an output field are almost always connected to adjacent neurons in
the target field. This organizational structure is especially evident in the
primary cortical areas, i.e., those that, from the point of view of circuitry,
are located “close to the outside world.”

Most signals from the environment are received by the brain from “sensory
surfaces” which are covered with receptors. Our largest sensory surface is
the skin with its touch and thermal receptors; perhaps our most important
sensory surface is the retina. The ear gives an example of a one-dimensional
sensory “surface:” there, the receptors are arranged along the spiral-shaped
cochlea.

Although the wiring connecting these sensory surfaces to their primary sen-
sory areas in the cortex passes through several “relay stations,” it also ex-
hibits a “topographic ordering” and conducts signals from adjacent receptors
to neurons which are adjacent in the cortex. In this way a mapping of the

2. Biological Background 17

Abb. 2.4: Map of a part of the
body surface in the somatosensory
cortex of a monkey. Most of the
neighborhood relations of the body
regions shown are preserved in the
map. Richly innervated skin regions
(e.g. finger F1 − −F5) are strongly
enlarged in the map (after Kaas et
al. 1979).

Abb. 2.5: Direction map for sound
signals in the so-called “optical tec-
tum” of an owl. The horizontally
directed lines connect neurons re-
sponding to sound signals from direc-
tions with the same longitude. The
vertically directed lines connect neu-
rons corresponding to sound direc-
tions with the same incident latitude
(after Knudsen et al. 1987).

respective sensory surfaces to the relevant cortical area is established. Due to
its preservation of adjacency and neighborhood relationships, this mapping
can be regarded as a (frequently more or less distorted) image or topographic
map of the sensory surface. For example, in the case of the sense of touch,
one finds various such maps of the body surface in the somatosensory cortex

2. Biological Background 18

(Kaas et al. 1979). An example is shown in Fig. 2.4. A similar situation holds
for the primary visual cortex. However, there it is already evident that the
brain also constructs maps of abstract features of the environment in which,
e.g., the association of neurons with local properties of visual images, such
as edge orientation or velocity of movement, varies in a regular way with the
location of the neurons. An especially illustrative example is the image in
the optical tectum of owls. There, the direction of sound signals is mapped
in a regular way within a layer (Fig. 2.5). A map coding pitch in one di-
rection is found in the auditory cortex of many higher brains. In bats, the
amplitude of the signal is coded in the direction orthogonal to the direction
of pitch. In this way, a “sound spectrogram” is created on the cortex. In
addition, bats also possess a map representing the time difference between
two acoustic events. This map is important for the sonar orientation of the
animal (Suga and O’Neill 1979).

However, maps are not limited to sensory regions. There are also “motor”
maps, on which the location of an activity peak specifies the execution of
a movement. While sensory maps generate a spatially localized “activity
peak” from the activity pattern of preceding receptor neurons whose loca-
tion represents the signal features being analyzed, motor maps create —
from a spatially localized activity peak — an activity pattern (in space and
time) among subsequent motor neurons that triggers a particular movement
(Lemon 1988). The best investigated example of such a map can be found
in the “superior colliculus” in the midbrain (Sparks and Nelson 1987). In
this map, the spatial location of an excitation peak encodes the direction and
amplitude of an eye movement. A map organized in the form of a ring can be
observed in the primary motor cortex (Murphy et al. 1977). Localized elec-
trical stimulation within this map triggers flexion and extension movements
of the arm joints, varying systematically with the location of the stimulus.

It is highly probable that a large portion of the organization of such maps
is genetically determined. However, considering the estimated 1013 synapses
of a brain, it would be impossible to specify this organization on the basis
of a detailed connectivity scheme. A way out of this dilemma is the genetic
coding of mechanisms of structure formation, as a result of whose operation
the desired connectivity would then be created. The formation of structure
could either take place before birth or as part of a later maturation phase, and
in the latter case it could be driven by suitable sensory stimuli. For example,
it has been established that the normal formation of an edge orientation

2. Biological Background 19

map in the primary visual cortex of a newborn is suppressed in the absence
of sufficient visual experience (Rauschecker and Singer 1981). Moreover,
experimental investigations, e.g., in the somatosensory cortex, show that
even in a mature animal many maps are not at all rigidly determined, but
can change slowly depending on sensory stimuli (Jenkins et al. 1984; Harris
1986).

This condensed description provides only an extremely limited impression of
the “brain as a neural computer” and its structural variety. Nevertheless,
in the last few years we have gained numerous theoretical insights in the
functioning of the brain that can be tested by means of mathematically
formulated models. In Chapter 3, we discuss some of their most important
representatives.

3. Neural Network Models 20

3. NEURAL NETWORK MODELS

3.1 Early Approaches

The first neural network models go back to the 1940s. Around this time, two
mathematicians, McCulloch and Pitts (1943) suggested the description of a
neuron as a logical threshold element with two possible states. Such a thresh-
old element has L input channels (afferent axons) and one output channel
(efferent axon). An input channel is either active (input 1) or silent (input 0).
The activity states of all input channels thus encode the input information as
a binary sequence of L bits. The state of the threshold element is then given
by linear summation of all afferent input signals xi and comparison of the
sum with a threshold value s. If the sum exceeds the threshold value, then
the neuron is excited; otherwise, it is in the quiescent state. The excited and
quiet state should correspond to the firing or not firing of an action potential
of biological neurons and are represented in the model by the binary values 1
and 0 for the activity of the output channel. Excitatory and inhibitory input
signals are modulated by “synaptic strengths” wi = ±1. The output signal
y of a neuron is thus given by

y = θ

(∑
i

wixi − s
)
. (3.1)

where θ(x) = 1 for x ≥ 0 and θ(x) = 0 for x < 0. McCulloch and Pitts
demonstrated that any arbitrary logical function can be constructed by an
appropriate combination of such elements. Their proof is based on the obser-
vation that, in particular, AND-gates and inverters can be realized as special
cases of (3.1); therefore, any other logical function can be constructed from
these. The model of McCulloch and Pitts for the first time suggested how
neurons might be able to carry out logical operations. Their idea of the neu-
ron as a logical threshold element was a fundamental contribution to the field

3. Neural Network Models 21

and has found entrance into numerous later models, albeit often in modified
form.

However, the theory of McCulloch and Pitts failed in two important respects.
Firstly, it did not explain how the necessary interconnections between neu-
rons could be formed, in particular, how this might occur through learning.
Secondly, such networks depended on error-free functioning of all their com-
ponents and did not display the (often quite impressive) error tolerance of
biological neural networks.

The psychologist Hebb (1949) suggested an answer to the first question in
his now famous book Organization of Behaviour (Hebb 1949). According to
his suggestion, the connection between two neurons is plastic and changes
in proportion to the activity correlation between the presynaptic and the
postsynaptic cell.

This Hebb hypothesis has survived up until today in various mathematical
formulations as the essential feature of many network models with learning
ability, although its experimental verification remains in dispute. One of its
simplest mathematical formulations is

∆wi = ε · y(x) · xi (3.2)

for the change in the synaptic strengths wi (i = 1, 2, . . . , n) of a neuron re-
ceiving an input x = (x1, x2, . . . , xn)T when xi is the input at the ith synapse.
y(x) denotes the excitation of the neuron and ε > 0 is a parameter measur-
ing the size of a single learning step. The quantities y(x) and wi can also be
considered as continuous.

With the advent of the computer, it became possible to simulate in more
detail the learning capacity of networks made of neurons subject to rules of
the above kind and to demonstrate practical applications of such systems.

3.2 The Perceptron

The perceptron proposed by Rosenblatt (1958) constituted an important step
in this direction. It consists of a fixed number N of elements, each of which
is supplied with an “input pattern” through L channels. Each of the input
patterns is described by an L-component feature vector x = (x1, x2, . . . , xL)T

3. Neural Network Models 22

and belongs to one of N “ pattern classes.” The classification of the input
patterns and the required number and the interpretation of the components
xi depends on the application; the xi might, for example, describe gray levels
of image pixels or quantities of a more complex feature extracted from the
input pattern by some preprocessing stage. The perceptron shall learn the
correct classification of the pattern vectors using known classification exam-
ples during a “training phase.” For the classification of an input pattern x,
each element r computes a binary output value yr according to

yr = θ(
∑
i=1

Lwrixi). (3.3)

The coefficients wri, i = 1, 2, . . . , L determine the behavior of the element r.
The absence of an “excitation threshold” in (3.3) does not imply a loss of
generality. The action of such a threshold can be taken into account without
changing the general form of (3.3) by agreeing on a constant input signal
x1 = 1. The threshold is then given by the value −wr1.

During a training phase, each element adjusts its coefficient wri in such a
way that it only reacts to the input patterns of “its” class Cr with an output
value yr = 1. For this to be possible, the existence of a solution must first
be guaranteed, i.e., there must exist weights w∗ri for which (3.3) correctly
solves the classification problem. The satisfaction of this condition depends
both on how the problem is posed and on the coding chosen for the pattern
vector x. This can be illustrated as follows: Within a particular choice of
coding, i.e., an assignment of “features” x1, x2, . . . , xL to each pattern, each
pattern corresponds to a point x in a “feature space”(possibly of very high
dimension). The individual classes Cr can be considered as subsets of points
in this space. Each element must assign its output values yr to points in such
a way that the spatial region belonging to the output value yr = 1 includes
the points of the class Cr and excludes the points of all other classes Cs,
s 6= r. However, the flexibility of the separation afforded by the threshold
elements of the form (3.3) is limited: geometrically, every choice of weights
wri corresponds to a separation of the feature space by an L− 1-dimensional
“hyperplane” into two regions, one with yr = 1 and the other with yr = 0. If
the classes in the space of pattern vectors x are arranged in a manner which
is too “convoluted,” then the desired separation by hyperplanes cannot be
achieved, and the perceptron algorithm is doomed to fail from the outset.
Figure 3.1 offers a simple example. We assume L = 2, i.e., each pattern is

3. Neural Network Models 23

characterized by a two-dimensional “feature vector,” and only two classes are
considered. In this case, the available “hyperplanes” are lines (L−1 = 1), by
means of which a complete separation of the classes C1 and C2 is evidently
impossible.

Abb. 3.1: Example of two pattern
classes C1 and C2 in a two-dimen-
sional feature space of the variables
x1 and x2 which are not linearly sep-
arable.

Abb. 3.2: The addition of a fur-
ther feature x3 leads to a higher-di-
mensional feature space, in which the
two classes may be linearly separa-
ble. Projection onto the x1−x2-plane
leads back to the nonseparable situa-
tion of Fig. 3.1

A way out of such a situation can often be found by appropriate extension
of the feature vectors by additional feature variables. These can increase the
distinguishability of the classes to the extent that a separation by hyperplanes
becomes possible. If, for example, in addition to C1 and C2 a further feature
variable x3 can be found that differs sufficiently from C1 and C2, the situation
shown in Fig. ?? may occur in the resulting L = 3-dimensional feature space.
A separation of C1 and C2 by a plane is now possible. This geometric property
of two classes is called linear separability.

Linear separability of each class from the union of all the other classes thus

3. Neural Network Models 24

guarantees that the perceptron of Eq.(3.3) can correctly classify all pattern
instances, provided its weights wri are chosen appropriately. The task of
finding such a set of weights remains. An attractive approach makes use of a
number of classification examples, i.e., vectors x together with a specification
of their respective classes. These constitute the input to the perceptron in
a “training phase.” Every time an element r provides an incorrect output
value yr 6= yr(corr) in response to some input x ∈ Cs, its coefficients wri,
i = 1, 2, . . . , L, are changed by an amount

∆wri = ε ·
(
y(corr)
r − yr

)
· xi (3.4)

This no longer exactly corresponds to Hebb’s rule, but rather the postsynap-
tic activity yr in (3.2) is replaced by the difference dr = y(corr)

r − yr between
the correct output value and the perceptron’s current output value yr. The
factor ε in front of the expression determines the “learning step size” and
must be positive. Eq. (3.4) then acts as an error correction rule: In case
of a correct answer from the element r, dr = 0, and all of the weights wri
remain unchanged. In case of an incorrect output value, dr = ±1 and Eq.
(3.4) implies a change in the sum

∑
iwrixi by ±ε∑i xi2. If the output value

was too small, this causes an increase in the sum (dr = 1) if the input pat-
tern x is repeated, and a reduction (dr = −1) if the output was too large.
This procedure is known as the perceptron algorithm, for which the following
convergence theorem holds: Perceptron Convergence Theorem: (Rosenblatt

1961; Block 1962; Minsky and Papert 1969) Let the classification problem
be solvable with appropriate weights w∗ri by means of the perceptron ansatz
(3.3), and suppose that the feature vectors x are all bounded, i.e., there ex-
ists a constant M , such that ‖x‖ < M is always satisfied. Then, with the
choice

εr = 1/‖x‖ (3.5)

the perceptron algorithm (3.5) will always find a solution after finitely many
adaptation steps for the weights wri (only the “true” modification steps, i.e.,
steps with dr 6= 0, are counted).

In the following, we give a proof of this theorem for the mathematically
interested reader. However, for an understanding of what follows, there is no
harm in skipping the mathematical derivation.

Since all elements operate independently of one another, in the proof of the
preceding theorem it suffices to consider a single element, and in the following

3. Neural Network Models 25

we can thus suppress the index r. We denote by w∗ = (w∗1, w
∗
2, . . . , w

∗
L)T

a weight vector for which the perceptron solves the classification problem
correctly (the existence of a vector with this property is required by the
theorem). Hence, there exists a constant δ > 0, such that 1

w∗ · x > δ, if y(corr)(x) = 1

w∗ · x < −δ, if y(corr)(x) = 0. (3.6)

Here, y(corr)(x) designates that output value which corresponds to a correct
classification of the input x by the element under consideration. Let w(t)
denote the weight vector of the perceptron obtained after t modification steps
from some (arbitrary) starting value. For w(t), the next modification step,
i.e., d = y(corr) − y = ±1, yields

w(t+ 1) = w(t) + ε · d · x, (3.7)

and thus

w2(t+ 1) = w2(t) + 2εd · (w(t) · x) + ε2d2x2

≤ w2(t) + ε2d2x2 = w2(t) + 1. (3.8)

In (3.8), we have made use of the relations d · (w ·x) = (y(corr)−y)(w ·x) ≤ 0
and d2ε2 = 1/‖x‖2. From Eq.(3.8), we obtain an upper bound for the
increase in the length ‖w(t)‖ with the number of modification steps that
have occurred

‖w(t)‖ ≤
√
‖w(0)‖2 + t. (3.9)

On the other hand, at each modification step, the scalar product w · w∗
satisfies

w(t+ 1) ·w∗ = w(t) ·w∗ + ε · d · (x ·w∗)
≥ w(t) ·w∗ + ε · δ. (3.10)

The last step makes use of Eq.(3.6). Therefore, w(t) · w∗ grows at least
linearly with the number of modification steps

w(t) ·w∗ ≥ w(0) ·w∗ + t · δ/M. (3.11)
1 For classes with infinitely many elements, there could always be vectors demanding

arbitrarily small δ. In this case, we consider Eq. (6) as a more precise statement
of the requirement that a solution exist. Equation (6) implies that this solution is
insensitive to sufficiently small perturbations of the weights w∗.

3. Neural Network Models 26

With the help of (3.10), (3.11) and the Cauchy-Schwarz inequality, we thus
have

w(0) ·w ∗+ t · δ/M ≤ w(t) ·w ∗≤ ‖w(t)‖ · ‖w∗‖
≤ ‖w∗‖

√
‖w(0)‖2 + t (3.12)

Since the left side of this inequality is linear and thus grows faster with t than
the right side, t cannot become arbitrarily large, i.e., only a finite number of
modification steps can occur. This concludes the convergence proof for the
perceptron. For a thorough discussion and other approaches to a proof, see
for example (Minsky and Papert 1969).

A more flexible variant of the perceptron results if the individual elements do
not work completely independently of one another, but rather compete with
one another for the correct classification. Equation (3.3) is then replaced by

yr =

{
1 : wr · x > ws · x ∀ s 6= r
0 : else.

(3.13)

A learning step occurs every time the index r of the element with yr = 1
deviates from the correct classification s of the input vector. In this case, the
weight vectors of the two elements r and s are changed according to (3.4).
The resulting learning rule is (note y(corr)

r = 0 and y(corr)
s = 1)

∆ws = εx,

∆wr = −εx. (3.14)

Here, the procedure also finds a solution after a finite number of modification
steps, as long as a solution exists. The greater flexibility of this approach
stems from the fact that now each element r can close off for its class not
just a half-space, but a conical region bounded by those hyperplanes where
wr · x = ws · x.

Aside from the convergence theorems, numerous other interesting and impor-
tant statements can be derived with mathematical rigor for the perceptron (
Minsky and Papert 1969). This is possible because the individual elements
“interact” either not at all or at most in a very simple way. In spite of this
relative simplicity, the insights gained from the perceptron illustrate many
typical problems posed by parallel and adaptive systems. In particular, the
perceptron permits a relatively far-reaching analysis of its performance and

3. Neural Network Models 27

also of its limitations. The convergence theorem guarantees that whenever
a perceptron solution exists, the learning algorithm will find it. Similarly
far-reaching results are usually not known for learning rules in more com-
plex, multilayered networks. On the other hand, it soon became evident that
for a whole series of practical classification problems, the requirement of the
existence of a perceptron solution, i.e., of appropriate weights wri, is not
satisfied, and that the perceptron thus cannot solve such problems. More-
over, other problems do admit a solution in principle but demand that the
weights be maintained with a precision growing exponentially with the size
of the problem, a requirement which in practice cannot be satisfied (Minsky
and Papert 1969). Such limitations of the perceptron have been overcome
recently by means of multilayer network models. We will return to this in
Section 3.9.

3.3 Associative Memory

Hebb’s learning rule in the form of Eq. 3.2) led to another class of models,
those of associative memory. One of the remarkable properties of the human
brain is its ability to draw inferences or associations between all types of
mental images. For a long time the location of this mental capacity and the
respective mode of information storage posed a great puzzle. Although Hebb
proposed the synapse as a relevant storage element, it was not compatible
with neurophysiological experiments to ascribe to individual synapses a role
requiring a degree of reliability similar to that of storage locations in a con-
ventional computer. On the contrary, information storage in neural networks
turned out to be remarkably robust with respect to loss or malfunction of
some limited portion of the neurons. One possible explanation was provided
by storage concepts in which each newly arriving piece of information is
stored in a way that is “distributed” over many storage elements. Thus, loss
or malfunction of a portion of the memory causes merely a general degrading
of the quality of the stored information but not the total loss of individual
entries.

A proposal for a network model with such properties was made by Willshaw,
Bunemann, and Longuet-Higgins (1969), whose network uses threshold value
elements of the type (3.1). The information to be stored is presented in the
form of training pairs (x,y). x plays the role of the input pattern, y that

3. Neural Network Models 28

of the output pattern, and both are represented as binary vectors for which
the components take values 0 or 1. x plays the role of the “key” for the
associated pattern y. Proper operation of the network model of Willshaw et
al. requires that x be a vector with a large number of components, whereas
y may be of low dimension. The dimension N of y determines the number of
threshold value elements required. Each threshold value element computes,
as in the perceptron, a single component yr of the output pattern. It is given
by

yr = θ

(∑
i=1

Lwrixi − sr
)
. (3.15)

Here, sr is the threshold of element r and θ(.) is again the step function
defined in connection with (3.1). The right side of (3.15) can be evaluated
by N McCulloch-Pitts neurons, which receive the input pattern x through
N common input channels. Information storage occurs in the matrix of the
L×N “synaptic strengths” wri. These are to be chosen in such a way that
(3.15) assigns the correct output pattern y to each input pattern x.

Willshaw et al. considered the case where p training pairs
(x(1),y(1)), (x(2),y(2)), . . . , (x(p),y(p)) are to be stored, whose input patterns
of 1s and 0s each contain the same number k of 1s, e.g., x = 010100100 for
k = 3. Suppose that the positions of these 1s are not correlated with each
other and that their number k is small compared to the total number L of
components of a pattern. The input patterns thus consist almost completely
of 0s. On the other hand, the number of 1s in the output patterns y(ν) need
not be restricted in any way.

The storage of a training pair (x,y) = (x(ν),y(ν)) consists of setting all
weights wri satisfying both xi = 1 and yr = 1 to the value one (all the
weights are zero before storage of the first pattern). The remaining weights
remain unchanged. This is illustrated in Fig. 3.3a–c for the example of the
storage of three training pairs. The horizontal input lines carry the input
pattern, the vertical output lines the output pattern. A value wri = 1 is
designated by a mark at the intersection of input line i and output line r.
Those weights that have been changed for the storage of the most recently
offered pattern pair are identified by open circles.

After all of the p training pairs have been stored, the resulting memory matrix
becomes

wri = max
ν=1,...,p

(
y(ν)
r x

(ν)
i

)
. (3.16)

3. Neural Network Models 29

The threshold is set to the value sr = k − 1/2.

This choice of a memory matrix and threshold guarantees that all output
lines that were active during the storage of a training pair

(
x(ν),y(ν)

)
are

reactivated if the input pattern x(ν) is presented alone. Formally, this results
from the relation∑

i

wrix
(ν)
i =

∑
i

wri · y(ν)
r x

(ν)
i =

∑
i

y(ν)
r x

(ν)
i =

∑
i

x
(ν)
i = k > sr, (3.17)

which holds provided y(ν)
r = 1.

Figure 3.3d offers an illustrative example. Here, the memory array formed
after the steps shown in Fig. 3.3a–c is presented with the input pattern of
the training pair stored in step (b). In this case, k = 2, and all thresholds
take the value sr = 3/2. Each output line r active in storage step (b) has
left exactly k weights wri = 1 (r fixed) in the memory matrix; these are
highlighted in Fig. 3.3d by open circles. These weights “belong” precisely to
those k input lines which together were active in step (b), and, if the same
input lines are again activated, they produce the sum

∑
iwrixi = k > sr and

thus the excitation of all those output lines r that were active during storage
step (b).

Note that Fig. 3.3d also shows that the output pattern can contain, in addi-
tion to the correct 1s, a few erroneous 1s. Such an “erroneous 1” is present on
the second output line of Fig. 3.3d and is designated by an (∗). As illustrated
by the example, such errors occur whenever many training pairs activate the
same output line r and the opposite output value yr = 0 is to be assigned
to an input pattern which agrees partly with many of these pairs. However,
it can be shown that for pattern vectors with a sufficiently small proportion
of 1s (this assumption is strongly violated in the example of Fig. 3.3), these
errors occur with very low probability.

For a statistical estimate of the error probability of 0s, we introduce the
additional assumption that every output pattern contains a fixed fraction f ′

of 1s. However, we make this assumption for convenience of the mathematical
discussion only; it is not important for the function of the memory. We denote
the fixed fraction of 1s in each input pattern by f = k/L.

We consider a pattern ν and a component r of the output, to which the value
y(ν)
r = 0 is assigned for pattern ν. What is the probability for equation (3.15)

to provide the wrong output value yr = 1 if altogether p patterns are stored?

3. Neural Network Models 30

Abb. 3.3: Pattern storage in an associative memory matrix. The input infor-
mation is provided by the horizontal lines as a 0-1-pattern x of “activities.” The
output information y is the 0-1-pattern on the vertical lines. Each intersection
of an output line r and an input line i is assigned a “weight” wri (marked by
a symbol), which is set to the value one if both lines are active simultaneously.
The associations between the input and output patterns are stored in the matrix
determined in this manner. Fig. 3.3a–c show the implications of this rule for
three consecutive training pairs. The output y corresponding to the input pat-
tern x can be approximately reconstructed for each output line by summation
and thresholding, yr = θ(

∑
r wrixi − sr) (Fig. 3.3d). In Fig. 3.3d, the out-

put pattern reconstructed in this way deviates from the correct pattern in the
component designated by an (∗).

An incorrect value yr = 1 always occurs if∑
i

wrix
(ν)
i > sr. (3.18)

Because of the choice sr = k − 1/2 for the threshold, the left side of (3.18)
would have to assume its maximal value k. This can only occur if all of the k
1s of the input pattern x(ν), i.e., xi(ν), coincide with elements wri = 1. Since
y(ν)
r = 0, these elements can only come from training pairs µ 6= ν. Those k

values of the index i for which wri = 1 or xi = 1 are therefore uncorrelated
with one another. The probability for all k input 1s to coincide with elements
wri = 1, and thus the probability for the occurrence of an error in the output
value yr, is therefore

P ≈ qk. (3.19)

3. Neural Network Models 31

Here, q is the fraction of all weights which have been set to the value 1 during
the storage procedure. Since a weight wri keeps its initial value 0 if and only
if it “avoids” the coincidence of xi = 1 (probability f) and yr = 1 (probability
f ′) for all p training pairs (probability each time 1− ff ′), q is thus given by

q = 1− (1− ff ′)p ≈ 1− exp(−pff ′). (3.20)

Equations (3.19) and (3.20) thus yield the estimate for the probability of a
“false 1” (f = k/L)

P ≈ (1− exp(−pf ′k/L))
k
. (3.21)

The average fraction γ of “false 1s” in the output pattern then becomes

γ = P (1− f ′)/f ′. (3.22)

For fixed f ′, γ depends only on k, the ratio p/L of the number of stored pat-
terns, and on the input dimension L. A convenient parameter for discussing
the behavior of P is α = f ′p/L. Figure 3.4 shows the behavior of the error
probability P with the number k of 1s per input pattern for several values of
α. Below α ≈ 0.1, the error probability falls off rapidly with decreasing α.
There is always an optimal value kopt = ln 2/α of k that minimizes the error
probability for fixed α. The minimum is given by Pmin = 2−kopt ≈ 0.6181/α.

Abb. 3.4: Dependence of error probability (logarithmic scale) P on the number
k of 1s of the input pattern in the model of Willshaw et al. for parameter values
α = 0.1 (upper graph), α = 0.05 (middle graph) and α = 0.025 (lower graph).
For every α, there is an optimal value of k minimizing the error probability. For
α << 1, errors rapidly become very rare

3. Neural Network Models 32

The choice sr = k − 1/2 for the thresholds “just barely” enables the activa-
tion of an output line. If any 1s at all are lacking from the input pattern,
the value zero results in all output lines. Similarly, even a single missing
“synapse” (wri = 0 instead of wri = 1) prevents the output value yr = 1.
Thus, the system has practically no error tolerance with respect to failure
of a few “synapses” or a few missing input bits. However, the choice of a
lower threshold sr gives rise to such an error tolerance. This raises the error
probability P to

P =
k∑

ν>sr

qν(1− q)k−ν
(
k

ν

)
(3.23)

(for sr = k − 1/2 this reduces to the simpler expression (3.21)), but this
worsening can be compensated by choosing a correspondingly smaller value
for the ratio p/L , i.e., by a storage of a smaller number of patterns. This
corresponds to utilization of a smaller fraction of the “storage capacity.” The
advantage compared to the choice of threshold sr = k−1/2, however, is that
the error rate P is now robust with respect to a limited fraction of missing
synapses or with respect to the absence of some percentage of the input 1s.
The tolerable fraction of such errors can be estimated as follows: since sr < k
correct input 1s of an input pattern already suffice for activation of all the
correct output 1s, even if a relative fraction κ ≈ 1 − sr/k of all input 1s
were absent, an incorrect output pattern would not result. Here, it is of no
consequence whether these errors occur in the input pattern itself or whether
they arise due to the lack of a corresponding fraction of the “synapses”
wri = 1. In this way, the model offers a way to realize a distributed pattern
storage. A similar kind of storage is believed to be realized in the brain.

An especially interesting feature is that one can obtain the matrix wri using
Hebb’s Rule (3.2) by adding the condition that the value of a weight must
be strictly increasing and be bounded from above by the maximal value one.
Beginning with the initial values wri = 0, during a training phase one “forces”
the input and output lines to take on successively the binary values of all
training pairs (x(1), y(1)), (x(2),y(2)), ..., (x(L),y(L)) which are to be stored.
For each pair (3.2) is applied with ε = 1. Thus, one sets wri = 1 in the first

training pair satisfying both x
(ν)
i = 1 and y(ν)

r = 1 simultaneously. All wri
for which this never happens remain zero, which finally results in (3.14).

The nonlinear threshold operation by means of the function θ(.) defined in
(3.5) does not allow a mathematical analysis. However, a matrix memory

3. Neural Network Models 33

can also be realized by means of a linear ansatz. In this case, the threshold
operation does not occur, and the binary values may be replaced by continu-
ous variables. The resulting linear associative memory has been investigated
by Kohonen (1972, 1984a) and forms the subject of the following section.

3.4 Linear Associative Memory

An important difference between nonlinear and linear systems is the validity
of the superposition principle in the latter. The linear superposition of several
input patterns yields the same superposition of the corresponding output
pattern. Whether or not this is a desired property depends on the intended
application. However, in general this circumstance does imply a limitation
of linear models compared to nonlinear models: only in the latter case can
a linear combination of input patterns be associated with an independent
output pattern.

In the following, we consider the linear ansatz

yr =
∑
i=1

Lwrixi. (3.24)

Like Eq.(3.5), Eq. (3.24) can be interpreted as the transformation of an input
signal x by a number of “neurons,” now assumed linear, into an output signal
y.

We are again interested in the use of a system described by Eq.(3.24) as a
memory for a number of given “training pairs” (x(ν),y(ν)), ν = 1, 2, . . . , p. In

contrast to the previous section, the components x
(ν)
i and y

(ν)
i can now take

arbitrary continuous values. For example, x(ν) might be an array of pixel
intensities of a gray-level image, and y(ν) might contain some information
which is to be “associated” with this image. In particular, y(ν) may even
coincide with x(ν). In this case, one has a so-called autoassociative memory .
At first glance the association of a pattern with itself seems to promise little
new information. However, a useful effect results if the association succeeds
even in the case of an erroneous or incomplete input pattern. Autoassociation
leads in this case to elimination of errors and/or to completion of incomplete
input data.

3. Neural Network Models 34

The requirement that the p training pairs (x(ν), y(ν)) be stored constitutes a
condition on the N×L-matrix W of weights wri. The simplest approach con-
sists in minimizing the squared error E[W], averaged over all input patterns
of the matrix, which is dependent on the matrix W:

E[W] =
∑
ν=1

p
∑
r=1

N
(
y(ν)
r −

∑
i=1

Lwrix
(ν)
i

)
2 = Minimum. (3.25)

Several solution strategies are possible for minimizing E[W]. The three most
important are: (i) exact algebraic minimization by means of the so-called
pseudoinverse, (ii) application of an iterative gradient-descent procedure for
stepwise minimization of E[W], and (iii) use of the correlation matrix of
training pairs as an approximate solution for the weight array W.

The approaches (i) and (ii) lead essentially to the same solution and max-
imize the achievable “storage capacity.” However, as a solution technique,
(i) has the disadvantage of requiring a completely new computation of all
wri for each newly arriving pattern. Hence, this approach is unrealistic, at
least as far as applications to neural models are concerned. On the other
hand, method (ii) can be formulated as an iterative “learning rule” which,
for sufficiently frequent sequential “presentation” of the training pairs to be
stored, gradually produces the optimal weights wri. However, the change of a
weight wri in a learning step also depends on all the other weights wrj, j 6= i.
In this sense, alternative (iii) is still simpler. Moreover, the required correla-
tion matrix is easy to compute, and its formulation as an iterative “learning
rule” takes the form of Hebb’s rule. However, in general (iii) does not yield
the minimum of E[W] and hence its utilization of storage capacity is worse
than that of the optimal techniques (i) and (ii). This disadvantage is only
avoided in the case of pairwise orthogonal pattern vectors, i.e., x(ν) ·x(µ) = 0
for µ 6= ν. In this case, all three techniques are equally good, and (i) and
(ii) reduce to (iii).

Following this survey, we now discuss approaches (i), (ii) and (iii) in more
detail.

3.5 The Pseudoinverse as a Memory Array

The average error E[W] is a quadratic polynomial in the weight variables
wri. Minimality of E[W] demands the vanishing of all first derivatives with

3. Neural Network Models 35

respect to weight variables wri, i.e., the existence of the L× p equations

∂E

∂wri
= 2 ·

∑
ν=1

p

∑
j

wrjx
(ν)
j − y(ν)

r

 · x(ν)
i = 0, (3.26)

or, in matrix notation,

WXXT = YXT. (3.27)

Here, W is the N × L-matrix of weights wri, X is a L × p-matrix, whose
elements Xiν are given by the components of the input vector x

(ν)
i , and Y is

a N × p-matrix with elements Yrν = y(ν)
r .

Equation (3.26) is a linear equation for the weight array W. Comparison
with the original “storage condition” (3.24), which in matrix notation takes
the form

WX = Y, (3.28)

shows that (3.27) results from (3.28) after “right-multiplication” of both
sides by the matrix XT . If the square matrix XXT is invertible, one can
solve (3.27) for W, and one obtains

W = YXT (XXT)−1. (3.29)

However, the invertibility of XXT requires the presence of N linearly inde-
pendent input pattern vectors x(ν), which is usually not satisfied. For exam-
ple, the number p of input vectors might be smaller than N ; or, although
p > N , the dimension of the space spanned by the input vectors might be
lower than N .

The noninvertibility of the matrix XXT indicates that (3.28) possesses a
whole family of solution matrices W forming an affine space. However, the
uniqueness of the minimal solution can be restored by imposing an additional
requirement. An appropriate condition is the minimization of the squared
sum

∑
riwri2 of all weights wri. This requirement can be incorporated easily

into the original ansatz by minimizing the new functional E[W] + α
∑
riwri2

instead of E[W]. This, besides measuring error, also measures the magnitude
of an average weight. Here, α is a positive constant, and we take the limit of
α approaching zero at the end in order to recover the original minimization
problem.

3. Neural Network Models 36

This leads to the new minimization condition

W(XXT + α1) = YXT . (3.30)

For every α > 0, the matrix XXT + α1 has a well-defined inverse (because
uT (XXT+α1)u ≥ α‖u‖2, all its eigenvalues are positive). Hence, combining
this with the limit α→ 0, we obtain the closed expression

W = lim
α→0

YXT (XXT + α1)−1 ≡ YX̃ (3.31)

for a minimal solution of E[W]. The matrix

X̃ = lim
α→0

XT (XXT + α1)−1 (3.32)

is known as the pseudoinverse or Moore-Penrose inverse of X.

Whereas the inverse X−1 of a matrix X arises in solving the matrix equation
WX−Y = 0 for given X and Y in terms of the variables W, (and exists if and
only if there is a unique solution W, which is then given by W = YX−1), the
pseudoinverse X̃ arises in the present, more general problem of minimizing
the squared sum E[W], Eq. (3.25), of the matrix elements of the difference
matrix WX −Y. In contrast to the stronger condition WX −Y = 0, this
problem always has at least one solution, which can be expressed in terms
of the pseudoinverse X̃ in the form W = YX̃. If more than one solution
exists, the pseudoinverse chooses the one with the smallest possible sum of
the squares of the matrix elements. Unlike the ordinary inverse, which is
defined only for quadratic, nonsingular matrices X, the pseudoinverse exists
for any matrix (hence in particular for rectangular matrices), and it coincides
with the inverse X−1 whenever the inverse is defined.

3.6 Gradient Descent for the Computation of the
Memory Matrix

Frequently, it is desired to “memorize” new patterns and/or to change already
stored patterns adaptively — while the memory is being used — without
having to carry out a completely new computation of the weight array W
every time. This seems to be an important property for a neural model as
well.

3. Neural Network Models 37

Such requirements can be taken into account by an iterative procedure for
minimization of E[W]. Each iteration step consists of changing all the
weights wri in the direction of the negative gradient of E[W], or, in ma-
trix notation,

∆W = ε
p∑

ν=1

(
y(ν) −Wx(ν)

) (
x(ν)

)T
, 0 < ε << 1. (3.33)

Since E[W] is a quadratic function of the matrix elements wri, this proce-
dure leads to a monotonic decrease and eventually to the global minimum
of E. In the case of a family of minimal solutions, the asymptotic solution
depends on the initial value of W, and, in contrast to the solution using
the pseudoinverse, it is generally not characterized by having the smallest
possible sum of the wri2.

Equation (3.33) can be regarded as the result of the superposition of p
“learning steps,” where each learning step corresponds to a term in the
ν-summation and can be interpreted as a change of the weights during a
“presentation” of the training pair (x(ν),y(ν)). If every training pair occurs
with the same probability and the “learning step size” ε is sufficiently small,
then on the average (3.33) corresponds to the simpler prescription

∆W = ε′(y(ν) −Wx(ν))(x(ν))T , ε′ = ε/p. (3.34)

Comparison of 3.34 and (3.4) shows that (3.34) is nothing more than a variant
of the perceptron rule discussed above. The present derivation augments the
previous discussion of the perceptron rule by showing us that this rule can be
interpreted as a gradient descent procedure for the average squared response
error.

3.7 The Correlation Matrix Memory

The perceptron rule (3.34) requires that a matrix multiplication Wx(ν) is
carried out for each learning step. Hence, the change of any single weight wri
involves the values of all the remaining weights wrj, j = 1, . . . , L. In order to
carry out the procedure in practice, for example in very large scale integrated
(VLSI) circuits, it would be desirable to have a simpler rule that would work

3. Neural Network Models 38

without this dependence. In fact, in many cases one can do without the term
Wx(ν) in (3.34). This leads to a rule of the form

∆W = ε
(
y(ν)(x(ν))T −W

)
, ε > 0. (3.35)

Here, as opposed to (3.34), an additional decay term −W has been intro-
duced for the sole purpose of automatically normalizing W; it can be left
out if the normalization is otherwise guaranteed.

In the limit of small step size ε the matrix W converges by means of (3.35) to
the correlation matrix 〈yxT 〉, where 〈.〉 denotes averaging over the presented
pattern pairs. A matrix memory based on this choice of W is therefore
known as a linear correlation matrix memory . If the training pairs all occur
with equal frequency, one has

W =
1

p

p∑
ν=1

y(ν)
(
x(ν)

)T
. (3.36)

For pairwise orthogonal pattern vectors x(ν), one easily sees that (3.36) leads
to a memory matrix with the desired property Wx(ν) = ‖x(ν)‖2 ·y(ν). In this
case, the correlation matrix memory evidently works in an error-free manner,
(the factor in front, ‖x(ν)‖2, can be regarded as an “intensity normalization”
and disappears if normalized input vectors xν are used). In particular, a
maximum of p = N such pattern vectors can be stored in this manner.

Deviations from pairwise orthogonality lead to “ cross-talk” between different
patterns and, thus, to a decreased storage capacity: for an input pattern x(ν),
the resulting output signal is

y = ||x(ν)||2
y(ν) +

∑
µ 6=ν

y(µ) x(µ) · x(ν)

||x(ν)||2

 . (3.37)

Equation (3.37) shows that, superimposed on the correct output pattern y(ν),
there are contributions from all the remaining patterns µ, µ 6= ν for which
the scalar product x(ν) · x(µ) with the input pattern x(ν) does not vanish.
A proper functioning of the linear correlation matrix memory thus requires
that these scalar products be small and, hence, that the patterns be at least
approximately orthogonal.

As a consequence, the operation of a linear correlation matrix memory can be
significantly improved by a previous orthogonalization of the input patterns

3. Neural Network Models 39

x(ν). A simple and often appropriate procedure (e.g., for many kinds of image
data) is a high-pass filtering of the input signal. The slowly varying parts of
signals are then suppressed, and only the “high-frequency” (in space or time)
part of the signal is kept. Subtracting from each component, its average value
can be regarded as the simplest version of such high-pass filtering.

The models discussed so far have no feedback. Feedback is present if some
of the input is provided by the output lines. This situation, which compli-
cates a theoretical analysis considerably, is almost always found in real nerve
systems. The smallest degree of complication occurs in the case of the lin-
ear matrix memory, considered here. A qualitative summary of its behavior
when feedback is present can easily be given. If the dimensions of the input
and output vectors agree, (L = N), the process of repeatedly feeding the
output back into the input is equivalent to replacing the memory matrix W
by the matrix taken to some higher power. After t loops, the initial vector
x(0) becomes

x(t) = Wtx(0). (3.38)

For a diagonalizable memory matrix W, x(t) converges (up to a normaliza-
tion factor) for large t to its projection on the eigenspace corresponding to
the eigenvalue of W with the largest absolute value. The components of x(0)
along the eigenvectors with small eigenvalues of W fall off most rapidly. If,
for example, W has been determined using (3.36), and if p stored patterns
are approximately orthogonal to each other, then the eigenvalues of W may
form two “clusters”, one cluster consisting of p eigenvalues of nearly the same
magnitude near 1/p, the other consisting of N−p eigenvalues near zero. The
eigenvectors corresponding to the latter eigenvalues are approximately or-
thogonal to the stored patterns. Hence, an input vector is generally “driven”
in the direction of the “most similar pattern” among the p stored patterns.
Competition between the stored patterns eventually occurs after many itera-
tions, and x(t) converges to the eigenvector whose eigenvalue has the largest
absolute value. Since W is nearly degenerate in the space spanned by the
stored patterns, this eigenvector need not necessarily agree with any of the
stored patterns.

Since the eigenvalue of greatest magnitude will usually differ from unity, the
norm of x(t) gradually tends either to zero or infinity. Hence, for a realistic
model, the introduction of nonlinearities is unavoidable, at least for stabi-
lization. One of the earliest suggestions of this kind goes back to Anderson

3. Neural Network Models 40

et al. (1977) and is known as the “Brain State in a Box” (“BSB” model),
since an appropriate nonlinearity constrains x(t) within a multidimensional
box.

The mathematical analysis of systems with feedback of this type turns out to
be much more difficult than in the linear case. In particular, it seemed quite
hopeless for a long time to go much beyond computer simulations for nonlin-
ear threshold value models with McCulloch-Pitts neurons. This changed in
1982 due to an important idea of Hopfield (1982), which forms the subject
of the following section. For other important contributions related to these
questions see, for example, the papers by Grossberg (1976ab,1978), Kohonen
(1984a), as well as Cohen and Grossberg (1983).

3.8 The Hopfield Model

If a portion of the output lines is fed back to the inputs, the corresponding
portion of the output patterns y can contribute to the input pattern x. An
especially interesting case arises for y = x, i.e., every input pattern is asso-
ciated with itself as output (autoassociation). If one presents an incomplete
input pattern to a recurrent system in which such training pairs are stored,
then at first a correspondingly incomplete output pattern results. However,
if output is fed back, the intact portion may be sufficient for reconstruction of
part of the missing input data. The system may react to the improved input
pattern with an improved output, which in turn reconstructs even more of
the input pattern, etc. until finally the system winds up in a state in which
the input pattern is completely restored.

Such feedback mechanism can enable recall of the complete pattern on the
basis of an incomplete input fragment. Such a capability of pattern restora-
tion is an important requirement for high-performance data processing and a
prominent feature of biological nervous systems, which are highly optimized
in the processing of incomplete information from their natural environment.

Due to feedback, every neuron affects the inputs to all the other neurons.
The behavior of such a system is generally quite difficult to analyze. How-
ever, by exploiting an analogy to interacting many-particle systems from
statistical physics, Hopfield (1982) was able to characterize the behavior of
an interesting class of such systems in an elegant model.

3. Neural Network Models 41

Hopfield’s original model employs McCulloch-Pitts neurons. In the following,
we give a version with “±1-neurons”. Because of the feedback, now the
input pattern of each neuron i is constructed from the states yj of all the
other neurons. The state of neuron i at the latest time step is determined
according to

y
(new)
i = sgn

∑
j,j 6=i

wijy
(old)
j

 . (3.39)

Here, sgn(x) deno tes the “ sign function”, i.e., is equal to +1 for x ≥ 0 and -1
otherwise. The “update-steps” (3.39) are carried out “ asynchronously,” i.e.,
the state of a neuron is updated at discrete times chosen to be uncorrelated
among the neurons.

The solvability of the models follows from the requirement of symmetric
matrix elements, i.e., wij = wji for all index pairs (i, j). In this case, (3.39)
describes the stochastic dynamic of a physical spin system with an “ energy
function”

H(y) = −1

2

∑
i,j

wijyiyj, (3.40)

where wii = 0.

Whenever (3.39) leads to a change ∆yi 6= 0 of yi, it can be written in the
form

∆yi = 2 · sgn

∑
j,j 6=i

wijyj

 (3.41)

By symmetry of the wij, the corresponding change ∆H of H is then

∆H = −∆yi ·
∑
j

wijyj

= −2 ·

∥∥∥∥∥∥
∑
j

wijyj

∥∥∥∥∥∥ ≤ 0, (3.42)

i.e., H decreases until either the quantities
∑
j wijyj all vanish (an exceptional

situation arising only for “pathological” choices of wij), or the adaptation rule
(3.39) does not yield any further change in state. In this (common) case, the
system reaches a stationary “ fixed point.”

This allows a rather clear interpretation of the time evolution of the neural
activities described by (3.39). H(y) defines a “ potential surface” on the

3. Neural Network Models 42

state space of all possible binary vectors y. Starting from an initial state
y(0), the system moves downhill along the gradient of H(y) until it comes
to rest at a local minimum (a “perpetual” descent is impossible, since only
finitely many states are available to the system). If the input pattern defines
the initial state y(0), the minimum attained by the network is the output
associated with the input. Every minimum in the potential surface is the
lowest point of a “basin” or “sink” surrounding it. All the input patterns
within this basin are attracted to the basin minimum by the system dynamics
and, thus, yield the same output pattern. Hence, one also refers to basins of
attraction surrounding the local minima.

By an appropriate choice of wij, one can “mold” the potential surface and,
in particular, place local minima at desired target patterns ξν. The system
dynamics will then be able to restore a fragmentary input pattern to that
target pattern ξν, whose basin of attraction encloses the input pattern. The
completion of fragmentary information in the Hopfield model thus is obtained
through gradient descent on a potential surface.

The choice of the wij is based on the specified target patterns to be stored.
For uncorrelated binary patterns consisting of equally many positive and
negative elements an appropriate choice is

wij =
1

N

p∑
ν=1

ξνi · ξνj . (3.43)

Here, N is the number of neurons, p is the number of patterns and ξνi the
ith component of the νth pattern vector ξν , ν = 1, 2, . . . , p.

Abb. 3.5: (left) This pattern is stored together with 19 others in a Hopfield
model consisting of 400 neurons. (right) All of the other 19 patterns are “random
patterns” of the type shown; 50% of randomly chosen pixels are black.

3. Neural Network Models 43

In the following, we present an example of a simulation for a network con-
sisting of 400 neurons. In this case, 20 patterns are stored according to the
prescription (3.43). The first two of these patterns are shown in Figure 3.5.
Each -1 is represented by a white pixel, each +1 by a black pixel. Only the
first pattern represents a recognizable motif (Fig. 3.5a); all of the remaining
19 patterns are “random patterns,” each consisting of 50 percent randomly
chosen white and black pixels; a representative example is shown in Figure
3.5b.

Abb. 3.6: Completion of a fragmentary input pattern. Only the upper 25% of
pattern 1 is presented to the network (left). After one timestep, the complete
pattern can already be recognized (middle); two steps later, the pattern has been
correctly completed (right).

Abb. 3.7: Reconstruction of a noisy input pattern. This time, the input is the
complete pattern 1, but, with a probability of P=0.3, every pixel of the image
has been changed (left). After only one timestep, nearly all of the errors are
eliminated (middle), and after an additional step the correct pattern 1 is restored
(right).

3. Neural Network Models 44

Abb. 3.8: Like the preceding sequence of images, but for P=0.4. In this case,
the network is no longer able to restore the original pattern, and it converges to
one of the 19 other random patterns.

In Figure 3.6, we see the reaction of the network, if just the upper quarter
of pattern 1 is presented as input. In the course of a few timesteps (each
timestep includes update steps for all neurons) the pattern is correctly com-
pleted.

Figure 3.7 shows a similar simulation. This time, pattern 1 is corrupted by
changing each pixel of the image with a probability P=0.3. This corresponds
to the presence of intense “ signal noise.” Although the original motif is
hardly recognizable, within a few time steps all of the “errors” have been
corrected.

Figure 3.8 shows a repetition of this simulation, but this time with P=0.4.
In this case, the network is no longer able to restore the original motif, and
the output pattern converges to one of the other stored random patterns.

The weight choice (3.43) is sufficient for pattern recall, provided that the
number p of stored patterns is not too large. If the number of patterns is
increased beyond a critical threshold, the character of the potential surface
changes, and the system no longer functions as a memory for the specified
input patterns. This can be qualitatively understood as follows. If all of the
neurons are in a pattern state, for example y = ξ1, then

∑
j

wijyj =
1

N

∑
j

(
ξ1
i · (ξ1

j)
2 +

p∑
ν=2

ξνi ξ
ν
j ξ

1
j

)

= ξ1
i +

1

N

∑
j,ν>1

ξνi ξ
ν
j ξ

1
j . (3.44)

3. Neural Network Models 45

After separation of the terms with ν = 1, the remaining summation on the
right side consists of N · (p − 1) uncorrelated terms of value ±1 and with
average value zero. Hence, the sum is itself again a random variable with

average value zero, but with variance
√
N(p− 1), and we can write (3.44)

approximately as ∑
j

wijξ
1
j = ξ1

i + η ·
√
p− 1

N
, (3.45)

where η is a normally distributed random variable with variance one. The
second term in (3.45) shows that the stored patterns act like “ Gaussian
noise” superimposed on the currently active pattern. Nevertheless, provided
p << N , the first term in (3.45) dominates, and the system is immune to
the noise, since in this case (3.39) does not lead to a change in any neuron
states. However, if p gets to be of order N , the influence of the noise becomes
comparable to the effect of the currently active pattern itself. In that case,
we can no longer expect to find stability for any stored pattern. A more
precise computation shows that the critical transition occurs at p ≈ 0.146N .
In the analogous physical spin system, one encounters at this value a phase
transition to a so-called spin glass state (Amit et al. 1985).

The choice (3.43) for the storage of given patterns is not the only possible
one. By means of more general procedures, for example iterative methods,
or by a more sophisticated coding of the patterns, on can store a larger
number of patterns. However, for an estimate of the storage capacity of a
network, the mere number of patterns that can be stored is not the only
important variable. In addition, one has to consider the information content
per pattern as well as the information contained in the synaptic strengths wij.
For a thorough discussion of these interesting questions, the reader is referred
to the literature (see Palm 1980, 1981; Amit et al. 1985, 1987; Gardner and
Derrida 1988; Buhmann et al. 1989).

The Hopfield model of associative memory is less than optimal in many
respects. For example, it is ill suited for the storage of correlated patterns.
Another problem arises in connection with invariance: the model judges
the similarity of patterns exclusively according to the number of pixels that
coincide. Hence, it is unable to recognize the equivalence of patterns that
differ only by a simple transformation, such as, by a translation.

Nonetheless, the model is of great conceptual significance, since it constitutes
a fully connected neural network for which many questions can be given an

3. Neural Network Models 46

analytical answer. In particular, the Hopfield model initiated the use of many
highly developed mathematical methods of statistical physics and thus made
important new tools available for the field of neural computation. Therefore,
it formed the basis for numerous new developments and motivated important
new questions, and it was thus a forceful stimulus for the major upsurge in
“ neural computing” at the beginning of the eighties.

3.9 The Back-Propagation Algorithm

In the Hopfield model, every neuron is connected to every other neuron.
Hence, with respect to its connections, the model has no “internal structure”
and is “homogeneous.” However, neural networks are usually structured.
A structure encountered frequently results from connecting several layers of
neurons in series. The first layer is usually reserved for input patterns. Every
neuron of this layer sends out connections to every neuron of the next layer.
This continues until the last layer has been reached, whose activity pattern
constitutes the output.

Each individual layer can perform a partial transformation of the activity pat-
tern of the preceding layer. For the perceptron — corresponding essentially
to a single layer — we saw that a serious limitation of the possible trans-
formations between input and output occurs. Hence, an important question
concerns how to overcome the limitations of the perceptron by connecting
several layers in series and thus concatenating their transformations.

In contrast to the perceptron and to nets of the Hopfield type, a layered
feed-forward network contains hidden units that are not directly connected to
input or output lines. Therefore, the activity state of these neurons cannot be
affected directly by the “outside world,” but can only be influenced indirectly
through the internal circuitry of the network. The perceptron convergence
theorem described in Section 3.2 guarantees that the weights of a network
with a single layer of units can be trained with a finite number of adaptation
steps. However, this theorem cannot be generalized to feed-forward networks
with hidden units. Because the hidden units are only indirectly affected
by input signals, the following problem arises: if the given task has been
performed badly, it is not clear which of the weights are responsible for the
bad result and how they have to be changed. This problem is known as the
credit assignment problem and was one of the reasons which led to the demise

3. Neural Network Models 47

of the perceptron and its multilayer successors in the 1960s. The back-propa-
gation algorithm (Werbos 1974; Rumelhart, Hinton and Williams 1986) is
an interesting approach to solve this problem. We describe this procedure
for a network which consists of three layers: an input layer, a “hidden layer,”
and an output layer, as shown schematically in Fig. 3.9.

Abb. 3.9: Three-layer neural net. Each layer sends connections to the layer just
above it. The input pattern is applied to the neurons of the bottom layer, while
the neuron activities of the top layer constitute the output pattern.

We designate neurons of the output layer, the hidden layer, and the input
layer by denoting indices i, j and k, respectively. In contrast to the earlier
models, here each neuron has a continuous output activity between zero and
one. The activity sj of a neuron j of the hidden layer is given by

sj = σ

(∑
k

wjksk

)
. (3.46)

Here, sk are the activities of the neurons k in the input layer, i.e., we identify
sk with the components xk of the input vector. σ(x) is a sigmoid func-
tion, i.e., σ(x) is nonnegative, everywhere monotonically increasing, and
approaches the asymptotic saturation values zero or one, respectively for
x→ ±∞. σ(x) describes the response of a neuron to a total synaptic input
x. A frequent choice for σ(x) is the “ Fermi function”

σ(x) =
1

1 + exp(−x)
(3.47)

presented in Fig. 3.10.

3. Neural Network Models 48

Abb. 3.10: Graph of the Fermi function σ(x) = (1+exp(x))−1, a typical choice
for the response function σ of a neuron

The activities of the neurons of the output layer are

si = σ

∑
j

wijsj

 , (3.48)

and provide the output values yi ≡ si. According to (3.46) and (3.48),
for each input pattern x an output pattern y is assigned. This assignment
depends on the values of the synaptic strengths wij from the hidden layer
to the output layer and on the synaptic strengths wjk from the input layer
to the hidden layer. 2Equations (3.46) and (3.49) do not contain explicit
“excitation thresholds”. These can be taken into account in the form of
synaptic strengths wi0 and wj0 by taking for each layer s0 = −1.

We now seek wij and wjk such that the network maps some given number of
input patterns xν onto given output patterns yν , ν = 1, 2, . . . , p. A measure
of how well the network performs this task is the sum of the squared errors
over all training pairs (xν ,yν)

E =
1

2

p∑
ν=1

∑
i

(yνi − si(xν))
2 . (3.49)

For a set of given, fixed training pairs, E is a function of all the synaptic
strengths wij and wjk. Here, the wij and wjk are optimally chosen if the error
E is minimized. The determination of appropriate synaptic strengths is hence
equivalent to the problem of minimizing the function E. The gradient de-
scent procedure offers the simplest way of doing this. The back-propagation

2 †

3. Neural Network Models 49

algorithm is a parallelized computational scheme for carrying out an approx-
imate gradient descent for E.

To do this, all of the wij and wjk are modified iteratively according to wnewab =
woldab + ∆wab where

∆wab = −α · ∂E
∂wab

. (3.50)

For sufficiently small α > 0, one will then move along the direction of steepest
descent of E. The change of E during such an iteration step is approximately

∆E =
∑
ab

∂E

∂wab
∆wab = −α

∑
ab

(
∂E

∂wab

)2

≤ 0. (3.51)

The derivatives ∂E/∂wab are obtained using the chain rule. For the connec-
tions wij between the hidden layer and the output layer we have

∂E

∂wij
= −

∑
ν

(yνi − si(xν)) · σ′(
∑
j′
wij′sj′) · sj; (3.52)

and for the connections wjk from the input layer to the hidden layer we have

∂E

∂wjk
= −

∑
ν

∑
i

(yνi − si(xν)) · σ′(
∑
j′
wij′sj′) · wij ·

∂sj
∂wjk

= −
∑
ν

∑
i

(yνi − si(xν)) · σ′(
∑
j′
wij′sj′) · wij

×σ′(
∑
k′
wjk′sk′) · sk. (3.53)

Both expressions consist of sums over contributions from specified input
training pairs (xν ,yν). If α is sufficiently small, it makes little difference
if just one ν-term of (3.52) or (3.53) is taken into account at each iteration
(3.50), provided that every term is on the average included equally often.
This leads to the update rules

∆wij = α · ενi · sjsi(1− si),
∆wjk = α ·

∑
i

ενi · sksi(1− si) · wij · sj(1− sj) (3.54)

for the wij and wjk connecting hidden and output layer, and connecting input
and hidden layer, respectively. Here, we have defined ενi = yνi − si(x

ν) for

3. Neural Network Models 50

the ith “output error” in the νth input pattern, and we have employed the
expression σ′(x) = σ(x)(1−σ(x)) which is valid for the Fermi function (3.47).

Expressions (3.54) can easily be generalized to the case of more than one
hidden layer. In the following, let a and b designate arbitrary neurons of two
consecutive layers, and let b lie in the layer preceding a. The change ∆wab
of the weight wab under an iteration with the specified input training pair
ν is a summation over contributions Dγi . Each contribution belongs to one
neuron i of the output layer and to a sequence γi of connections leading from
neuron a to neuron i. The summation is to be performed both over all the
different sequences of this kind, visiting each layer between a and the output
layer only once and over all possible choices of the output neuron i, i.e.,

∆wab =
∑
i

∑
γi

Dγi . (3.55)

Each contribution Dγi consists of a product of factors along the “connecting
path” γi. The individual factors are obtained according to the following rules:

1. For each “visited” neuron n along the path γi, one obtains a factor
sn(1− sn), where sn is the activity of neuron n.

2. For each connection between two consecutive neurons n, n′ along the
path γi, one obtains a factor wnn′ .

3. Additionally, one has a factor α · ενi · sb. Here, ενi is the output error of
the neuron i at the end of the connecting path.

Equations (3.54) allows the following interpretation: for each iteration, a
training pair (xν ,yν) is selected and the activities of the neurons in the input
layer are set to values xν . On the basis of the resulting neuron activities in
the remaining layers and the error ενi occurring at the output layer, the
network carries out a “learning step” such that the output error for pattern
ν is decreased.

The hope is to gradually reduce the error E to zero or at least to negligi-
bly small values for all specified input patterns, provided sufficiently many
learning steps are made. However, the problem of local minima can arise. As
a rule, E is an extremely complicated function of all the synaptic strengths
wab and, hence, it can have numerous local minima. Depending on the initial

3. Neural Network Models 51

values specified for the wab, the gradient-descent method always leads to the
nearest minimum, independently of how far it lies above the absolute min-
imum. Thus, the learning procedure can get “stuck” prematurely although
the network has not yet solved the problem. Whether or not a good minimum
is attained depends in a generally unpredictable way on the initial values for
the synaptic strengths and on the (generally unknown) form of the “ error
surface” E. A further difficulty is caused by parameter regions, for which the
height of the error surface hardly varies with wab. There, the gradient is very
small and, thus, the adaptation steps (3.55) yield negligible changes. This
difficulty is the price for a completely “general” learning algorithm, which is
supposed to solve a given problem without any a priori information.

In spite of these problems, the back-propagation algorithm represents a sig-
nificant step forward. In particular it allows the solution of problems that
cannot be solved with a single-layer perceptron. One problem of this kind
that is frequently considered is the logical “ exclusive-or-gate,” which assigns
the output value 1 to an input if and only if one input is equal to 0 and the
other is equal to 1.

In the back-propagation algorithm, the solution of such problems becomes
possible because, in contrast to the perceptron, the system has access to
additional, “ hidden” neurons. The activity of these neurons provides an
internal representation of the input patterns. By evolving appropriate con-
nections wjk, the system can develop internal representations that make the
problem solvable for the following layer. We demonstrate this by means of
a simulation example, the so-called “ encoder problem” (Rumelhart et al.
1986).

We consider a network consisting of three layers. The input and output
layers each contain N neurons, numbered from one to N . The middle layer
contains M < N neurons. The learning task of the network is to respond to
the activation of a single neuron n in the input layer with the activation of
a single neuron n in the output layer, i.e., activation of that neuron whose
index coincides with the index of the activated input neuron.

If the hidden layer also had N neurons, the solution would be simple and ev-
ident: each input neuron would be connected directly via one of the hidden
neurons to “its” output neuron. However, since the layer in between pos-
sesses less than N neurons, it constitutes a “bottleneck” for the transfer of
information, and the network must find some way of getting the information

3. Neural Network Models 52

through this bottleneck. One possibility consists in discovering an appropri-
ate data coding — hence the name “ encoder problem” — which can make
do with M elements for the representation of the information.

Figure 3.11 shows the result of a computer simulation for a network with N =
8 and M = 3 after 10,000 learning steps with a step size of α = 0.25. The
initial values of all connections were chosen to be pseudo-random numbers
in the interval [−2, 2]. Each of the eight specified input patterns xν was
given by xνk = 0.1 + 0.8δkν , i.e., the νth neuron received the input 0.9, all
others 0.1. The inputs 0.9 and 0.1 for “active” and “inactive” were used to
avoid convergence difficulties, since the Fermi function σ(x) produces binary
outputs zero and one only for x = ±∞ (this would require infinitely large
weights wab).

Figure 3.11 shows for each of the eight possible input patterns the resulting
neuron activities. The bottom row of each picture shows the input layer, the
middle row consists of the three “hidden” neurons, and the upper row shows
the output layer. Each square symbol stands for one neuron, whose activity
is indicated by the size of the square.

One sees that the network has solved the problem successfully. A look at the
activity patterns of the middle layer reveals the solution strategy developed
by the network. The neurons of this layer have organized their connections
in such a way as to assign to each of the eight input patterns a 3-bit binary
code, thus enabling the transfer of the required information through the
“bottleneck.”

This example shows how a network can “discover” interesting internal data
representations, in this case the binary code. This is relevant to a key ques-
tion of neural computing: What internal data representations are required
in order to solve a given problem by means of a massively parallel network?
With the back-propagation algorithm one has a method to construct net-
works performing some desired task. One then can analyze the structure
of the networks thus obtained in order to gain new insights how parallel
networks can solve various computational tasks. This approach, occasion-
ally termed “neurophysiology in the computer,” may also help to interprete
neurophysiological findings about “real” neural networks and to guide new
experiments. For instance, interesting parallels have been noted between the
response of “neurons” in the computer and neurons in biological networks (
Sejnowski and Rosenberg 1987; Zipser and Andersen 1988).

3. Neural Network Models 53

Abb. 3.11: Internal data coding found by the back-propagation algorithm for
the “encoder problem.” In each picture, one of the eight lower input neurons is
activated. The task of the network is the activation of the corresponding output
neuron in the upper layer. The input neurons cannot reach the output neurons
directly, but only by imposing an “intermediate coding pattern” on the three
neurons of the middle layer. From their activities it is evident that the network
figurehas “discovered” in essence a binary coding of the eight input patterns.

3.10 Self-Organizing Maps

In all of the previous models, a key role was played by the connections be-
tween neurons. In the Hopfield model, every neuron was connected to every

3. Neural Network Models 54

other one, and the only (but, from a biological point of view rather restric-
tive) constraint was the symmetry wij = wji. The feed-forward nets of the
previous chapter were already organized into a number of layers connected in
a fixed order. However, thus far the location of each neuron within a layer has
played no role for the outgoing or incoming connections. This was a direct
consequence of connecting every neuron of one layer to every neuron of the
subsequent layer. With self-organizing maps, one deals with models in which
the ordering of the neurons, i.e., within a layer structure, plays an important
role. One is concerned with the question of how the neurons should orga-
nize their connectivity in order to optimize the spatial distribution of their
responses within the layer. Here, the purpose of the optimization is to con-
vert the similarity of signals into proximity of excited neurons. Neurons with
similar tasks can thus communicate over especially short connection paths.
This is a very important property for a massively parallel system. A fur-
ther consequence of such optimization is the formation of topographic maps
of the input signals, in which the most important similarity relationships
among the input signals are converted into spatial relationships among the
responding neurons. This conversion can be viewed as a process of abstrac-
tion, suppressing trivial details and mapping the most important properties
or features along the dimensions of the map; this is once again relevant to
the important problem of the construction of internal data representations.
An important special case of such maps is the occurrence of topographically
organized projections from a receptor layer to a layer of sensory neurons. This
corresponds to the occurrence of simple maps, representing on the neuron
layer a (distorted) image of the receptor layer. A theory of the formation
of such projections on the basis of synaptic plasticity was suggested by von
der Malsburg and Willshaw (Willshaw and von der Malsburg 1976; von der
Malsburg and Willshaw 1977). These authors consider a neural layer A,
from which output nerve fibers are supposed to grow into a second layer B
such that the neighborhood relationships in A are preserved under this “
projection.” To this end they postulate in layer A the presence of at least
two different “ marker substances” i = 1, 2, . . . , with concentration gradients
such that their local concentrations ci(r) uniquely determine the position r
everywhere in A. The nerve fibers leaving r are assumed to transport these
marker substances in a mixing ratio characteristic of their origin r and to
give them off at all points in B with which they make synaptic contact. In
this way, position-dependent concentrations c′i(r

′) of the marker substances
are formed in B as well. The evolution of the strength of each synapse in

3. Neural Network Models 55

B is then determined by two competing contributions. One contribution is
a decay term driving the strength of a synapse slowly to zero. The other
is a growth term. The better the agreement between the mixing ratios of
the marker substances present at the position of the synapse in B and the
mixing ratio of the markers given off by the synapse itself, the larger is this
growth term. This favors establishment of neighboring synaptic contacts
in B for nerve fibers that originate from neighboring positions in A and, as
demonstrated by von der Malsburg and Willshaw, leads to the formation of a
topographically ordered projection between A and B. By means of computer
simulations, von der Malsburg and Willshaw were able to demonstrate a good
agreement between the properties of this model and experimentally known
findings. In a series of papers, this model was elaborated further in various
directions, and new variations were proposed that were capable of explaining
additional details, such as the formation of cortical microcolumns (Takeuchi
and Amari 1979).
These models often endeavored to be more or less faithful to biological details.
A more abstract, and at the same time more general, approach was subse-
quently suggested by Kohonen (1982a) for the formation of self-organizing
sensory maps. We will discuss his model for the formation of such maps in
more detail in the subsequent chapters of this book. The Kohonen maps
offer a very good point of departure for presenting how a multitude of data
processing problems can be solved by means of a small number of powerful
basic principles. At the same time, the simplifications and computational
savings due to abstraction from biological details not only allow computer
simulations of interesting applications, but also are suited for a far-reaching
mathematical analysis.

4. Kohonen’s Network Model 56

4. KOHONEN’S NETWORK MODEL

This chapter describes Kohonen’s network model. We will discuss how the
cells of a neuron layer coordinate their sensitivity to sensory signals in such
a way that their response properties to signal features vary in a regular
fashion with their position in the layer, an organization observed in many
parts of the brain. After some neurophysiological background information,
a mathematical formulation of the model will be presented. Simulations will
give a first impression of the main features of the model.

4.1 Neurophysiological Background

The model employs a neuron layerA, usually assumed to be a two-dimensional
sheet. This layer is innervated by d input fibers (axons), which carry the input
signal and excite or inhibit the neurons of the layer via synaptic connections,
as illustrated schematically in Fig. 4.1. In the following, we consider condi-
tions under which the excitation of the neurons is restricted to a spatially
localized region in the layer. The location of this region is then determined
by those neurons that respond most intensively to the given stimulus. The
neuron layer acts as a topographic feature map, if the location of the most
strongly excited neurons is correlated in a regular and continuous fashion
with a restricted number of signal features of interest. Neighboring excited
locations in the layer then correspond to stimuli with similar features. Of
course, a single layer can only make a few important features visible in this
way. In the simplest case, we may be dealing with the stimulus position
on a sensory surface, such as the retina or the body’s outer surface; simple
examples of more abstract features are pitch and intensity of sound signals.

4. Kohonen’s Network Model 57

Abb. 4.1: Schematic representation of the neuron layer in Kohonen’s model.
The nerve fibers running horizontally provide the input signal (“stimulus”) and
excite the layer neurons via synaptic connections. Lateral interactions between
the neurons constrain the reaction to a spatially bounded “excitation zone.” The
layer acts as a “topographical feature map” if the position s of the excitation
zone varies in a continuous way with the presence of stimulus features of interest

We now describe the principles which enable the formation of such topo-
graphic feature maps in Kohonen’s model by means of a self-organizing pro-
cess. An incoming signal v is given by the average activities vl of the indi-
vidual incoming fibers l = 1, 2, We identify the neurons of the layer by
their two-dimensional position vectors r ∈ A, with A being a two-dimensional
grid. Every neuron r forms in its dendritic tree a weighted sum

∑
l wrlvl of

the incoming activities vl, where wrl expresses the “strength” of the synapse
between axon l and neuron r. Here, wrl is positive for an excitatory synapse
and negative for an inhibitory synapse. The resulting excitation of an iso-
lated neuron r is described by its average spike frequency f 0

r . Usually, a
relation

f 0
r (v) = σ

(∑
l

wrlvl − θ
)

(4.1)

is assumed for f 0
r . Here, σ(x) is a “sigmoid” function, increasing monotoni-

cally with x, with a qualitative behavior as shown in Fig. 3.10. In particular,
σ(x) tends asymptotically to the saturation values 0 or 1 for x→ ±∞. The
quantity θ acts as an excitation threshold, below which the neuron responds
weakly.
In addition to the coupling to the input fibers, the neurons are connected

4. Kohonen’s Network Model 58

to each other via synapses. Thus, the layer has internal feedback. If one
designates by grr′ the coupling strength from neuron r′ to neuron r, any
excitation fr′ of neuron r′ provides a contribution grr′fr′ to the total input
signal of neuron r. The contributions of all neurons r′ in the layer are addi-
tively superimposed onto the external input signal

∑
l wrlvl. In the stationary

case, the neuron activities fr are thus the solution of the nonlinear system
of equations

fr = σ

(∑
l

wrlvl +
∑
r′
grr′fr′ − θ

)
. (4.2)

Frequently, the feedback accounted for by grr′ is due to excitatory synapses
(grr′ > 0) at small distances ‖r − r′‖ and inhibitory synapses (grr′ < 0) at
larger distances ‖r − r′‖. It can be shown that the effect of such “center-
surround” organisation of synaptic interactions on the solutions of (4.2) con-
sists in the formation of excitatory responses that are confined to a neigh-
borhood around the neuron receiving maximal external excitation. In the
following, we will not prove this in general, but we would like to demonstrate
it using a simplified version of (4.2).
To this end, we consider the limiting case when the “sigmoid function” σ(x)
approximates a step function θ(x) (as defined in Section 3.1). Further, we
restrict ourselves to a one-dimensional system without an external input
signal (i.e., vl = 0) and with thresholds θ = 0. We assume for grr′ the
function

grr′ =
{

1 if |r − r′| ≤ a,
−g else.

(4.3)

Here, we assume g > 2a + 1, i.e., neurons at distances exceeding a act
inhibitory, while neurons closer than a act excitatory; the strength of the
inhibition is given by the value of g. Defining the quantities

M =
∑
r

fr, (4.4)

ms =
s+a∑
r=s−a

fr, (4.5)

we see that (4.2) becomes

fr = θ
(
[1 + g]

r+a∑
r′=r−a

fr′ − g
∑
r′
fr′
)
, (4.6)

4. Kohonen’s Network Model 59

or, by using the property θ(gx) = θ(x) which holds for g > 0,

fr = θ
(
[1 + g−1]mr −M

)
. (4.7)

Because of the θ-function, every neuron can be in only one of the two states
fr = 0 or fr = 1. Equation (4.7), together with (4.4) and (4.5) represents
a system of equations for the neuron activities fr. We now show that, as a
consequence of the “center-surround” organization of the lateral interactions,
(4.7) only has solutions in which the total excitation is concentrated within
a single, connected “cluster” of a + 1 consecutive neurons with fr = 1. All
of the neurons outside of this cluster are in the quiescent state (fr = 0). To
this end, we first prove the following lemma: Lemma: If the quantities fr

constitute a solution of (4.7), and if g > 2a + 1, then fr = 1 always implies
fs = 0 for all s > r + a and all s < r − a. Proof: From (4.7) it follows

because of fr = 1 that the inequality mr + g−1mr > M is satisfied. From the
definitions (4.4) and (4.5) one also has mr ≤M , and together

mr ≤ M < mr +
mr

g
≤ mr +

2a+ 1

g
< mr + 1.

Since M and all the mr are integers, one has M = mr and, thus, the lemma
is proven.
The lemma implies that two active neurons r, s can never be located more
than a positions apart (|r−s| ≤ a). From this, it follows that M ≤ a+1, i.e.,
at most a+ 1 neurons can be excited at the same time. If s is the leftmost of
these neurons, then it follows for each of the a neurons r ∈ [s, s+a] adjacent
to s on the right

[1 + g−1]mr −M = [1 + g−1]
r+a∑

r′=r−a
fr′ −M

= [1 + g−1]
s+a∑

r′=s−a
fr′ −M

= [1 + g−1]ms −M > 0. (4.8)

Here, the shift of the limits of summation in the next to last step is based
on the vanishing of all the fr′ for r′ < s and r′ > s+ a. For each of the a+ 1
neurons r = s, s+ 1, . . . , s+ a, (4.8) yields then fr = 1, and since M ≤ a+ 1

4. Kohonen’s Network Model 60

all the remaining neurons satisfy fr = 0. Every solution of (4.7) therefore
consists of a cluster of a+ 1 adjacent excited neurons.
Similarly, in higher dimension, a sufficiently strong lateral inhibition also
leads to the production of a spatially localized excitatory response. In the
case of a continuous sigmoid function σ(.), the spatial behavior of the exci-
tation is no longer that of a step function, but rather takes a maximum at a
position r′ and from there decreases to zero in all directions. The location r′

of the excitatory center is dependent on the input signal vl (not taken into
account in the above derivation). We pay special attention to this position
r′, since by mapping every input signal to a position r′, the layer provides the
desired map of the space of input signals. One could obtain r′ by solving the
nonlinear system of equations (4.2). Instead of this tedious step, Kohonen
suggests an approximation for r′, replacing it with the position of maximum
excitation on the basis of the external signal vl alone, i.e., r′ is determined
from ∑

l

wr′lvl = max
r

∑
l

wrlvl. (4.9)

Under the two assumptions that the “total synaptic strength” per neuron√∑
l w

2
rl, is constant and the same for every neuron, and that all of the input

signals v have the same “intensity” ‖v‖ = 1, the condition

‖wr′ − v‖ = min
r
‖wr − v‖, (4.10)

which often is more convenient from a mathematical point of view, yields the

same result for r′. Here, ‖x‖ indicates the Euclidean vector norm
√∑

l x
2
l , and

vector wr ≡ (wr1, . . . , wrd)
T is a compact notation for the synaptic strengths

of neuron r.
Thus, we now see how the map is related to the synaptic strengths wrl. An
input signal v is mapped to the position r′ implicitly defined by (4.10). For
fixed synaptic strengths, (4.10) defines a nonlinear projection of the space of
input signals onto the two-dimensional layer. In the following, we will use
the notation

φw : v 7→ r′ = φw(v) (4.11)

to refer to this mapping. The index w shall remind us of the mapping’s
dependence on the synaptic strengths of all neurons.
This leads to the second important issue, the determination of synaptic
strengths w providing “useful” maps. In the nervous systems of higher ani-
mals, a detailed genetic specification of all synaptic strengths is not possible.

4. Kohonen’s Network Model 61

This specification would require an exact knowledge of the way input signals
are coded, a condition which even for technical applications, for example due
to tolerances, is difficult to satisfy. Moreover, a system with fixed values wrl

could not respond to subsequent changes of the coding, e.g., due to drift or
aging processes; this obviously would contradict the high capacity for adap-
tation of biological systems. Apparently, such flexibility requires that the
neurons be able to find suitable synaptic strengths, starting from arbitrary
or only roughly correct initial settings.
In the present model, the only source of information for this process is as-
sumed to be a sequence of input stimuli entering the layer, occurring ran-
domly according to some statistical probability distribution. Each stimulus
causes at synapse wrl the coincidence of a presynaptic activity vl and the
resulting postsynaptic activity of neuron r. The postsynaptic activity of
neuron r is just the value of the excitatory response of the layer at the po-
sition r. Its magnitude includes all interaction effects within the layer and
should be computed from (4.2). Kohonen’s model now makes the simplify-
ing assumption that this response can be written as a function hrr′ of two
position variables r and r′, whose “shape” (with respect to variation of r)
is fixed, but whose position (denoted by the second variable r′) depends on
the stimulus. Specifically, the position r′ is taken to be the position of the
excitation maximum, i.e., r′ is defined by (4.9) or (4.10), and r is the location
of the neurons whose response is to be described by hrr′ . The model then
prescribes for the change of synaptic strengths wrl the expression

∆wrl = ε(hrr′vl − hrr′wrl). (4.12)

The first term corresponds to the “Hebbian learning rule” mentioned earlier,
according to which a synapse is strengthened in the case of correlated pre-
and postsynaptic activity. The second term is a decay term for the synaptic
strengths, which is proportional to the postsynaptic activity. The relative
scaling between the first term and the second (decay) term is normalized to
unity by appropriate scaling of v. Here, ε determines the size of a single
adaptation step (0 < ε < 1). If ε is chosen to be a function ε(t), decreasing
gradually with the number t of learning steps from large initial values to
small final values, then at the beginning the system is rapidly able to learn
coarsely the correct synaptic strengths. However, for large ε, the fluctuation
of the map caused by each learning step is also large. Hence, if the map is to
stabilize asymptotically in an equilibrium state, one must let ε decrease to
zero. On the other hand, a permanent “residual plasticity” can be realized

4. Kohonen’s Network Model 62

with low fluctuations of the map by means of a small, nonvanishing final
value for ε.
Based on (4.12), every synaptic change is limited to a neighborhood zone
about the excitation center. In this zone, the synaptic connections are
changed such that a subsequent re-occurrence of the same or a similar stim-
ulus will lead to an increased excitation. The shape of the function hrr′

controls the size of the neighborhood zone and, thus, of the number of neu-
rons affected by a single adaptation step.

4.2 Simplification and Mathematical
Definition

The precise form of the excitatory response hrr′ appears not to be critical
for the qualitative behavior of the system under the learning rule (4.12) and
could only be obtained by numerical solution of (4.2). Hence, in the present
model, the exact solution is only approximated qualitatively by means of a
given choice of hrr′ . To this end, for hrr′ ≥ 0 a unimodal function depending
only on the distance r − r′ with its maximum at r = r′ and approaching
zero for large distances is assumed. An appropriate choice is given by the
Gaussian

hrr′ = exp(−(r− r′)2/2σ2
E). (4.13)

The radius σE of this excitatory function determines the length scale on which
the input stimuli cause corrections to the map. As a rule, it is better if the
coarse structure of the map is allowed to form first, before the fine structure
is incorporated into the map. This is made possible by choosing σ to be a
function σ(t) starting with a rather large initial value σ(0) and decreasing
slowly with the number of learning steps toward a small final value. This
can be interpreted as gradually increasing the “selectivity” of the individual
neurons in the course of the learning process.
Each learning step requires the arrival of an input stimulus v. For the model,
these input stimuli are treated as independent random variables from a vector
space V , and their occurrence is determined by a probability density P (v).
A final simplification is that the neuron positions r are taken to be the points
of a discrete periodic lattice A.
Thus, Kohonen’s model can be described by the following algorithm (Koho-
nen 1982a, 1984a):

4. Kohonen’s Network Model 63

1. Initialization: Start with appropriate initial values for the synaptic
strengths wrl. In the absence of any a priori information, the wrl can
be chosen at random.

2. Choice of Stimulus: Choose, according to the probability density P (v),
a random vector v representing a “sensory signal.”

3. Response: Determine the corresponding “excitation center” r′ from the
condition

‖v −wr′‖ ≤ ‖v −wr‖ for all r ∈ A. (4.14)

4. Adaptation Step: Carry out a “learning step” by changing the synaptic
strengths according to

wnew
r = wold

r + εhrr′(v −wold
r) (4.15)

and continue with step 1.

The mapping
φw : V 7→ A, v ∈ V 7→ φw(v) ∈ A, (4.16)

where φw(v) is defined through the condition

‖wφw(v) − v‖ = min
r∈A
‖wr − v‖ (4.17)

which constitutes the neural map of the input signal space V onto the lattice
A which is formed as a consequence of iterating steps 1.–3.
To illustrate this algorithm, the relationships are schematically shown again
in Fig. 4.2. The ensemble of all possible input values forms the shaded man-
ifold V , from which a point v is chosen as “stimulus” for the network in step
1. This leads to a selection (step 2) of an excitation center s among the neu-
rons (lattice A). All neurons in the neighborhood of this center (highlighted)
participate in the subsequent adaptation (step 3). It consists in a “shift” of
the vectors wr towards v. The magnitude of this shift is fixed by the learning
step size ε and by the function hrs.
Mathematically, the algorithm represents a so-called Markov process. A Mar-
kov process is defined by a set of states and a set of transition probabilities
between states. These transition probabilities determine a stochastic process
that, given some initial state, produces a sequence of states. This sequence
is obtained by using the transition probabilities from the current state to

4. Kohonen’s Network Model 64

Abb. 4.2: The adaptation step in Kohonen’s model. The input value v selects a
center s in whose neighborhood all neurons shift their weight vectors ws towards
the input v. The magnitude of the shift decreases as the distance of a unit from
the center s increases. In the figure, this magnitude is indicated by different sizes
and gray values. The shift of weights is only depicted, though, for unit s

choose a successor, which then becomes the current state for the next step
(for a thorough discussion of Markov processes see for example Gardiner 1985
or van Kampen 1981).
In the present model, each possible state is given by a set of values for all
the synaptic strengths w ≡ (wr1 ,wr2 , . . . ,wrN) in the system (N denotes
the number of neurons). The function φw associates with each such state a
mapping that, as we have discussed, has the interpretation of a “neural map”
of some feature space. The update of a state w is obtained as a result of
applying (4.15), i.e., the decision for the update is caused by the input stim-
ulus v ∈ V . Each update represents a “learning step” and can be thought
of as a local “distortion” of the associated “neural map.” Beginning with
an initial state that corresponds to a completely disordered map, the goal of
the algorithm is to arrive at a state (more precisely, the system shall enter a
subset of its state space comprising states differing only by small “statistical

4. Kohonen’s Network Model 65

fluctuations”, see Chapter 14) that corresponds to an ordered, “topology-
conserving map” of the stimulus space V , in which some relevant features
of input stimuli are two-dimensionally (in the case of a neural sheet) repre-
sented. In order to reach such state and make it stationary asymptotically,
the learning step length ε must slowly tend to zero.
The training process is qualitatively in good agreement with observed fea-
tures of the formation of certain neural projections in the brain. The resulting
maps predominantly represent those directions of the stimulus space V along
which the input stimuli change most strongly. These directions, which of-
ten correspond to stimulus features of particular interest, may vary locally
within V . Therefore, a good projection requires a nonlinear mapping. Usu-
ally, the map tries to maintain the neighborhood relationships between the
input stimuli under this mapping process. Therefore, Kohonen named the
resulting maps “topology-conserving feature maps.” Furthermore, the map
automatically takes into account the statistical weight P (v) of the input
stimuli. Regions of V from which many input stimuli occur become “mag-
nified” and are thus projected with better resolution than regions of less
frequently occurring signals. An appropriate choice for the rate of decrease
of ε and σ with the number of learning steps is important for good results
and rapid convergence. If the decrease is too rapid, the synaptic strengths
“freeze” before the map has reached an equilibrium state. If the decrease is
too slow, the process takes longer than necessary.
To illustrate the basic properties of this approach, we now consider a few
simulation examples of the process.

4.3 Simulation Examples

In the first example, a neural network creates a map or image of an unknown
region G with curved boundary. Only indirect sensory signals are available to
the network. These come from a source of sound moving around in G. From
time to time, the sound source emits a sound signal (of constant intensity),
and the position in G of each sound emission is random. The sound signal is
received by two microphones, each connected to an amplifier with logarithmic
characteristics (Fig. 4.3). The two amplifier output signals v1, v2 are the
“sensory signals,” and they are fed via two “axons” to the 1600 “neurons”

4. Kohonen’s Network Model 66

Abb. 4.3: Region G containing the
sound source. The two microphone
positions are marked at the lower
boundary of G. The microphone sig-
nals are fed into two logarithmic am-
plifiers, whose output signals v1, v2

serve as input for the network.

Abb. 4.4: Initial relation between
neurons and points in G. Initially,
each neuron is assigned to a point
of G chosen randomly from the filled
quadrant. This assignment ignores
any neighborhood relations. This is
evident from the completely irregu-
lar “embedding” of the lattice in the
quadrant.

of a model network.1 The “neurons” are arranged in a planar 40×40 lattice.
Every single model neuron r is characterized by a two-component vector
wr = (wr1, wr2) ∈ G of “synaptic strengths.” Each neuron is to adjust its
vector wr gradually in such a way as to become sensitive for a small subset
of input signals v = (v1, v2)T . This subset corresponds to a small subarea of
G within which the moving source may be located. This subarea constitutes
the “receptive field” of the particular neuron in the “environment” G. The

1 In the computer simulation, sound source, microphone, and amplifier are represented
as follows: if the sound source is at the position (x, y), the output signals v1 and v2

of the two amplifiers are given by

v =
(
v1

v2

)
=
(
− log[(x− a)2 + y2]
− log[(x+ a)2 + y2]

)
, (4.18)

where 2a is the separation of the microphones.

4. Kohonen’s Network Model 67

Abb. 4.5: After 100 learning steps,
an assignment has already formed
which roughly reproduces the neigh-
borhood relations of points of G in
the lattice. However, the distribution
of “responsibilities” of neurons for the
region G is still very inhomogeneous.

Abb. 4.6: After 40,000 learning
steps, a good correspondence be-
tween lattice neurons and points of
G has formed. This corresponds to
the choice of curvilinear coordinates,
mapping the region G onto the square
neuron lattice.

neurons are to coordinate the formation of their receptive fields in such a way
that — in the manner of a topographic map — the arrangement of neurons in
the lattice reflects the arrangement of their respective receptive fields in the
environment. This is achieved if each point of the region G corresponds to a
point in the neural lattice such that the neighborhood relation between points
is preserved under the correspondence, i.e., the network becomes associated
with a “continuous” image of G. This correspondence gives a simple example
of a sensory map or sensory image of an environment, here the region in
front of the two microphones. Similar “auditive maps” occur in the brain.
However, this simulation example is only intended to serve as an illustration
of the algorithm and makes no claim of corresponding to any brain map.
In Figs. 4.4–4.6, the evolution of the assignment of neurons to positions is
shown in detail. For each neuron r ∈ A, the location (x, y) of its recep-
tive field in G has been marked, as assigned by the map. Marked locations
are connected by a line if their corresponding neurons are adjacent on the
lattice. (Thus, in place of the image itself, the embedding of the lattice A

4. Kohonen’s Network Model 68

in G is shown, from which the map can be obtained as its inverse.) Ini-
tially, the assignment is completely random, and there is no agreement be-
tween the arrangement of neurons and the corresponding locations (Fig. 4.4).
After only a few signals, the coarse structure of the assignment has been
found (Fig. 4.5), until finally after 40,000 sound signals a good assignment
is achieved (Fig. 4.6). In this case, the algorithm has automatically found
a nonlinear coordinate transformation mapping the region G with curved
boundary onto a square lattice A. The resulting coordinate transformation
takes the frequency distribution of the arriving signals into account, as illus-
trated in the simulation result shown in Fig. 4.7. Instead of a homogeneous
distribution of source locations, the signals from the indicated circular re-
gion in G were now emitted with a three times higher probability than in the
remaining part of G. Within both regions the probability density was con-
stant. In all other respects the simulation was identical to that presented in
Fig. 4.4–4.6. As a consequence of the inhomogeneous stimulus distribution,
substantially more neurons are assigned to positions in the circular region.
This corresponds to a higher resolution of the map for this part of G, which is
a desirable result, since a concentration of assignments within regions where
signals frequently occur leads to a more efficient use of the network.
However, the frequency with which a signal occurs is not always an indica-
tion of its importance. Varying importance of signals can also be taken into
account by regulating the plasticity of the network. For example, one can ad-
just the size of a learning step according to an a priori importance attributed
to the signals. This increases the “attentiveness” of the network for signals
deemed more important and has the same effect as correspondingly more
frequent occurrence. This is illustrated in Fig. 4.8, which shows the result
of a simulation with sound emission probability again uniform throughout
all of G. However, in contrast to Fig. 4.4–4.6, the network reacted to every
sound event from within the circle with an adaptation step that was three
times larger than for a sound event from the remaining part of G. The result
thus obtained is practically identical to that of Fig. 4.7.
In the example presented, the space of stimuli G is mapped onto a lattice A
of the same dimensionality. If the space of stimuli possesses a higher dimen-
sionality, the map tries to project the higher-dimensional space as faithfully
as possible by means of an appropriate “convolution.” To illustrate this be-
havior, we consider a one-dimensional neural “net,” i.e., a neuron chain. For
the input signal, we take a random sequence of two-dimensional vectors v,
whose values are homogeneously distributed in the unit square. For hrr′ , we

4. Kohonen’s Network Model 69

Abb. 4.7: Result of the same simula-
tion as in Fig. 4.6, except that within
the circular region marked by dots sig-
nals were emitted with a three times
higher probability than in the remain-
ing region of G. In this case, more
neurons code positions in the circular
region. This corresponds to a higher
resolution of the map created for this
region.

Abb. 4.8: The same effect as in
Fig. 4.7 can be achieved by a signal-
dependent adjustment of the plastic-
ity of the neurons. In this simulation,
the sound signals were again emit-
ted as in Fig. 4.4–4.6 with a homo-
geneous probability everywhere in G,
but the learning step size ε was in-
creased by a factor of three if the
sound source was located in the cir-
cular region.

choose the Gaussian (4.13) with σ(t) = 100 · (0.01)10−5t. The correspondence
between neurons and points of the square is again represented as an embed-
ding of the neuron chain into the square, as in the previous example. This
assignment is initially made at random as shown in Fig. 4.9a. After 200 iter-
ations, the curve has attained a U-shaped configuration (Fig. 4.9b). At this
time, the range σ of the function hrr′ is still large and, hence, structure has
formed only at this length scale. As σ decreases further, structures gradually
form at shorter length scales as well (Fig. 4.9c, 50,000 iterations). Eventually,
after 100,000 iteration steps, the hierarchically convoluted graph of Fig. 4.9d
has emerged. The network thus tries to fill the two-dimensional region while
reproducing the neighborhood relations as well as possible. The degree of
success is evident from the similarity of the curve created in this way to the

4. Kohonen’s Network Model 70

Abb. 4.9: Mapping between a “neural” chain and a squared stimulus space.
From top left to bottom right: a) randomly chosen initial assignment; b) coarse
assignment after 200 Markov steps; c) after 50,000 Markov steps; d) assignment
obtained after 100,000 Markov steps resembling a “Peano curve.”

finite approximation of a so-called “Peano curve.” This is an infinitely, re-
cursively convoluted fractal curve representing the solution of the problem
of mapping a one-dimensional interval continuously onto a two-dimensional
surface.
However, as a rule one is interested in mapping of higher-dimensional regions

4. Kohonen’s Network Model 71

onto a two-dimensional image. Indeed, Kohonen used the procedure suc-
cessfully to map spectra of different speech sounds (phonemes) to separate
map positions. Here, the tonal similarity relations between the individual
phonemes are translated into locational relations in the image. This consti-
tutes a very important preprocessing step for the problem of artificial speech
recognition. The subsequent steps require the analysis of transitions between
individual phonemes, i.e., of time sequences. The possibility of employing
the procedure also for such purposes shall be indicated in the following con-
cluding example. At the same time, this example will clarify how in the
course of the formation of a map hierarchic relations can also be represented.
The source of the signal is a Markov process (here used as a simple model
of a temporal signal and to be distinguished from the learning algorithm
itself) with 10 states. The aim is to create a map of the possible transitions
between states of the process. Transitions to the same successor state are to
be adjacent in the map. A state i, i = 0, . . . , 9, is assumed to have one of the
five states i−3, i−2, i−1, i+ 1 or i+ 2 (modulo 10) as a possible successor.
A transition from state i to state j is coded by a 20-component vector v
with components vk = δk,i + δk,j+10. A transition occurs at each time step,
and all transition probabilities have the same value 0.2. A lattice consisting
of 20×20 neurons is used, and the Gaussian (4.13) is chosen for hrr′ . The
remaining parameter values of the simulation are σ(t) = 5 · 0.2t/tmax , ε(t) =
0.9 · (0.05/0.9)t/tmax and tmax = 5, 000 learning steps. Additionally, for the
computation of the distances ‖v−w(r)‖, a “metric” was used which weights
the differences in the last 10 components of v twice as strongly as those of the
first 10 components. In Fig. 4.10, the 20×20-lattice of neurons is represented.
For each lattice site, two numbers i, j ∈ {0, . . . , 9} indicate the initial and
final state of the transition assigned to the respective neuron. The initial
distribution was again chosen randomly. Figure 4.10 shows the map obtained
after 5,000 learning steps. For each of the 50 allowed transitions, an “island”
of neurons responding to this transition has formed, and the islands are in
turn arranged in such a way that islands corresponding to transitions to the
same successor state form a larger cluster. This corresponds to a hierarchical
arrangement and is a consequence of the described choice of weight, the
successor state obtaining a higher weight than the predecessor state in the
choice of the excitation center. This choice dominates the formation of the
“large-scale” structure of the map, i.e., the structure on the level of “clusters
of islands.” This illustrates that, by an appropriate choice of metric (the
choice of weight corresponds to a choice of metric), it is possible to arrange

4. Kohonen’s Network Model 72

for certain features (here successors) to be grouped together hierarchically in
the map.

Abb. 4.10: Mapping of the transitions i → j of a Markov process with states
i, j = 0, ..., 9 onto a lattice consisting of 20× 20 neurons. For each lattice loca-
tion, the transition to which the corresponding neuron best responds is indicated
as jk. Neurons with the same transition are adjacent to one another within is-
lands. Islands with the same successor in turn form “clusters.” This corresponds
to a hierarchical distribution of the neuron specificities over the lattice.

By the inclusion of contextual information, such a hierarchical grouping can
emerge from the data itself. For example one can create “semantic maps”
which arrange words in hierarchies of meaning. This ordering is gradually
found by the system itself in the course of a learning phase, where simple
English sentences can serve as “training data” (Ritter and Kohonen 1989).
After this initial overview, we consider in the following chapters a series
of information processing tasks, for which the choice is motivated by their
significance for biological systems. At the same time, we investigate how
self-organizing maps can be useful in solving such problems. While viewing
biological examples as a guide, we will occasionally consider technical ap-
plications when appropriate. This applies particularly to Chapter 6, which

4. Kohonen’s Network Model 73

gives a solution to the “traveling salesman problem” and Chapters 10–13,
which are concerned with applications to robotics.

5. Kohonen’s Network for Modeling the Auditory Cortex of a Bat 74

5. KOHONEN’S NETWORK FOR MODELING THE
AUDITORY CORTEX OF A BAT

In this chapter we employ Kohonen’s model to simulate the projection of
the space of the ultrasound frequencies onto the auditory cortex of a bat (
Martinetz, Ritter, and Schulten 1988). The auditory cortex is the area of
the cerebrum responsible for sound analysis (Kandel and Schwartz, 1985).
We will compare the results of the simulation with available measurements
from the cortex of the bat Pteronotus parnelli rubiginosus, as well as with
an analytic calculation.
For each animal species, the size of an area of neural units responsible for
the analysis of a particular sense strongly depends on the importance of that
sense for the species. Within each of those areas the extent of the cortical
representation of each input stimulus depends on the required resolution.
For example, the fine analysis of the visual information of higher mammals
is accomplished in the fovea. The fovea is a very small area of the retina in
the vicinity of the optical axis with a very high density of rods and cones,
the light sensitive receptors in the eye. The especially high density gives rise
to a significantly higher resolution in this area than in the regions of the
retina responsible for the peripheral part of the visual field. Although the
fovea is only a small part of the total retina, the larger part of the visual
cortex is dedicated to the processing of signals from the fovea. Similarly
nonproportional representations have also been found in the somatosensory
system and in the motor cortex. For example, particularly large areas in the
somatosensory and the motor cortex are assigned to the hand when compared
to the area devoted to the representation of other body surfaces or limbs (
Woolsey 1958).
In contrast no nonproportional projections have been found so far in the
auditory cortex of higher mammals. The reason for this is perhaps that
the acoustic signals perceived by most mammals contain a wide spectrum
of frequencies; the signal energy is usually not concentrated in a narrow
range of frequencies. The meow of a cat, for example, is made up of many

5. Kohonen’s Network for Modeling the Auditory Cortex of a Bat 75

harmonics of the base tone, and no region of the frequency spectrum plays
any particular function in the cat’s survival. The auditory cortex of cats
was thoroughly examined, and the result was that frequencies, as expected,
are mapped onto the cortex in a linearly increasing arrangement without
any regard for particular frequencies. The high-frequency units lie in the
anterior and the low-frequency units lie in the posterior region of the cortex.
According to available experimental evidence, the auditory cortex of dogs
and monkeys is structured very similarly (Merzenich et al. 1975).

5.1 The Auditory Cortex of a Bat

In bats, nonproportional projections have been detected in the auditory cor-
tex. Due to the use of sonar by these animals, the acoustic frequency spec-
trum contains certain intervals which are more important. Bats utilize a
whole range of frequencies for orientation purposes. They can measure the
distances to objects in their surroundings by the time delay of the echo of
their sonar signals, and they obtain information about the size of the detected
objects by the amplitude of the echo.
In addition, bats are able to determine their flight velocity relative to other
objects by the Doppler shift of the sonar signal that they transmit. This abil-
ity to determine the Doppler shift has been intensively studied in Pteronotus
parnelli rubiginosus, a bat species which is native to Panama (Suga and Jen
1976). This species has developed this ability to the extent that it is able to
resolve relative velocities up to 3 cm/s, enabling it to detect even the beating
of the wings of insects, its major source of nutrition. The transmitted sonar
signal consists of a pulse that lasts about 30 ms at a frequency of 61 kHz. For
the analysis of the Doppler-shifted echoes, this bat employs a special part of
its auditory cortex (Suga and Jen 1976).
The Doppler shift ∆f of the sonar frequency by an object moving in the
same line with the bat is determined by

∆f

fe
=

2vbat
c
− 2vobj

c
. (5.1)

Here fe is the bat’s sonar frequency, i.e., 61 kHz, vbat is the bat’s velocity,
vobj is the object’s flight velocity, and c is the velocity of sound. The factor
of two is due to the fact that both the transmitted signal and the echo are
Doppler shifted. If the bat knows its own velocity, it can determine vobj from
the Doppler shift ∆f .

5. Kohonen’s Network for Modeling the Auditory Cortex of a Bat 76

Excellent sonar capabilities are certainly indispensable for the bat’s survival.
To be able to detect a frequency shift of 0.02% which corresponds to the
stated relative velocity of 3 cm/s, assuming a sound velocity of 300 m/s,
a particularly high resolution of frequencies around the sonar frequency is
necessary. Therefore, it would not be surprising if the interval around 61 kHz
of the frequency spectrum were disproportionately represented in the part of
the auditory cortex responsible for the Doppler analysis. Investigations on
Pteronotus parnelli rubiginosus indeed support this expectation (Suga and
Jen 1976).
Figure 5.1 shows the results of observations by Suga and Jen (1976). In part
B of Fig. 5.1 one can clearly see that the one-dimensional frequency spec-
trum essentially extends continuously and monotonically from the posterior
to the anterior region of the auditory cortex. In addition, one recognizes a
region around the sonar frequency of 61 kHz with a very high resolution.
To emphasize this anomaly, the region shaded in part A of Fig 5.1 has been
displayed separately in part C. This region corresponds to the frequency in-
terval which is especially important for the bat and extends monotonically
from a minimum frequency of about 20 kHz up to a maximum frequency of
about 100 kHz. The position and best frequency for each measurement in the
shaded region of A is also shown in part C of Fig. 5.1. As “best frequency”
for a neuron, one picks the frequency that causes the highest excitation of
that neuron. One clearly sees that the majority of the measured values are
clustered around the sonar frequency, as is expected. Almost half of the
anterior-posterior region is used for the analysis of the Doppler-shifted sig-
nals. This provides the particularly high resolution of 0.02% which gives the
bat its fine navigational and insect hunting abilities.

5. Kohonen’s Network for Modeling the Auditory Cortex of a Bat 77

Abb. 5.1: (A) Dorsolateral view of the bat’s cerebrum. The auditory cortex
lies within the inserted rectangle. (B) Distribution of “best frequencies” on the
auditory cortex, the rectangle in (A). (C) Distribution of “best frequencies” along
the region shaded in (A) and (B). The distribution of measured values around
61 kHz has been enlarged (after Suga and Jen 1976).

5.2 A Model of the Bat’s Auditory Cortex

The development of the projection of the one-dimensional frequency space
onto the auditory cortex, with special weighting of the frequencies around
61 kHz, will now be simulated by Kohonen’s model of self-organizing maps.
For this purpose we will model the auditory cortex by an array of 5×25
neural units.
The space of input stimuli is the one-dimensional ultrasound spectrum of the

5. Kohonen’s Network for Modeling the Auditory Cortex of a Bat 78

bat’s hearing. In our model this spectrum will be simulated by a Gaussian
distribution of Doppler-shifted sonar echoes on top of a white background
noise. The background noise in the range from 20 to 100 kHz depicts signals
from external ultrasound sources. In addition, there is a peak near 61 kHz
which consists of the echoes from objects moving relative to the bat. We
describe this peak of Doppler-shifted sonar signals by a Gaussian distribution
centered at 61 kHz with a width of σr=0.5 kHz. This corresponds to a root
mean square speed difference of the sonar-detected objects of about 2 m/s.
Doppler-shifted sonar signals occur in our model three times as often as
signals from the white background noise. Figure 5.2 shows the weighted
probability distribution.

Abb. 5.2: The relative probability density of the input signals versus frequency.
Doppler-shifted echoes occur exactly three times as often as signals from the
white background noise.

Initially, a random frequency is assigned to each model neuron of our model
cortex. This corresponds to Step 0 of Kohonen’s model as described in the
last chapter. Due to the one-dimensionality of the space of input stimuli, the

5. Kohonen’s Network for Modeling the Auditory Cortex of a Bat 79

synaptic strengths wr of the model neurons r have only a single component.1

An input signal according to a probability distribution P (v) causes that
model neuron whose momentarily assigned frequency (the so-called “best
frequency” of that neuron) lies closest to the input frequency to determine the
center of the “activity peak” within which the neurons become significantly
excited (Step 2). Next, the “best frequencies” of all neurons of the cortex
are modified according to Step 3 of Kohonen’s algorithm. After a sufficient
number of steps this modification should result in an arrangement of “best
frequencies” on the model cortex that is continuous and is adapted to the
particular probability distribution of the input signals.

5.3 Simulation Results

In Fig. 5.1B it can be seen that the region of the auditory cortex of Pterono-
tus parnelli rubiginosus responsible for the resolution of the echo is greatly
elongated, it being much more extended along the anterior-posterior axis
than it is along the perpendicular direction. A similar length-width ratio for
the model cortex was chosen in the simulation we will describe. There, the
anterior-posterior length contains 25 model neurons and is five times longer
than the width of the array.
Figure 5.3 shows the model cortex at different stages of the learning process.
Each model neuron is represented by a box containing (the integer part of)
the assigned frequency. Figure 5.3a presents the initial state. Each neuron
was assigned randomly a frequency value in the range 20 to 100 kHz. As
we see in Fig. 5.3.b, after 500 learning steps a continuous mapping between
the space of input frequencies and the model cortex has already emerged.
The final state, achieved after 5000 learning steps, is depicted in Fig. 5.3.c.
One can see the special feature of Kohonen’s model that represents the input
stimuli on the net of neural units according to the probability with which
stimuli occur. The strong maximum of the probability density in our model
causes a wide-ranging occupation of the “cortex” with frequencies in the
narrow interval around the sonar frequency of 61 kHz.

1 This is only an idealization that is caused by the explicit use of frequency values. In
a more realistic model one could, for example, code the frequency by different output
amplitudes of a set of overlapping filters as they are actually realized in the inner ear.
The ordering process demonstrated in the simulation would, however, not be affected
by this.

5. Kohonen’s Network for Modeling the Auditory Cortex of a Bat 80

Abb. 5.3: (a) (left) The initial state with random frequencies assigned to the
neural units. The length-to-width ratio of the array of model neurons is five
(anterior-posterior) to one (dorsolateral). Each box represents a neuron and
contains the integer part of the current “best frequency” assigned to that neu-
ron. (b) (middle) The state of the “auditory cortex” after 500 learning steps.
The field has evolved into a state where neighboring neurons have similar “best
frequencies;” i.e., the space of input stimuli is represented continuously on the ar-
ray. (c) (right) The “auditory cortex” in the final state, after 5000 learning steps.
The region of “best frequencies” around the sonar frequency, which represents
the Doppler-shifted input signals, occupies almost half of the model cortex.

In this simulation the time dependence of the excitation zone σ and of the
adaptation step widths ε were chosen as follows: σ(t) = σi[1+exp(−5 (t/tmax)

2)]
and ε(t) = εi exp(−5 (t/tmax)

2) with σi = 5 and εi = 1, where t denotes the
number of performed learning steps. The final number of learning steps at
the end of the simulation was tmax = 5000.

5. Kohonen’s Network for Modeling the Auditory Cortex of a Bat 81

Abb. 5.4: The simulation results presented as in Fig. 5.1C. Along the abscissa
are the positions 1 through 25 of the model neurons along the “anterior-posterior”
axis. The ordinate shows the corresponding “best frequencies.” For every value
between 1 and 25 five frequency values are represented, one for each of the five
neural units along the “dorso-lateral” direction.

In accordance with the experimental results from the auditory cortex of
Pteronotus parnelli rubiginosus, the representation of the input frequencies
on our model cortex increases monotonically along the “anterior-posterior”
axis. In order to compare the results of our simulation with the mea-
surements, we have presented the distribution of “best frequencies” as in
Fig. 5.1C. Figure 5.4 depicts the simulation results of Fig. 5.3 in the same
way as Fig. 5.1C represents the data of Fig. 5.1A-B. Each model neuron
has been described by its position 1 to 25 on the “anterior-posterior” axis
as well as by its “best frequency.” This representation of the results of the
simulation produces a picture very similar to that of the experimental mea-
surements (Fig. 5.1). In both cases a plateau arises that occupies almost
half of the cortex and contains the neural units specialized in the analysis
of the Doppler-shifted echoes. The size of this plateau is determined by the
shape of the probability distribution of the input stimuli. In Section 5.4 we
will look more closely at the relation between the shape of the probability
distribution and the final cortical representation in Kohonen’s model.

5. Kohonen’s Network for Modeling the Auditory Cortex of a Bat 82

5.4 Mathematical Description of the “Cortical
Representation”

We want to investigate what mappings between a neural lattice and an in-
put signal space result asymptotically for Kohonen’s model. For “maxi-
mally ordered” states we will demonstrate a quantitative relation between
the “neural-occupation density” in the space of input stimuli which corre-
sponds to the local enlargement factor of the map, and the functional form
of the probability density P (v) of the input signals (Ritter and Schulten
1986a). The result will enable us to derive an analytical expression for the
shape of the curve shown in Fig. 5.4, including the size of the plateau. Un-
fortunately, such analytical expressions will be limited to the special case of
one-dimensional networks and one-dimensional input spaces. The following
derivation is mainly directed at the mathematically inclined reader; it can
be skipped without loss of continuity.
To begin, we consider a lattice A of N formal neurons r1, r2,
. . . , rN . A map φw : V 7→ A of the space V onto A, which assigns to each
element v ∈ V an element φw(v) ∈ A, is defined by the synaptic strengths
w = (wr1 ,wr2 , . . . ,wrN), wrj ∈ V . The image φw(v) ∈ A that belongs to
v ∈ V is specified by the condition

‖wφw(v) − v‖ = min
r∈A
‖wr − v‖, (5.2)

i.e., an element v ∈ V is mapped onto that neuron r ∈ A for which ‖wr−v‖
becomes minimal.
As described in Chapter 4, φw emerges in a learning process that consists
of iterated changes of the synaptic strengths w = (wr1 ,wr2 , . . . ,wrN). A
learning step that causes a change from w′ to w can formally be described
by the transformation

w = T(w′,v, ε). (5.3)

Here v ∈ V represents the input vector invoked at a particular instance, and
ε is a measure of the plasticity of the synaptic strengths (see Eq. (4.15).
The learning process is driven by a sequence of randomly and independently
chosen vectors v whose distribution obeys a probability density P (v). The
transformation (5.3) then defines a Markov process in the space of synaptic
strengths w ∈ V ⊗V ⊗ . . .⊗V that describes the evolution of the map φw(v).
We will now show that the stationary state of the map which evolves asymp-

5. Kohonen’s Network for Modeling the Auditory Cortex of a Bat 83

totically by this process can be described by a partial differential equation
for the stationary distribution of the synaptic strengths.
Since the elements v occur with the probability P (v), the probabilityQ(w,w′)
for the transition of a state w′ to a state w, via adaptation step (5.3), is given
by

Q(w,w′) =
∫
δ(w −T(w′,v, ε))P (v) dv. (5.4)

δ(x) denotes the so-called delta-function which is zero for all x 6= 0 and for
which

∫
δ(x)dx = 1. More explicitly, Eq. (5.3) can be written

wr = w′r + ε hrs(v −w′r) for all r ∈ A. (5.5)

Here s = φw′(v) is the formal neuron to which v is assigned in the old map
φw′ .
In the following we take exclusive interest in those states φw that correspond
to “maximally ordered maps,” and we want to investigate their dependence
on the probability density P (v). We assume that the space V and the lat-
tice A have the same dimensionality d. A “maximally ordered map” can
then be characterized by the condition that lines in V which connect the wr

of r adjacent in the network are not allowed to cross. Figure 5.5 demon-
strates this fact with an example of a two-dimensional Kohonen lattice on
a two-dimensional space V of input stimuli with a homogeneous probability
distribution P (v). The square frame represents the space V . The synaptic
strengths wr ∈ V determine the locations on the square which are assigned
to the formal neurons r ∈ A. Each mesh point of the lattice A corresponds
to a formal neuron and, in our representation, is drawn at the location that
has been assigned to that neuron through wr. Two locations wr are con-
nected by a line if the two corresponding formal neurons r are neighbors in
the lattice A. Figure 5.5a shows a map that has reached a state of “maximal
order” as seen by the lack of line crossings between lattice points. In contrast
Fig. 5.5b presents a map for which even in the final stage some connections
still cross. Such a map is not “maximally ordered.”
In the following calculation we will make a transition from discrete values of r
to continuous ones. This is possible because in the following we restrict our-
selves to “maximally ordered” states where in the transition to a continuum
wr becomes a smooth function of the spatial coordinate r in the network.

5. Kohonen’s Network for Modeling the Auditory Cortex of a Bat 84

Abb. 5.5: An example for a “maxi-
mally ordered” state of the network.
Network and input signals are both
two-dimensional. All input signals
originate from the limiting square.
In the continuum limit the network
nodes are infinitely dense and spec-
ify a one-to-one mapping between the
network and the square.

Abb. 5.6: An example of an incom-
pletely ordered state of the network,
evolved as a consequence of the range
σ(t) of hrs to be too short initially
(see Eq. (68)). In this case a topo-
logical defect develops and the con-
nections between neighboring lattice
points cross. In the continuum limit
a one-to-one mapping cannot be ob-
tained.

We consider an ensemble of maps that, after t learning steps, are all in the
vicinity of the same asymptotic state and whose distribution is given by a
distribution function S(w, t). In the limit t→∞, S(w, t) converges towards
a stationary distribution S(w) with a mean value w̄. In Chapter 14 we will
show that the variance of S(w) under the given conditions will be of the
order of ε. Therefore, for an ε that is sufficiently slowly approaching zero,
all members of the ensemble will result in the same map characterized by its
value w̄.
We want to calculate w̄ in the limit ε → 0. In the stationary state, the
condition S(w) =

∫
Q(w,w′)S(w′) dw′ holds, and, therefore, it also holds

that
w̄ =

∫
wS(w) dw =

∫ ∫
wQ(w,w′)S(w′) dwdw′. (5.6)

5. Kohonen’s Network for Modeling the Auditory Cortex of a Bat 85

In the limit ε→ 0 it follows S(w)→ δ(w − w̄) and, therefore,

w̄ =
∫

wQ(w, w̄) dw

=
∫

T(w̄,v, ε)P (v) dv. (5.7)

Applying Eq. (5.5) we obtain

0 = ε
∫
hrs(v − w̄r)P (v) dv for all r ∈ A. (5.8)

We formulate the restriction of maximally ordered maps by two approximat-
ing assumptions:

1. We assume that for sufficiently large systems w̄r is a function that
varies slowly from lattice point to lattice point so that its replacement
by a function w̄(r) on a continuum of r-values is justified.

2. We assume that w̄(r) is one-to-one.

We demand also that hrs at r = s has a steep maximum and satisfies∫
hrs(r− s) dr = 0,∫

h(r− s)(ri − si)(rj − sj) dr = δijσ
2, i, j = 1, . . . , d (5.9)

where d is the dimension of V and rj, sj describe the d Cartesian components
of r, s. The constant σ is the range of hrs which coincides with σ in (68) in
case of a Gaussian hrs.
From the above we will derive a differential equation for w̄. Due to the contin-
uum approximation (i), the quantity
min
r∈A
‖wr − v‖ in Eq. (5.7) vanishes because now for each v there exists ex-

actly one r for which wr = v holds. Therefore, we can replace v in Eq. 5.8)
by w̄(s). Here s := φw̄(v) is the image of v under the map that belongs to
w̄. This provides the condition∫

hrs

(
w̄(s)− w̄(r)

)
P (w̄(s))J(s) ds = 0. (5.10)

Here

J(s) :=

∣∣∣∣∣dvds
∣∣∣∣∣ (5.11)

5. Kohonen’s Network for Modeling the Auditory Cortex of a Bat 86

is the absolute value of the Jacobian of the map φw̄. With q := s − r as a
new integration variable and P̄ (r) := P (w̄(r)) the expansion of Eq. (5.10)
in powers of q yields (with implicit summation over repeated indices; e.g.,
qi∂i is to be summed over all values of i)

0 =
∫
hq0(qi∂iw̄ +

1

2
qiqj∂i∂jw̄ + . . .) ·

·(P̄ + qk∂kP̄ + . . .) · (J + ql∂lJ + . . .) dq

=
∫
hq0qiqj dq ·

(
(∂iw̄)∂j(P̄ J) +

1

2
P̄ J · ∂i∂jw̄

)
(r) +O(σ4)

= σ2 ·
[
(∂iw̄)(∂i(P̄ J) +

1

2
P̄ J · ∂2

i w̄)
]
(r) +O(σ4), (5.12)

where we made use of (81). In order for the expansion (5.12) to hold it is
necessary and sufficient for small σ that condition

∑
i

∂iw̄

(
∂iP̄

P̄
+
∂iJ

J

)
= −1

2

∑
i

∂2
i w̄ (5.13)

or, with the Jacobi matrix Jij = ∂jw̄i(r) and ∆ =
∑
i
∂2
i , condition

J · ∇ ln(P̄ · J) = −1

2
∆w̄ (5.14)

is satisfied. For the one-dimensional case we obtain J = J = dw̄/dr and
∆w̄ = d2w̄/dr2 with w̄ and r as scalars. In this case the differential equation
(5.14) can be solved. For this purpose we rewrite (5.14) and obtain

dw̄

dr

 1

P

dP̄

dr
+

(
dw̄

dr

)−1
d2w̄

dr2

 = −1

2

d2w̄

dr2
(5.15)

from which we can conclude

d

dr
ln P̄ = −3

2

d

dr
ln

(
dw̄

dr

)
. (5.16)

This result allows us to determine the local enlargement factor of the map
in terms of the generating probability distribution P (v).
Since φw̄(w̄(r)) = r holds, the local enlargement factor M of φw̄ can be
defined byM = 1/J (compare Eq. (5.11)). For the one-dimensional caseM =

5. Kohonen’s Network for Modeling the Auditory Cortex of a Bat 87

(dw̄/dr)−1 and we obtain as a relation between input stimulus distribution
and cortical representation

M(v) = J−1 =
dr

dw̄
∝ P (v)2/3. (5.17)

The local enlargement factor M(v) depends on the probability density P (v)
according to a power law. It can be shown that the exponent 2/3 that we
found in the continuum approximation undergoes a correction for a discrete
one-dimensional system and is then given by 2

3
− [3(1 + n2)(1 + [n+ 1]2)]−1,

where n is the number of neighbors that are taken into account on each side
of the excitation center, (i.e., hrs = 1 for ‖r − s‖ ≤ n and zero elsewhere)
(Ritter 1989). The continuum corresponds to the limit of infinite density of
neighbors. Then n = ∞ for each finite σ and we obtain the previous result
of 2/3.

5.5 “Cortical Representation” in the Model of the Bat’s
Auditory Cortex

We now apply the mathematical derivation of Section 5.4 to the particu-
lar input stimulus distribution that we assumed for our model of the bat’s
auditory cortex and compare the result with a simulation.
The input stimulus distribution that we assume can be written in the range
v1 ≤ v ≤ v2 as

P (v) =
P0

v2 − v1

+ (1− P0)
1√

2πσr
exp

(
−(v − ve)2

2σ2
r

)
(5.18)

with the parameters σr=0.5 kHz, ve=61.0 kHz, v1=20 kHz,
v2=100 kHz and P0=1/4. The width of the distribution of the Doppler-
shifted echoes is given by σr, and P0 is the probability for the occurrence of
an input stimulus from the white background noise. v1 and v2 are the limits
of the ultrasound spectrum that we assume the bat can hear.
The integral I =

∫ v2
v1
P (v)dv is not exactly unity because of the finite inte-

gration limits. Since, due to the small σr of 0.5 kHz, nearly all the Doppler-
shifted echo signals lie within the interval [20, 100] and the deviation of I
from unity is negligible. With the choice P0 = 1/4, the Doppler-shifted sig-
nals occur three times as often as signals due to the background noise (see

5. Kohonen’s Network for Modeling the Auditory Cortex of a Bat 88

also Fig. 5.2). From Eqs. (5.17) and (5.18) we find

dr

dw̄
= C ·

(
P0

v2 − v1

+ (1− P0)
1√

2πσr
exp

(
−(v − ve)2

2σ2
r

))2/3

(5.19)

where C is a proportionality constant. In integral form one has

r(w̄)− r1 = C ·
w̄∫

w̄1

(
P0

v2 − v1

+
1− P0√

2πσr

× exp

(
−(v − ve)2

2σ2
r

))2/3

dv. (5.20)

We will solve this integral numerically and then compare the resulting w̄(r)
with the corresponding values from a simulation.
Since these considerations apply only to the case where the dimensionality
of the net and the dimensionality of the space of input stimuli is identical,
we stretch the “auditory cortex” and, instead of a 5×25 net as in Figs. 5.3
and 5.4, assume a one-dimensional chain with 50 elements for the present
simulation. Starting from a linear, second-order differential equation, we need
two boundary conditions, e.g., w̄1(r1) and w̄2(r2), from our simulation data
to be able to adjust the function r(w̄) of Eq. (5.20) uniquely. Since boundary
effects at the beginning and the end of the chain were not taken into account
in our analytic calculation, the end points can in some cases deviate slightly
from our calculated curve. To adjust the curve to the simulation data, we
take values for w1 and w2 that do not lie too close to the end points; in this
case we have chosen w̄ at the third and forty-eighth link of the chain, i.e.,
at r1 = 3 and r2 = 48. The solid curve in Fig. 5.6 depicts the function w̄(r)
calculated numerically from Eq.(5.20) and adjusted to the simulation data.
The dots show the values w̄r that were obtained by simulating the Markov
process (75). The representation corresponds to the one in Fig. 5.4. The time
dependence of the excitation zone σ and of the adaptation step width ε for
the simulation were chosen as follows: σ(t) = σi[1 + exp(−(5t/tmax)

2)] with
σi = 10, ε(t) = εi exp(−(5t/tmax)

2) with εi = 1. For the maximal number of
learning steps tmax = 20000 was chosen.

5. Kohonen’s Network for Modeling the Auditory Cortex of a Bat 89

Abb. 5.7: A bat’s sensitivity to accoustic and sonar signals (cf. Fig. 5.4). The
solid curve represents the function w̄(r) calculated from Eq. (92). The dots show
the values obtained from simulating the Markov process (75). For comparison
we show the result for M(v) ∝ P (v) with a dashed line. This result strongly
deviates from the simulation data.

Clearly, the function w̄(r) resulting from Eq. (5.20) is in close agreement
with the simulation results, and even the deviations at the end points are
small. One may have expected intuitively that for the magnification holds
M(v) ∝ P (v), i.e., a magnification proportional to the stimulus density. The
corresponding result is presented in Fig. 5.6 as well to demonstrate that this
expectation is, in fact, incorrect.
For the present input stimulus distribution, it is possible to estimate the size
of the region relevant for the analysis of the Doppler-shifted signal, i.e., the
extension of the 61 kHz plateau in Fig. 5.6. In Eq. 5.20) we integrate over
P (v)2/3 and, therefore, the function r(w̄) increases sharply for large values
of P (v). Hence, the plateau starts where the Gaussian distribution of the
Doppler-shifted echoes increases strongly relative to the background. This is
approximately the case for v = ve−2σr. Accordingly, the plateau ends where
the Gaussian peak recedes back into the homogeneous background, i.e., at
v = ve + 2σr. Therefore, the relation

∆rplateau = C ·
ve+2σr∫
ve−2σr

(
P0

v2 − v1

+ (1− P0)
1√

2πσr

5. Kohonen’s Network for Modeling the Auditory Cortex of a Bat 90

× exp

(
−(v − ve)2

2σ2
r

))2/3

dv (5.21)

for the size of the plateau holds. Within these integration limits the back-
ground portion in the integrand is negligible compared to the values of the
Gaussian. Furthermore, we can extend the integration of the integrand that
results without the background towards infinity without significant error.
The integral can then be evaluated, yielding the approximation

∆rplateau ≈ C · (1− P0)2/3

∞∫
−∞

1

(
√

2πσr)2/3
exp

(
−2

3

v2

2σ2
r

)
dv

≈ C ·
√

3

2

(√
2πσr(1− P0)2

)1/3
. (5.22)

In order to determine the part of the plateau relative to the overall “auditory
cortex,” we also need an estimate of the integral in Eq. (5.20), where we have
to integrate over the full band width of input frequencies. To obtain this we
split the integration range from v1=20 kHz to v2=100 kHz into three regions
as follows

∆rtotal ∝
ve−2σr∫
v1

(P (v))2/3 dv +

ve+2σr∫
ve−2σr

(P (v))2/3 dv

+

v2∫
ve−2σr

(P (v))2/3 dv. (5.23)

We have already estimated the second integral in the sum by Eq. (5.22).
Within the integration limits of the other two integrals the contribution of
the Gaussian distribution is so small that it can be neglected relative to the
background. In addition, σr � (v2 − v1), enabling us to write

∆rtotal ≈ ∆rplateau + C · (v2 − v1)
(

P0

v2 − v1

)2/3

≈ ∆rplateau + C · P0
2/3(v2 − v1)1/3. (5.24)

If we insert the parameters of our above model of the input stimulus distri-
bution of the bat into the two estimates (5.22) and (5.24), we obtain for the
size of the 61 kHz region, relative to the size of the total “cortex,” the value

∆rplateau
∆rtotal

≈ 39%.

5. Kohonen’s Network for Modeling the Auditory Cortex of a Bat 91

This implies that for our case of a 50-unit chain, the plateau should consist
of 19 to 20 neurons. This value agrees very well with the simulation results
presented in Fig. 5.6.
By now we have extensively described the basics of Kohonen’s model—the
self-organization of a topology-conserving map between an input stimulus
space and a network of neural units. We have compared the simulation re-
sults of Kohonen’s model to experimental data as well as to a mathematical
description valid for certain limiting cases. The simulation data have agreed
at least qualitatively with the experimental findings. More than a qualitative
agreement should not have been expected, considering the many simplifica-
tions of Kohonen’s model. In contrast to that, the mathematical result for the
representation of the input signals relative to their probability corresponds,
even quantitatively, very well to the results obtained from simulations.
In Chapter 6 we will become acquainted with a completely different appli-
cation of Kohonen’s model. Instead of a mappingonto a continuum, we will
generate a mapping that projects a linear chain onto a discrete set of points.
Such a mapping can be interpreted as a choice of a connection path between
the points. The feature of the algorithm to preserve topology as much as
possible manifests itself in a tendency to minimize the path-length. In this
way, very good approximate solutions for the well-known travelling salesman
problem can be achieved.

6. Application to the “Traveling Salesman Problem” 92

6. APPLICATION TO THE “TRAVELING SALESMAN
PROBLEM”

The properties that have the most significant influence on the maps con-
structed by Kohonen’s algorithm are the dimensionality of the neural net-
work and the dimensionality and distribution of the input signals. The sim-
plest case arises for a one-dimensional net, i.e., a chain of neurons, and
one-dimensional input signals. As shown in Chapter 5, one encounters this
apparently quite unbiological case in the auditory cortex of mammals, where
approximately linearly arranged neurons are assigned to a frequency interval.
This situation is especially interesting also from a theoretical point of view,
because it admits a closed solution, yielding the dependence of the resultant
mapping on the probability density of the input signals. In this chapter, we
extend our discussion to the case of multidimensional input signals, but we
continue to assume a one-dimensional chain for the arrangement of the neu-
rons. An analytical solution for the stationary maps which are possible under
these circumstances can no longer be given. Instead, we will see that under
appropriate conditions the resulting maps can be interpreted as approximate
solutions of an interesting but analytically not tractable optimization prob-
lem, the “traveling salesman problem.”

6.1 Paths as One-Dimensional Maps

In the case of a chain of neurons there exists a fixed order among the neurons
given by their arrangement along the chain. Each neuron r carries a vector wr

marking a point in the space V of input signals. Hence, the corresponding
“map” of V is one-dimensional. Whenever V is of higher dimension than
the space of the lattice A, a substantial loss of information is inevitable,
and the topology of V can only be reproduced to a very limited degree
by a map V 7→ A. Nevertheless, such maps may contain important and
highly nontrivial information. We demonstrate this for the example of one-

6. Application to the “Traveling Salesman Problem” 93

dimensional maps.
If one runs through the neurons of the chain A, the points wr run through
a corresponding sequence of stations in the space V , which can be thought
of as a path. This path is the image of the neuron chain under the mapping
r 7→ wr. From this point of view, Kohonen’s algorithm for the formation of
a one-dimensional map appears as a procedure for the stepwise optimization
of a path in the space V (Angeniol et al. 1988). Initially, the path visits N
randomly distributed stations. Each input signal v ∈ V chooses that station
ws of the path which is closest to v and deforms the path a bit toward v
by shifting all stations corresponding to neurons in the neighborhood of s
towards v as well. Thus, a path gradually develops, whose course favors
regions from which input signals v are frequently chosen. Hence, by spec-
ification of an appropriate probability density P (v), one can influence how
important the presence of the path is in the individual regions of V . Since
neurons neighboring on the chain become assigned to points wr adjacent in
the space V , the resulting path tends to be as short as possible. Hence, one-
dimensional topology-conserving maps (approximately) solve an interesting
optimization problem, that is, to find the shortest possible path, where P (v)
plays the role of a position-dependent “utility function” (cf. Angeniol et al.
1988).

6.2 The Model for a Discrete Stimulus Distribution

In this section we supplement the very qualitative remarks of the preceding
section by a more precise, mathematical formulation. This is simplified if
we assume a discrete probability distribution P (v) instead of a continuous
one. In this case, the input signal v can only take values from a discrete set
{q1,q2, . . . ,qL}. Denoting by pi the probability that v takes the value qi
(
∑
i pi = 1), we see that P (v) is of the form

P (v) =
L∑
i=1

piδ(v − qi), qi ∈ V, (6.1)

where δ(.) denotes the “Dirac delta function” or “unit point measure” and
represents a probability density concentrated entirely at the origin. In the
context of the path optimization problem described above, the qi, i =
1, 2, . . . , L, designate the location L of specified positions where the probabil-
ity function is entirely concentrated, and through which the path is supposed

6. Application to the “Traveling Salesman Problem” 94

to pass. The pi enable one to vary the relative importance of the positions.
Taking the discrete probability density (6.1), we can drop the assumption of
a one-dimensional neuron chain for the following derivation and temporarily
admit an arbitrary topology of the neural network, without introducing ad-
ditional complications. We now ask for the expectation value E(∆wr|w′) for
the change ∆wr := wr − w′r of the synaptic strengths of neuron r under a
single learning step. The notation E(∆wr|w′) indicates that the expectation
value is conditional, i.e., it depends on the state w′ of the neural network
before the learning step. In analogy to Eq. (70), E(∆wr|w′) is given by

E(∆wr|w′) = ε
∫
hrφw′ (v)(v −w′r)P (v) dv

= ε
∑
s

hrs

∫
Fs(w′)

(v −w′r)P (v) dv. (6.2)

Here, Fs(w) is the set of all v ∈ V leading to the selection of “neuron” s,
i.e.,

Fs(w) =
{
v ∈ V

∣∣∣ ‖v −ws‖ ≤ ‖v −wr‖ ∀r ∈ A
}
. (6.3)

Since we will encounter the set Fs(w) (called “indicator function” in prob-
ability theory) very often throughout the rest of this book, let us give a
further explanation of (6.3): Fs(w) entails the sub-volume of the space V ,
whose center of gravity is given by ws, enclosing all points of V lying closer to
ws than to any other wr, r 6= s. With regard to the biological interpretation
of Kohonen’s model, Fs(w) thus plays the role of the set of all input patterns
exciting the “neuron” s most strongly and, hence, can be interpreted as the
“receptive field” of this neuron.
For the discrete probability distribution (6.1), expression (6.2) simplifies to

E(∆wr|w) = ε
∑
s

hrs

∑
qi∈Fs(w)

pi(qi −wr). (6.4)

The right-hand side (RHS) can be expressed as the gradient of a “potential
function”

E(∆wr|w) = −ε∇wrV (w)

where V (w) is given by 1

V (w) =
1

2

∑
rs

hrs

∑
qi∈Fs(w)

pi(qi −wr)
2. (6.5)

1 For a continuous probability density, a potential cannot be derived in this manner
because of the dependence of (6.2) on the regions of integration, Fr(w).

6. Application to the “Traveling Salesman Problem” 95

According to (6.4), a single learning step on the average leads to a decrease

E(∆V |w) = −ε
∑
r

‖∇wrV ‖2 (6.6)

of V (w). However, an individual learning step can also lead to an increase
in V (w). Hence, as in Monte-Carlo annealing (Kirkpatrick et al. 1983, Kirk-
patrick 1984), for ε > 0 there is some possibility of escaping from local
minima. However, for this to happen, the RHS of (6.6) must be comparable
to the depth of the minimum. Otherwise, escaping the minimum requires the
joint action of several steps. But the change in the potential for k steps tends
approximately to k ·E(∆V |w), i.e., to a strongly negative value. Therefore,
the chance of leaving the minimum by the joint action of several steps is
small. This indicates that the learning step size ε is qualitatively analogous
to the temperature in Monte-Carlo annealing. In particular, in the limit
ε→ 0, a deterministic trajectory in the potential V (w) results.
For small ε, the stationary states correspond to the stationary points of
V (w). If N ≥ L, then V (w) assumes particulary small values if one sets
wr ≈ qi(r), where i(r) is an assignment of lattice sites r to positions qi with
the property that lattice sites r, s for which hrs has large values, are assigned
to positions qi(r), qi(s) that are as close as possible in V . The minimization
of V (w) can thus be viewed as the mathematical formalization of seeking a
mapping from the positions qi to the lattice A such that the neighborhood
relations in the image on A (being defined by the function hrs: the larger
hrs, the closer r, s) reproduce the corresponding neighborhood relations of the
qi ∈ V as faithfully as possible. The success of this minimization, and hence
the “quality” of the obtained mapping, depends to a considerable degree on
the form of the potential surface V (w) and on the possible presence of local
minima corresponding to “more poorly arranged” maps.
Now, V (w) is differentiable for all configurations w in which none of the qi
happens to be on the boundary ∂Fs of one of the regions Fs(w), and in this
case one has

∂2V

∂wrm∂wsn

= δrsδmnhrs

∑
qi∈Fs(w)

pi ≥ 0. (6.7)

At those values w for which one of the qi lies on the border between two
regions Fr and Fs, one has ‖qi −wr‖ = ‖qi −ws‖ and hence V is still con-
tinuous. However, the first derivative has a discontinuity at these positions,
and the potential surface above the state space has a “cusp.” Thus, in spite

6. Application to the “Traveling Salesman Problem” 96

of (6.7), V as a rule possesses numerous local minima of finite width. This
situation is shown in Fig. 6.1, where the state space is represented schemat-
ically as a one-dimensional abscissa. For sufficiently small ε, the system can
become trapped in any one of the “valleys” and converges in the limit ε→ 0
to that state w̄ which corresponds to the local minimum of the “valley” that
the system has chosen.

Abb. 6.1: Behavior of the potential V (w) above the state space. This space
is actually N · d-dimensional, and its representation in the figure as a one-
dimensional abscissa is only schematic.

The number of minima depends on the range of hrs. For an infinite range,
i.e., hrs = h =const., V becomes

V (w) =
h

2

∑
i,r

pi(qi −wr)
2 (6.8)

with a single minimum at wr =
∑
i piqi. Decreasing the range, the cusps in

V emerge, and with decreasing range of hrs they become more prominent.
In this way, additional local minima enter the picture. Finally, in the limit
hrs = δrs, one has

V (w) =
1

2

∑
qi∈Fr(w)

pi(qi −wr)
2. (6.9)

For N ≥ L, every configuration wr = qi(r) for which i(r) is surjective is a
local minimum of V . For instance, for N = L this leads to N ! minima. For
N >> L, one has about LN such minima (aside from these, there are further
minima in which some of the wr are averages of several of the qi). Hence, for
short-range hrs, V possesses very many local minima, and the minimization
of V generally represents an extremely difficult problem.

6. Application to the “Traveling Salesman Problem” 97

Nevertheless, one can obtain a close to minimal path in this case by beginning
with a very long-range hrs, for which V has only a single minimum. If the hrs

are slowly adjusted toward their desired final values, additional local minima
successively emerge. For a sufficiently slow change, the system will fall into
those new minima which are created in the current valley. But these are
just the most promising candidates for an especially low final value. We can
thus appreciate the importance of a slow decrease of the range of hrs for the
construction of a good map.

6.3 Application to the
“Traveling Salesman Problem”

The occurrence of numerous local minima is a frequent characteristic of diffi-
cult optimization problems that belong to the class of so-called NP -complete
problems and is one of the causes for the difficulty of finding their solution
(although there are also NP -complete problems without local minima; see
for example Baum 1986). For a problem to be efficiently tractable, there
must exist a deterministic algorithm that generates a solution with a com-
putational effort that rises no faster asymptotically than polynomially with
the size of the problem. The set of all problems with this property forms
the class P of so-called deterministic Polynomial problems. The class NP
of Non-deterministic Polynomial problems arises if one weakens this require-
ment and just demands that the correctness of a solution is verifiable with
a computational effort growing at most as some polynomial with the size of
the problem. Evidently P ⊂ NP , but it is to be expected that NP contains
in addition problems that are considerably more “difficult” than those in P ,
since every problem in NP not contained in P must require a computational
effort for finding a solution which by definition grows faster asymptotically
than any power of the problem size (Garey and Johnson 1979). A subclass
of NP which is not contained in P is the class of so-called NP -complete
problems. NP -complete problems can be characterized as being at least as
hard as any other NP problem and not being solvable deterministically in
polynomial time. Today, many NP -complete problems are known, however,
it is not possible in any case to decide whether a deterministic solution proce-
dure may be discovered someday that would reduce the computational effort
to within polynomial bounds. (It has not been proven that NP 6= P , i.e.,
every NP -complete problem might be reducible to a “merely” P problem,

6. Application to the “Traveling Salesman Problem” 98

although at present hardly anyone believes this).

Abb. 6.2: Simulation of the Markov-Process (70) for the TSP problem with
L = 30 cities chosen at random in the unit square. Top left to bottom right:
Initially chosen polygon tour, polygon tour obtained after 5,000, 7,000 and 10,000
learning steps, respectively. Simulation parameters: N = 100, ε = 0.8, σ(0) =
50, σ(10, 000) = 1.

The best-known example of an NP -complete problem, for which the compu-
tational effort rises exponentially with the problem size for every algorithm
known up to now, is the “Traveling Salesman Problem” (TSP). In this prob-
lem, one seeks the shortest possible tour passing through N given cities. By

6. Application to the “Traveling Salesman Problem” 99

testing all 1
2
(N − 1)! possible tours, one can always find the shortest tour,

but the computational effort for this “direct” strategy, called “exhaustive
search,” rises exponentially with N and rapidly becomes unmanageable (for
N = 30 the required processing time, even using a Cray–XMP supercom-
puter, would exceed the age of the universe.) The exponential character of
this growth behavior persists for all improved algorithms discovered so far,
although one has been successful at postponing the increase to considerably
large values N . The root of this difficulty lies in the extremely irregular
structure of the function “path length” over the state space of the problem.
In particular, this function possesses numerous local minima, very many of
which lie only very little above the global minimum. In order to find at
least good approximations to the global minimum for such functions, several
methods have been developed (Lin and Kerninghan 1973; Kirkpatrick et al.
1983). They are mostly based on a stochastic sampling of the state space
in the direction of decreasing path lengths, together with some provision to
escape from unfavorable local minima.
The usefulness of models of the formation of neural projections for treating
the traveling salesman problem was first recognized by Durbin and Will-
shaw (1987). In the following, we demonstrate in a computer simulation
how an approximate solution can be obtained by means of Kohonen’s model
(see also Angeniol et al. 1988). To this end, we choose a closed chain of
“neurons” in the form of a ring. The vectors wr of the neurons are changed
iteratively according to equation (70), where in each step an element of the set
{q1,q2, . . . ,qL} of position vectors qi of the L cities is selected as the input
vector v. For each qi, the same selection probability pi = 1/L is chosen. The
Gaussian (68) was chosen for hrs, and the remaining simulation data were
N = 800, ε = 0.8, σ(t) = 50 ·0.02t/tmax and tmax = 10, 000 Markov steps. For
the simulation example, L = 30 cities, randomly located in a unit square,
were given. The initial values of theN vectors wr were assigned to the corners
of a regular 30-sided polygon. This results in the initial configuration shown
in the upper left part of Fig. 6.2. Each iteration causes a local deformation
of this path. Initially, as long as hrs is still long-range, each deformation
affects rather large path segments. In this way, first the rough outline of
the eventual path is formed (Fig. 6.2, upper right, 5000 iterations). As the
range of hrs gradually decreases, the deformations along the chain become
more localized and finer details of the path emerge (Fig. 6.2, lower left, 7000
iterations). Towards the end of the simulation hrs differs significantly from
zero only for immediate chain neighbors r, s. In this phase, the path takes

6. Application to the “Traveling Salesman Problem” 100

on its final shape, passing through all of the given cities (Fig. 6.2, lower right,
10000 iterations). The path found after 10,000 steps has length 4.5888 and,
in this example, happened to be the optimal solution.2 However, this is not
guaranteed for every case. Depending on the initial conditions, a slightly
longer path may result, especially if the number of cities becomes larger.
We have seen in the previous chapters how even one-dimensional maps make
possible interesting applications. In the following chapters, we will extend
the discussion to two-dimensional maps. In Chapter 7, we will use them to
model the formation of a “somatotopic map” of the palm of the hand. An
extension of the algorithm to the task of learning of output values will then
open up applications to control problems and thus introduce the subject of
the Part III of this book.

2 Only a “naive” comparison of all possible paths would require a computational time
which exceeds the age of the universe. In fact, there are clever search techiques
which reduce the computational effort significantly. With those sophisticated search
techniques it has even been possible to find the shortest path through a nontrivial
distribution of 2430 points, the current “world record” (1990).

7. Modeling the Somatotopic Map 101

7. MODELING THE SOMATOTOPIC MAP

7.1 The Somatotopic Map of the Body Surface

In this chapter we demonstrate the formation of a “somatotopic map” by
means of a computer simulation of Kohonen’s algorithm (Ritter and Schul-
ten 1986). The somatotopic map is the projection of the body surface onto
a brain area that is responsible for our sense of touch and that is called
the somatosensory cortex. This projection connects neurons of the cortex
with touch receptors in the skin surface such that neighborhood relations
are preserved. Adjacent touch receptors in the skin surface are thus con-
nected to adjacent neurons (Kaas et al. 1979). However, the projection
is strongly distorted, since the density of touch receptors is very different
in various skin regions. For example, hand and face regions are consid-
erably more densely innervated with touch receptors than the skin on the
arms and on the trunk. Correspondingly, the former have a much larger
image area in the somatosensory cortex. Interestingly, the neural projec-
tions giving rise to these images are not rigid. Instead, they can change
under the influence of sensory experience or as the result of a loss of sen-
sory input, e.g., after nerve damage. The necessary modifications of the
connections between receptors and sensory neurons are thought to be, at
least in part, activity driven. For example, experiments have revealed that
frequent stimulation of confined skin regions leads to an expansion of their
representation in the somatotopic map (Jenkins et al. 1984). Conversely,
neurons whose receptors no longer receive any stimuli become sensitive to
other receptors which are still active (Kaas et al. 1983). Such findings imply
that a significant part of cortical organization may be shaped by a princi-
ple of competition between neurons, most likely operating at the synaptic
level.
In the following we show that from a completely disordered initial connectiv-
ity, the structure of an ordered, neighborhood-preserving connection pattern
between touch receptors and neurons of a “model somatosensory cortex” as

7. Modeling the Somatotopic Map 102

well as a series of experimentally observed adaptation phenomena, can come
about as a result of Kohonen’s strongly idealized algorithm alone. According
to current thought, this represents an idealization of the actual phenomena
in which chemical control processes are also significantly involved (Campe-
not 1977). However, the value of such a demonstration is not primarily the
description of biological detail, but the isolation of significant and simple
functional principles and their capacity for contributing to important orga-
nizational processes in the nervous system.
A considerably more ambitious simulation model for the formation of soma-
totopic connectivity, as far as reproduction of biological details is concerned,
was investigated by Pearson et al. (1987). Pearson’s model assumes an initial
connectivity which is diffuse, but already topographically ordered. The sim-
ulation investigates how, by aggregation into competing groups, individual
neurons can focus their initially diffuse receptive fields into smaller regions
while maintaining the initial topographic ordering. The main intention is
a test of the group selection theory of Edelman (1978). According to this
theory, aggregation of adjacent neurons into localized “functional groups”
occurs. The “formal neurons” in Kohonen’s model may possibly be viewed
as an abstraction of such larger, functional units.

7.2 Simplification of the Dynamics

For the simulation, we consider a “model hand surface” with touch receptors
distributed at locations vα ∈ IR2, α = 1, 2, . . . K. Figure 7.1 shows the hand
surface used, together with K = 1200 randomly distributed touch receptor
points. The touch receptors are connected through synapses to the 30×30
neurons of a square “model cortex” A. Let wrα denote the strength of the
synapse through which receptor α excites the neuron at the position r. Every
localized touch stimulus on the hand surface leads to excitations να of the
receptors α. Receptors close to the stimulus location are strongly excited,
and excitation decreases to zero with increasing distance. The excitations of
the receptors are assumed to lead to an adaptation step

∆wrα = εhrs(να − wrα), (7.1)

for the synaptic strengths. Here, s again identifies the most strongly excited
neuron and hrs is the assumed excitation profile about s. We now show
how (7.1) can give rise to the formation of an ordered connectivity between

7. Modeling the Somatotopic Map 103

neurons and touch receptors such that each neuron has synaptic connections
only to receptors from a localized region of the hand surface, and adjacent
neurons are connected to adjacent regions. For a useful simulation, however,
several hundred touch receptors would be required, and an equal number of
synaptic strengths would have to be stored and updated at each learning step
and for each of the 900 model neurons.

Abb. 7.1: Model hand surface with touch receptors. Letters D, L, M, R,
and T denote five subregions: thumb, left, middle, and right fingers as well as
the palm. The dots mark the locations of 1,200 touch receptors distributed at
random over the hand surface.

However, one can approximate the system behavior by mapping the original
dynamic variables, the synaptic strengths wrα, onto a much smaller set of
new variables, whose evolution then is governed by a correspondingly sim-
pler, “effective dynamics.” In this way, the resulting simulation effort is
reduced considerably. For this simplification, we must make the following
two additional assumptions:

1. The sum S =
∑
α να of the excitatory strengths of the touch receptors

should be the same for each touch stimulus.

2. The synaptic strength of each neuron should satisfy initially∑
α

wrα = S. (7.2)

7. Modeling the Somatotopic Map 104

The first assumption corresponds to a preliminary normalization of the ac-
tivity of the input signal. By (7.1), one has for a learning step

∆
∑
α

wrα = εhrs

(
S −

∑
α

wrα

)
. (7.3)

Thus, the second assumption implies that the sum of the synaptic strengths
of each neuron takes its stationary value from the beginning, which by (7.3)
would otherwise only hold after some relaxation time.
With these assumptions, we can describe the development of the corre-
spondence between the hand surface and the neurons directly using two-
dimensional surface coordinates. We describe the touch stimulus by the
location v of the center of gravity of the excitatory pattern of the touch
receptors, i.e.,

v :=
1

S

∑
α

ναvα, (7.4)

and replace the K synaptic strengths wrα per neuron by the two “formal
synaptic strengths”

w̃ri :=
1

S

∑
α

vαiwrα, (i = 1, 2). (7.5)

Here, vα1, vα2 denote the cartesian coordinates at receptor location vα, and
we use arabic numerals as indices in order to distinguish the two formal
synaptic locations w̃ri from the K synaptic strengths wrα. One can interpret
w̃r := (w̃r1, w̃r2)T as the center-of-mass of the group of touch receptors at-
tached to neuron r. Here, each touch receptor is weighted in proportion to
the strength of its connection with neuron r. Thus, from (7.1) we obtain

∆w̃ri = εhrs(vi − w̃ri), (i = 1, 2). (7.6)

This equation establishes the desired “effective dynamics” for the new vari-
ables w̃ri. Interestingly, it is of the same form as (7.1); however, now a
simulation only requires taking into account the two-dimensional vectors v
and w̃r.

7.3 Results of the Simulation

The initial state of the simulation consisted of a random assignment of neu-
rons to touch receptors. This assignment was arranged by setting the formal

7. Modeling the Somatotopic Map 105

synaptic strengths w̃r to random values taken from a uniform distribution
on the unit square circumscribing the hand surface in Fig. 7.1. 1 Precisely
speaking, the initial distribution of formal synaptic strengths could be ob-
tained from the receptor distribution together with an assignment of the wrα

to random values (preserving the sum condition 2.). The values thus ob-
tained would all lie within the convex hull of the hand surface. However,
this difference is not important for the qualitative course of the organiza-
tion process from a disordered initial state. The resulting map is shown
in Fig. 7.2. For each neuron r, a letter indicates which of the five regions
D, L, M, R, and T contains the center of mass w̃r of the subset of re-
ceptors exciting that neuron. Neurons for which w̃r happens to lie outside
of the hand surface are marked by a dot. This case occurs, for example,
if a neuron has equally strong connections to the receptors of two adjacent
fingers.
The initial connection pattern evidently leads to a map that does not re-
produce the topological arrangement of the touch receptors in any way.
For the subsequent learning steps, stimulus locations v were randomly se-
lected from the hand region according to the the probability density P (v) =
1.5/
√

4− 3v2. In this way, the increasing receptor density towards the fin-
ger tips, the locations of which correspond to v2 ≈ 1, was simulated (the
touch receptor points illustrated in Fig. 7.1 are also distributed according to
this density). During the first 5,000 learning steps, the Gaussian (68) with
σ(t) = 5 · 0.4t/5000 and ε(t) = 0.5 · 0.2t/5000 was assumed for hrs, while during
the subsequent learning steps a Gaussian with σ(t) = 2 and ε(t) = 0.1 was
chosen. After 500 touch stimuli, a map has formed in which one can already
recognize connected regions of neurons assigned to the same hand region
(Fig. 7.3). Even the neighborhood relations between individual hand regions
are already beginning to be reproduced correctly. Eventually, after 20,000
iterations, a map has been created (Fig. 7.4) which represents a topologically
correct image of the individual hand regions, resembling maps obtained with
electrode penetration experiments in animals. Figure 7.5 again shows this
assignment of neurons to hand locations, using the familiar imbedding of the
neuron lattice in the space V . Following an experiment of Kaas et al. (1983),
at this stage of development of the map we “remove” the middle finger by
not selecting any further stimuli from the region M for the remainder of
the simulation (Fig. 7.6). Because of the remaining plasticity in the map-

1 †

7. Modeling the Somatotopic Map 106

Abb. 7.2: Initial assignment of the 900 neurons of a model cortex of 30 × 30
lattice sites to the hand surface of Fig. 7.1. Each lattice site r corresponds to
one neuron, which is connected through synapses to touch receptors on the hand
surface. The location w̃r of the center of gravity of these receptors is indicated
by labeling the lattice site with one of the letters D, L, M, R and T, according
to the region in Fig. 7.1 containing w̃r. A dot indicates that w̃r happens to
lie in the space between the fingers. As can be seen, the initial correspondence
between neurons and locations in the hand surface is completely random and in
particular not neighborhood preserving.

ping, the net readapts during the subsequent 50,000 learning steps, leading
to the map in Fig. 7.7. The cortical region deprived of its former sensory
inputs has established connections to receptors formerly driving neurons in
the adjacent regions (labelled L and R). In the map, these regions “invade”
the former territory of the amputated hand region M. Additionally, as a
result of the readaptation, the local magnification factor of the mapping
from the hand surface to the cortex has increased. This corresponds to an
enhanced capacity for spatial discrimination in these regions. Qualitatively
similar behavior has been observed experimentally (Kaas et al. 1983). To
this end, the somatosensory map of the hand region of an adult monkey was

7. Modeling the Somatotopic Map 107

Abb. 7.3: After only 500 “touch stimuli,” a coarsely ordered assignment has
replaced the completely disordered initial state of Fig. 7.2. Adjacent neurons
have begun to specialize to adjacent regions of the hand surface.

determined using microelectrodes (Fig. 7.8a). The observed map resembles
that in Fig. 7.4. To each finger corresponds one of the regions 1–5. Several
weeks after amputation of the middle finger, the corresponding region 3 has
“disappeared,” and the adjacent regions have become correspondingly larger
(Fig. 7.8b).
We have thus demonstrated that under Kohonen’s algorithm a connection
pattern forms between neurons and touch receptors; it arranges the centers
of gravity w̃r of the neurons r connected to the touch receptors in the hand
surface topologically, just as the corresponding neurons r are arranged in the
somatosensory cortex. However, because of the use of the centers of gravity
wr as simulation variables, the simulation makes no statement about the
spatial scatter of the touch receptors in the hand surface to which a single
neuron has finally formed synaptic contact. Therefore, we must still show
that, under the algorithm, each neuron r concentrates its synaptic contacts
to receptors from a small region about the center of gravity w̃r.

7. Modeling the Somatotopic Map 108

Abb. 7.4: After a total of 20,000 touch stimuli, the connections between the
neurons and the hand regions have become completely ordered. This assign-
ment is now neighborhood preserving, and it reproduces the correct topological
arrangement of the regions D, L, M, R and T. The map created here is also in
good qualitative agreement with maps experimentally found in the cortex.

7.4 Development of Receptive Fields

The skin region within which touch stimuli lead to excitation of a neuron r
forms the “receptive field” of this neuron. A measure of the size of this field
is the average surface area Gr = π〈r2〉 of the “scattering circle” of the touch
receptors connected to the neuron. Here, 〈r2〉 is the average value of the
squared distance of the receptors from the center of the circle (their center
of gravity w̃r), weighted by the synaptic strengths wrα of their connections
with neuron r. Thus

Gr =
π

S

∑
α

(vα − w̃r)
2wrα. (7.7)

7. Modeling the Somatotopic Map 109

Abb. 7.5: Here, the assignment of Fig. 7.4 is represented as the familiar “imbed-
ding” of the neuron lattice in the space V , i.e., on the hand surface. To this end,
each neuron is marked at the position of the center of gravity w̃r of the touch
receptors from which it receives input, and the resulting locations are connected
by lines if the neurons are adjacent in the lattice.

A touch stimulus at location v leads to the following change of Gr (we neglect
contributions of quadratic order in ε)

∆Gr =
2πε

S
hrs

∑
α

(w̃r − vα) · (v − w̃r)wrα

+
πε

S
hrs

∑
α

(w̃r − vα)2(να − wrα)

= − εhrs

[
Gr − Γ(v)− π(w̃r − v)2

]
. (7.8)

In this equation, we have made the definition

Γ(v) :=
π

S

∑
α

(v − vα)2να. (7.9)

One can interpret Γ(v) as the surface area of the distribution of touch re-
ceptor excitations triggered by the touch stimulus. The expectation value

7. Modeling the Somatotopic Map 110

Abb. 7.6: After the map of Fig. 7.4 has been obtained, the middle finger M
is “amputated”, i.e., for the rest of the simulation touch stimuli are no longer
selected from this region; consequently the neurons designated by dots, which
were previously connected to M, are now deprived of their former sensory inputs.

E(∆Gr|Gr) for the change of Gr is therefore

E(∆Gr|Gr) = −ε
∫
hrφ(v)

[
Gr − 〈Γ(v)〉 − π(w̃r − v)2

]
P (v) dv. (7.10)

Here, φ is the mapping from the hand surface to the neuron lattice, and
〈Γ(v)〉 is the average excited surface area of the receptor layer due to the
touch stimulus at position v. For sufficiently small learning step size ε, the
resulting asymptotic value G∞r of Gr becomes

G∞r ≈
∫
hrφ(v)

[
〈Γ(v)〉+ π(w̃r − v)2

]
P (v) dv∫

hrφ(v)P (v) dv
. (7.11)

This permits us to rewrite (7.10) in the more suggestive form

E(∆Gr|Gr) = −ε
[∫

hrφ(v)P (v) dv

]
· (Gr −G∞r). (7.12)

7. Modeling the Somatotopic Map 111

Abb. 7.7: After another 50,000 touch stimuli, the map has reorganized itself
in such a way that only a few neurons are still silent. The representation of the
remaining hand regions D, L, R and T is now distributed over a larger number
of neurons and, therefore, possesses a higher spatial resolution than before the
“amputation.”

We see from (7.12) that on the average the surface area of a receptive field
tends exponentially to its asymptotic equilibrium value G∞r . If any variation
of P (v) and 〈Γ(v)〉 occurs only on a much longer spatial scale than hrφ(v)

and the mapping φ conserves angles (i.e., is conformal) at the position wr,
then (7.11) can be simplified further to yield

G∞r ≈ 〈Γ(v)〉+M−1πσ2, (7.13)

where the quantity M is the local magnification factor of the mapping φ, and
σ2 =

∫
hrs(r− s)2 d2s/

∫
hrs d

2s. This equation shows that in the present
model each neuron restricts its inputs to receptors within an area given by
the the sum of two contributions. The first contribution is the average surface
area 〈Γ(v)〉 of the excitation distribution in the receptor layer caused by each
touch stimulus. The second contribution is the surface area πσ2/M of that
region in the receptor layer which corresponds, under the mapping φ, to a

7. Modeling the Somatotopic Map 112

Abb. 7.8: Readaptation of the somatosensory map of the hand region of an
adult nocturnal ape due to the amputation of one finger. (a) (left) Before the
operation, each finger in the map is represented as one of the regions 1-5. (b)
(right) Several weeks after amputation of the middle finger, the assigned region 3
has disappeared, and the adjacent regions have correspondingly spread out (after
Fox, 1984).

cortical region of radius σ, i.e., a cortical area the size of which is determined
by the spread of the excitation profile hrs. Assuming localized touch stimuli,
i.e., small 〈Γ(v)〉, and a short-range excitation response hrs towards the end
of the simulation, the resulting synaptic connections for each neuron become
concentrated to receptors of a narrowly focused region.
In this chapter we have shown that the rather abstract organizational prin-
ciples in Kohonen’s algorithm are sufficient to construct a neighborhood
preserving connectivity between a receptor layer and a neuron layer from
disordered initial connections. The only information driving this process is
the stochastic stimulation of the receptors. At the end of the process, every
neuron possesses synaptic connections to receptors of a narrowly limited re-
gion in the receptor layer. The assignment of neurons to regions preserves
mutual neighborhood relations and represents a two-dimensional map of the
hand surface. For the formation of this map, it turned out to be immaterial
whether the algorithm obtains the information about touch stimuli explicitly
in the form of two-dimensional coordinates or instead is directly supplied
with high-dimensional receptor activity patterns. This illustrates the ability
of the algorithm to automatically extract hidden lower-dimensional informa-
tion, in this case the stimulus location, from a sequence of high-dimensional
signals (the excitation at all the receptors on the hand), and to represent it
in a two-dimensional map. In the present case, the dimensions of the implicit

7. Modeling the Somatotopic Map 113

information and of the map agree and a continuous mapping results.

7.5 Simulating the High-Dimensional Model on a Parallel
Computer

While the main purpose of the preceding sections was the investigation of
a model for the self-organized formation of a topographically ordered so-
matosensory map, they also illustrate a typical methodological difficulty in
the investigation of neural models: even if highly abstract approaches are
used, such as Kohonen’s model of self-organizing maps, the simulation of bi-
ological neural nets still requires in many cases an enormous computational
effort. The previous sections demonstrate by means of an example how in
such a situation a partial mathematical analysis can reduce the simulation
effort to a more manageable level. However, such a simplification usually
involves additional approximations and thus can no longer describe some
properties of the original model. In the case of the somatosensory map, the
introduction of the low-dimensional “effective dynamics” by means of ((7.4)
does offer the possibility of describing the average size of the receptive fields,
but detailed questions concerning the form of receptive fields, such as the
possibility of the formation of multiple centers (defined as a cortical neuron
receiving input from two or more distinct areas of the hand surface), are ex-
cluded through this simplification, although these questions could have been
addressed in the framework of the original model.
Therefore, even if there is some possibility of mathematical simplification,
the capacity to carry out detailed simulations of the model in its original
formulation is desirable. This capacity is offered by a new generation of high-
performance computers, whose architecture, interestingly enough, is strongly
influenced by the structure of neural systems. One of the most well-known
computers of this kind, the “Connection Machine,” can use 65,768 one-bit
processors in parallel (Hillis 1985).

7. Modeling the Somatotopic Map 114

Abb. 7.9: Formation of a somatosensory map. From upper left to lower right:
Fig. 7.9a–l. For explanation see Section 7.5.

7. Modeling the Somatotopic Map 115

Each of these processors is equipped with its own memory, and the data
communication paths between the processors can be configured by software
in such a way as to realize various lattice topologies. This offers the possibility
of a very natural and direct “mapping” of neural algorithms and models onto
the processors of this computer. In the following section, we report on some
results of a simulation of Kohonen’s model that were carried out on such a
machine (Obermayer, Ritter, and Schulten 1989, 1990a,b).
The simulation again concerns the formation of a somatosensory map. This
time, our point of departure is a “model cortex” consisting of 16,384 neu-
rons arranged in a 128×128 square-lattice. Each neuron possesses synaptic
connections to 800 touch receptors which are distributed stochastically over
the hand surface (see Fig. 7.9a). Each neuron is assigned, along with the
800 values of its synaptic connections, to one processor of the Connection
Machine. For each neuron, its 800 connection strengths to the receptors are
initialized to independently chosen random values. Figure 7.9b illustrates
this for a randomly selected neuron r: each receptor location is marked by
a small spot, the brightness of which is proportional to the strength of the
connection from the receptor to the selected neuron. The receptor excitation
pattern caused by a touch stimulus is assumed to follow in its intensity a
Gaussian centered at some location vstim, i.e.,

να ∝ exp
(
−(vα − vstim)2/2a2

)
.

The centers vstim of the successive touch stimuli are scattered randomly over
the complete hand surface. However, in contrast to the model using the “ef-
fective dynamics” simplification, every touch stimulus is now described by a
800-dimensional vector (ν1, ν2, . . . , ν800)T , and the adaptation process takes
place in the space of the 16,384 weight vectors wr = (wr1, wr2, . . . , wr800)T ,
each of dimension 800 (for additional details of the simulation, see Ober-
mayer, Ritter, and Schulten 1990a,b).
The figures 7.9c–f show the development of the somatotopic map. Each pic-
ture shows a view of the 128×128 model cortex, where each pixel corresponds
to one neuron. To identify for each neuron the source of its receptor input,
the same gray values as in Fig. 7.9a are used, i.e., the gray value at a location
r indicates which hand region of Fig. 7.9a contains the center of gravity w̃r

of the receptors exciting neuron r. The nearly uniform gray in Fig. 7.9c is
a consequence of the initially random connectivity: each cell is “diffusely”
connected to nearly the complete hand surface and all centers of gravity lie
approximately in the central part of the hand surface. After about 200 touch

7. Modeling the Somatotopic Map 116

stimuli, a specialization of the neurons begins to emerge (7.9d). After 1200
touch stimuli, this specialization has progressed further, and the correct to-
pographic arrangement is already evident for four of the finger regions. After
10,000 touch stimuli, a complete and well-resolved topographic map of the
hand surface has emerged (7.9f). Figs. 7.9g and 7.9h show a repeat of the
“amputation experiment” depicted in Figs. 7.6 and 7.7. Figure 7.9g shows
the region of the map which is deprived of its former input signals after the
“amputation” of a finger. After a further 10,000 adaptive steps, the map has
readjusted itself (7.9h) so that the representation of the fingers adjacent to
the amputated digit has expanded to partially fill the “silent” region.
Figure 7.9j shows a typical “receptive field” of a cell from the map of Fig. 7.5f.
A good spatial localization is discernible, and the extension of the field cor-
responds approximately to the diameter of the receptor excitation pattern
caused by a touch stimulus. Figure 7.9k shows an only partially ordered map
from another simulation run. Here, a “doubling” map of the sensory surface
has formed. Such maps frequently contain cells the receptive fields of which
have multiple centers as shown in Fig. 7.9l. Such cells are also encountered in
the somatosensory cortex, but they are apparently rare. The investigation of
the formation and the role of such receptive fields is an important motivation
for carrying out simulations of this kind.
This aspect is even more evident in more complex maps such as those which
occur in the visual cortex. There, signals from two sensory surfaces, the
two retinas, are combined into one map. Aside from the information on the
spatial location of a light stimulus, “ocularity information,” i.e., information
about the origin of stimuli from the right or the left eye, as well as informa-
tion about the orientation of, for example, brightness edges, is represented
topographically in the map. This high-dimensional simulation model offers
an extremely valuable tool for a theoretical understanding of the formation
of such maps. The simulations, again performed on a Connection Machine,
yield very close agreement to the visual maps observed in the striate cortex
of monkeys, reproducing well the retinotopic characteristics as well as the
organization of orientation columns and occularity stripes (see Obermayer,
Ritter, and Schulten 1990c; Obermayer, Blasdel, and Schulten 1991).
In the brain such topographically ordered maps serve as the initial process-
ing stages of sensory information. Subsequent cortical areas have the task
of re-coding the received information step by step and transforming it into
an appropriate form for the eventual control of muscles, which constitute the
main output targets of the nervous system. However, in practically all cases,

7. Modeling the Somatotopic Map 117

we are still far from understanding most of the phenomena that participate
in that process. This is partly due to the fact that we often cannot precisely
characterize the processing stages that are involved in the behavior of even
simple organisms. For certain stages, however, the situation is a bit less
unfavorable, particularly for such aspects of motor coordination that can be
described mathematically as control problems or coordinate transformations.
In Part III we therefore extend Kohonen’s model in a suitable way to enable
the solution of such problems. However, it would be improper to seek close
biological correspondences. Instead, our intention will be to investigate bio-
logically motivated model assumptions with respect to their performance in
solving more complex problems, in particular those that biological nervous
systems have to face.

8. Extension of Kohonen’s Model 118

8. EXTENSION OF KOHONEN’S MODEL

In the preceding chapters, motivated by the important role of topology-
conserving maps in the brain, we considered a stochastic learning algorithm
which, based only on a random sequence of sensory signals, generates such
maps on a lattice of formal neurons. The aim of these maps was to rep-
resent the neighborhood relationships between the input signals in a two-
dimensional, nonlinear projection as faithfully as possible.

8.1 Motor Maps

The brain cannot limit itself, however, to the representation of sensory in-
put signals alone, but must also solve the complementary task of sending
appropriate signals to the muscle system to react to the sensory input. The
brain regions that are responsible for these tasks, such as the motor cortex
and the superior colliculus, appear in many cases to be organized in a way
similar to the sensory areas, i.e., as maps that react to localized excitation
by triggering a movement. This movement varies in a regular way with the
focus of the excitation in the layer. Therefore, the layer can be considered as
a motor map in which movement commands are mapped to two-dimensional
locations of excitation (Lemon 1988).
By way of an abstraction that can also serve as a model for such motor
maps, we consider in this chapter topology-conserving maps in which we
additionally allow, as an extension of Kohonen’s original learning algorithm,
the storage of an output specific for each lattice point (Ritter and Schulten,
1986b, 1987, 1988). As we will see, the formation of a map then corresponds
to the learning of a control task. The type of the output value can be, for
example, a scalar, a vector, or a linear operator, i.e., a tensor.
Several neural mechanisms for the storage of such outputs can be imagined.
The information could be stored by a suitable selection of connections to sub-
sequent motor neurons. Linear mappings could be realized by “de-inhibition”
of local neuron groups. Furthermore, local “assemblies” of neurons also could

8. Extension of Kohonen’s Model 119

act as local associative memories for the storage of more complex informa-
tion. Such a neural network would form an active storage medium that reacts
to a local activation caused by an input signal with the response stored at
the site of excitation. Stored data are arranged in such a way that similar
data are stored in spatial proximity to each other. A thoroughly investi-
gated example of such organization, involving the case of a vectorial output
quantity, is the motor map in the so-called superior colliculus, a mounded,
multi-layered neuron sheet in the upper region of the brain stem (Sparks and
Nelson 1987). In this sheet there are neurons which, when excited, trigger
the execution of rapid eye movements (saccades). Usually, such excitation is
caused by neurons located in the more superficial layers that process sensory
signals. Through electrical stimulations by inserted electrodes, this excita-
tion can also be induced artificially. Such experiments demonstrate that the
resulting change of the vector of view direction varies in a regular fashion
with the location of excitation in the layer. In Chapter 9 we will discuss
more closely this example of a motor map and the control of saccades.
In much the same way as maps are learned or are adaptively modifiable, the
assignment of output values to lattice sites must be plastic. Consequently,
a learning algorithm is also required for the output values. In the following
chapter we will show that with an appropriate algorithm the learning of the
output values can benefit substantially from the neighborhood-, and hence,
continuity-preserving spatial arrangement of the values within a map.
In the following we again onsider a space V of input signals and a lattice A
of formal neurons. As in Chapter 4, φw denotes the mapping of V onto A
that is specified by the synaptic strengths. In addition, for maps intended
to be used for motor control tasks, an output value w(out)

r is assigned to each
neuron r. (Here, as before, w(out)

r can be a vectorial or tensorial value). Since
the synaptic strengths, so far denoted by w, determine the correspondence
between input signals and neurons, we will denote them in this chapter by
w(in) so that they will not be confused with the recently introduced output
values w(out).
Together, all w(out)

r form a covering of the lattice with values in a second
space U and extend the mapping φw from V onto the lattice to a mapping
Φ of V into the space U , given by

Φ : V 7→ U, v 7→ Φ(v) := w
(out)
φw(v)

. (8.1)

Fig. 8.1 offers an illustration of this situation. In accordance with the motor
maps formerly mentioned, we want to investigate mappings defined in this

8. Extension of Kohonen’s Model 120

Abb. 8.1: The extended model with the inclusion of output values. Each
formal neuron s of the neuron layer (lattice A) has, in addition to its pre-existing
weight vector win

s , a vector wout
s of output values assigned to it. A learning step

now requires, with each presentation of an input vector v, the specification of
a corresponding output value u. The adaptation of the output values wout

s is
completely analogous to the scheme used for the “input side:” all neurons in
the vicinity of the particular neuron selected by the input value shift their output
vectors towards the specified output value u.

way, especially with regards to motor control tasks. In this case v represents
the present state of the system which is to be controlled, and wout

r determines
the required control action. This control action can specify a value for a
displacement, a force, or a torque (Chapters 8, 9, and 13), or it can specify a
linear mapping that determines these values in terms of the intended target
state of the motion (Chapters 11 and 12).

8. Extension of Kohonen’s Model 121

8.2 Supervised and Unsupervised Learning

We begin with the simplest case, namely, that of a control task for which a
sequence of correct input-output pairs (v, u) are available. Here, v denotes
the system state and u the correct control action associated with that state
(Ritter and Schulten 1987). This situation corresponds to supervised learning
and requires the opportunity for observing the correct control, provided by a
“teacher” for a sufficiently extended period of time. The synaptic strengths
wr and the output values w(out)

r are initialized with values chosen without
any a priori information. They can be initialized, for example, with random
values. The purpose of the learning process is a gradual improvement of the
initial mapping Φ with the goal of an increasingly better imitation of the
teacher’s actions by Φ. This can be realized by the following algorithm:

1. Record the next control action (v, u).

2. Determine the lattice site s := φw(v) whose input weight vector w(in)
s

best matches the present system state v.

3. Perform a learning step

∆w(in)
r = w(in)

r + εhrs(v −w(in)
r)

for the input weight vectors w(in)
r .

4. Perform a learning step

∆w(out)
r = w(out)

r + ε′h′rs(u− w(out)
r)

for the set of output values w(out)
r and return to step 1.

Steps 1–3 describe Kohonen’s original algorithm for the formation of a topol-
ogy conserving map on A. They are depicted in the front part of Fig. 8.1
where the different sizes and shades of the neurons in the vicinity of s indicate
the shape and extent of the excitation zone as determined by the function
hrs. The new step, step 4, changes the output values w(out)

r assigned across A.
This change is indicated in the rear part of Fig. 8.1. It occurs in an analogous
manner to that of the learning step for the synaptic strengths w(in)

r , possibly
with different learning step widths ε′ and a different interaction function h′rs
as demanded by each situation. (This symmetric treatment of input values

8. Extension of Kohonen’s Model 122

v and output values u can be mathematically interpreted in such a way that
now the algorithm creates a topology-conserving mapping of a subset Γ of
the product space V ⊗ U onto A. Here the subset Γ is just the set of the
input-output values (v, u) provided by the teacher; i.e., it is the graph of the
input-output relation that correctly describes the control law.)
The proposed process creates, in the course of the learning phase, a look-up
table for the function Φ (see ((8.1)). The particular advantage of this process
lies in the high adaptability of the table structure. The correspondence be-
tween table entries and input values is not rigidly specified from the outset,
but instead develops in the course of the learning phase. This occurs in such
a way that the table entries become distributed (w(in)

r , w(out)
r) according to

the required density of the control actions in the space V ⊗ U . Regions in
V ⊗U , from which control actions are frequently needed, are assigned a cor-
respondingly higher number of table entries, resulting in a higher resolution
of the input-output relation in these areas. Rarely or never used table entries
are “redevoted.” This facilitates a very economic use of the available storage
space.
Due to the topology-conserving character of the assignment between value
pairs and storage space, neighboring memory locations in the lattice A are
usually assigned similar value pairs. In the case of a continuous relationship
between input and output values, adjacent memory locations must, therefore,
learn similar output values w(out)

r . Spreading the effect of learning steps for
the output values w(out)

r by virtue of the interaction function h′rs into the
vicinity of each selected storage location r represents a rudimentary form of
generalization which accelerates the course of learning. If the function hrs

is given a long range at the beginning of the learning phase, then a large
subset of all storage locations participates in each learning step, even if the
learning steps for most of them are only approximately “correct.” By this,
a complete table, representing a good approximation to the correct input-
output relation, can already develop after significantly fewer learning steps
than there are storage locations. By gradually reducing the range of the
function hrs in the course of the learning phase the participation of storage
locations at each learning step becomes increasingly more selective, so that
eventually even fine details of the input-output relation can be learned.
In many cases, however, there is no teacher available, and the correct con-
trol actions must be found by the learning algorithm itself (unsupervised
learning). The only source of information available in this case is a “reward
function,” which specifies at a given moment how well the control has mas-

8. Extension of Kohonen’s Model 123

tered the given task. To execute the above algorithm the system must now
create, at each learning step, the component u that in the previous case was
delivered by the teacher. In the absence of any further information this re-
quires a stochastic search in the space U of the available values, with the aim
to maximize the “reward” received at each step.

8.3 The “Pole-Balancing Problem”

To demonstrate the learning algorithm, defined in the previous section by
steps 1–4, we consider as a prototypical problem the task of balancing a ver-
tical pole in a gravitational field by appropriate movements of the base of the
pole. This is a favorite problem for the investigation of learning algorithms,
and it has already been studied in connection with previous neural network
approaches (Barto and Sutton 1983). As in the present case, these studies
were directed at learning the connection between movement states of the pole
and the required control forces in the form of a look-up table. In contrast
to the approach presented here, the goal of the former studies was not to
obtain an optimal organization of this table by an adaptive distribution of
its entries over the state space. Instead, the connection between the table
entries and states was initially given in a rigid way, and the focus of interest
was the investigation of learning rules which gradually set the table entries
using as the only criterion of success the absence of a signal indicating that
the pole has fallen over.

8. Extension of Kohonen’s Model 124

Abb. 8.2: Model of the pole in the simulation. The bottom end of the pole can
slide without friction along a horizontal line. By an appropriate force f the pole
is to be balanced in the position θ = 00. Units are shown such that the mass at
the top end of the pole, the pole length, and the acceleration due to gravity all
have values of unity. The mass at the bottom end is m. The shaft is assumed
to be massless.

The motion of the pole is imitated by a computer simulation. A massless rod
of unit length serves as the pole, with point masses of values m and unity
at its bottom and top end, respectively. The motion of the pole is restricted
to a vertical plane, and the bottom of the pole is confined to slide along the
x-axis. The pole and its two degrees of freedom are presented in Fig. 8.2.
For a gravitational field directed downward with unit strength, the equation
of motion of the pole is

(m+ sin2 θ)θ̈ +
1

2
θ̇2 sin(2θ)− (m+ 1) sin θ = −f cos θ. (8.2)

Here, θ is the pole angle measured clockwise against the vertical, f is the
horizontal force acting at the bottom end. The motion of the pole is simulated
by the Runge-Kutta method using a time step of 0.1 in the units of Eq. (8.2).

8. Extension of Kohonen’s Model 125

8.4 Supervised Pole-Balancing

The first simulation demonstrates supervised learning. The Adoptation of
a new movement often requires an adaptation period composed of partial,
goal-oriented movements which must come together before the total course
can be executed fluently and automatically. This indicates that in this phase
a higher brain region might play the role of a teacher for a subordinate
neural structure until the latter can execute the movement independently
and without requiring conscious attention.

Abb. 8.3: Initial state of the simulation. For each lattice point r the stored out-
put force w(out)

r is recorded along the vertical axis above the point (w (in)

r1 , w (in)

r2)
of the two-dimensional space V of input signals. (w (in)

r1 , w (in)

r2) represents a
pair of successive inclinations of the pole, at the occurrence of which the lat-
tice delivers w (out)

r as a control force. In the beginning all forces are chosen to
be zero, and to each lattice site r a point, randomly selected from the square
[−30◦, 30◦]× [−30◦, 30◦] ⊂ V , is assigned.

In the present simulation the neural network was chosen to be a lattice A
of 25× 25 formal neurons. Each formal neuron r is characterized by a two-
dimensional vector w(in)

r and an output value w(out)
r . The vectors w(in)

r de-
termine the correspondence between neurons and motion states of the pole,

8. Extension of Kohonen’s Model 126

Abb. 8.4: After 200 learning steps, most neurons have become asssociated with
input values that are concentrated in a narrow region along the diagonal w(in)

1 =
w(in)

2 . In the vicinity of (00, 00) the learned output values already correspond
quite well to the actions of the teacher.

and the output values w(out)
r are the forces to be applied. In this example

the teacher has to deliver, for each motion state (θ, θ̇), a force fL(θ, θ̇) that
ensures the intended pole balance. In the simulation this force was chosen as

fL(θ, θ̇) = 5 sin θ + θ̇. (8.3)

The pole was controlled by choosing a force fn at equidistant time instants
tn = n∆t, ∆t = 0.3 and applying this force at the bottom of the pole until
time tn+1. At each time instant tn the learning steps 1-4 were executed for

(v, u) = (v1, v2, u) :=
(
θ(tn), θ(tn−1), fL(θ(tn), θ̇(tn))

)
. (8.4)

The force fn for the next time step was determined according to

fn = α(tn)w
(out)
φw(v) + (1− α(tn))fL(θ(tn), θ̇(tn)). (8.5)

Here w(out)

φw(v) is the force proposed by A at the time tn, and α(t) is a function
that increases gradually from α = 0 to α = 1. Consequently, the control is

8. Extension of Kohonen’s Model 127

initially done exclusively by the teacher, but it is gradually taken over by A
until eventually at α = 1, the neural net has completely replaced the teacher.
At the end of the learning phase, the map has learned to imitate the behavior
of the teacher. One may object that by this procedure no new information
has been gained because the solution of the balancing problem was already
provided by the teacher. Nonetheless, this objection denies that an essential
result of the learning process lies in the coding of the information in a new
way, namely, as an optimized look-up table. The latter obviates recalculation
of the correct control actions previously required at each time step; now, only
a simple table look-up is required. In all cases where a recalculation is more
wasteful or slower than a simple table look-up, a gain in efficiency will result.

Abb. 8.5: The stage reached after 1000 learning steps at the end of the sim-
ulation. All neurons have attached themselves to the part of the graph which
is most important for the pole balancing, in accordance with the input-output
relation delivered by the teacher. Since w (in)

1 , w (in)

2 stands for sequential pole
orientations, points with a small difference w (in)

1 − w (in)

2 correspond to most of
the pole states. The region of the represented differences is broader in the vicin-
ity of the point (00, 00) since near this point higher velocities occur on average
than at the turning points. Also, the resolution is particularly high near (00, 00)
because forces are requested most frequently for these pole states.

8. Extension of Kohonen’s Model 128

Abb. 8.6: This graph depicts, in the w (in)

1 −w (in)

2 -plane, the mapping between
lattice locations and those angle pairs w (in)

1 ,w (in)

2 which are important for the
balancing process.

The other data used in our simulations were σ(n) = 6 · (0.5)n/nf , hrs = h′rs =
exp[−‖r−s‖2/σ(n)2] , ε(n) = ε′(n) = 0.5 · (0.04)n/nf , nf = 1000 and m = 1.
The learning phase consisted of a sequence of trials. At the beginning of
each trial the pole was released from rest at an initial, randomly chosen
angle θ ∈ [−30◦, 30◦]. The pole was then balanced by the forces fn either
until the pole fell over, (Criterion: |θ(tn)| > 60◦), or until 100 time steps had
passed. Subsequently, the simulation was continued with a new trial until a
total of nf = 1000 time steps were completed.
Figures 8.3–8.5 show the development of the mapping Φ in the course of the
simulation. Φ is displayed as a mesh surface in the w(in)

1 -w(in)

2 -w(out)-space.
At the beginning random pair values w(in)

1 -w(in)

2 from the subset [−300, 300]×
[−300, 300], together with a force w(out)

r = 0, were assigned to each neuron r
(Fig. 8.3).
After 100 time steps most of the neurons have become associated with angle
pairs in the vicinity of the diagonal w(in)

1 = w(in)

2 and have roughly learned
the corresponding forces (Fig. 8.4). Finally, after 1000 time steps, the re-
sult depicted in Fig. 8.5 is obtained. Now all neurons are associated with a

8. Extension of Kohonen’s Model 129

Abb. 8.7: Balancing performance after 200 (light curves) and after 1000 learning
steps (heavy curves). The curves in the top diagram show the time course of the
pole angle θ after 200 learning steps. The pole was released from angles of 200

and 300, after 200 and 1000 learning steps, respectively. The bottom diagram
displays the time course of the force that was applied by A.

narrow region near the diagonal w(in)

1 = w(in)

2 . This region represents, under
the chosen coding of each state by two sequential angles, those states of the
pole that are particularly important for the balancing problem (Fig. 8.6).
The representation by neurons is especially dense in the vicinity of (0◦, 0◦),
because for these values forces are most frequently requested during the bal-
ancing. Figure 8.7 displays the learned balancing behavior after 200 steps
(light curves) and after 1000 steps (heavy curves). The top diagram depicts
the time course of the pole angle θ(t), which is monitored after release of
the pole from rest and using the control furnished by A in the absence of

8. Extension of Kohonen’s Model 130

a teacher, i.e., for α = 1. After 200 learning steps an initial angle of 20◦

away from vertical is handled well; at the end of the simulation even a trial
starting with θ(0) = 30◦ succeeds. The bottom diagram shows the response
of A for both cases.

8.5 Unsupervised Pole-Balancing

In the following, second simulation, the balancing of the pole is learned with-
out a teacher by means of a “reward function” (unsupervised learning). In
contrast to the teacher the reward function no longer directly specifies a suit-
able force, but only indicates “how well” the resulting state complies with
the given task. An appropriate reward function for the balancing task is,
e.g.,

R(θ) = −θ2. (8.6)

This function “rewards” vertical (θ ≈ 0◦) orientations of the pole. As before,
the lattice site s is selected by the pole motion at each time step. Since the
teacher is no longer present, a force fn for a particular step is now determined
by the selected lattice site s only. The learning goal is to find a force which
yields a maximal increase of the reward function R towards the end of each
time step. In the absence of any further information this can be accomplished
in the most general way by a stochastic search process.1

Every time that s is chosen (step 2), instead of the most recently found
output value w(out)

s for fn, the modified value

fn := w(out)
s + as · η (8.7)

is used. Here η is a Gaussian random variable with zero mean and unit
variance, and as > 0 is a new parameter that determines the mean value
of the search step for lattice location s. The adaptation steps 3 and 4 are
executed with u = fn only when, at the end of a time step, the increase
∆R of the reward function that has been caused by fn exceeds the averaged

1 More efficient searching methods can be applied when certain types of additional
information are available. For example, one could use the differentiability of R and
could replace the stochastic search method by the gradient descent method, which
avoids searching steps in the “wrong” direction. Because we are less interested in
variations of the detailed design for each application and would rather focus on a
representation of the method’s general structure, we will stay with the generally
applicable stochastic search method.

8. Extension of Kohonen’s Model 131

increase bs gained so far at lattice site s. The consequence of this is that A
learns only from “actions” which lead to an improved performance, and thus
A continually improves itself.
The mean increase of the reward function bs, necessary in addition to as, has
to be updated after each selection of s by using the actual increase ∆R that
has been reached. This can be most simply accomplished by the instruction

bnews = bolds + γ(∆R− bolds). (8.8)

The effect of the latter procedure is a low-pass filtering and a corresponding
“smoothing” of the most recent updates of the reward function with a time
constant given by γ−1.
At the beginning the average search step width as should be sufficiently
large for each lattice location in order to rapidly find an approximately cor-
rect force. Each time an s is selected that has the opportunity to act, as

is diminished. Therefore, the number of search steps for each lattice site is
reduced as more experience is gained, and the stored output value can gradu-
ally converge. Because the neighboring lattice sites r 6= s are also involved in
every adaption step of s (steps 3 and 4), the corresponding ar are reduced in
the same way as the as. In analogy with steps 3 and 4, this can be achieved
by including the following additional step.

5. Adaptation rule for the search step widths:

anew
r = aold

r + ε′′h′′rs(a− aold
r).

8. Extension of Kohonen’s Model 132

Abb. 8.8: The association between pole motion states and control forces as it
has been learned after 3000 learning steps without a teacher by using the reward
function R (displayed as in Fig. 8.3-8.5). Again the states along the diagonal of
the w(in)

1 , w(in)

2 plane, i.e., with a small difference w(in)

1 − w(in)

2 , are represented
particularly well. For deviations from the vertical position the learned forces
increase more strongly than in the simulation presented in Fig. 8.5 and lead to
very rapid corrective adjustments of deviations from vertical.

Here a is equal for all steps and defines the threshold towards which the
search step widths should converge over long periods of time. If one intends
for w(out)

r to converge, one chooses a = 0. If one wishes a residual plasticity
to remain for the capability of later readaptation under slow changes, one
assigns a small corresponding positive value to a. The additional parameters
ε′′ and h′′rs (step 5) are varied analogously to ε and hrs, and ε′ and h′rs,
respectively.

8. Extension of Kohonen’s Model 133

Abb. 8.9: Pole-balance after 3000 learning steps using the reward function R.
The top diagram shows how the pole angle θ changes in time after the pole has
been released from a rest position θ = 40◦. The bottom diagram shows the
corresponding control force that was applied.

For the simulation we chose h′′rs = h′rs = hrs where hrs has the values of the
simulation in Section 8.4. σ(n) and ε(n) were chosen as in Section 8.4 but
with nf = 3000. Other quantities in the simulation were ε′ = 0.2, ε′′ = 0.005,
a = 0, γ = 0.05. At the beginning of the simulation all averaged search step
widths were set to ar = 1. The initial estimators br for the changes of the
reward function were set to zero.
Starting with the same initial state as for supervised learning (Fig. 8.3) and
with the parameters just given, the connection between pole motion states
and control forces w(out) evolved as depicted in Fig. 8.8 in the course of 3000
learning steps. Again the preponderance of values along the w(in)

1 −w
(in)

2 main
diagonal can be seen, particularly in the vicinity of (0◦, 0◦). The resulting
dependence of the control force on the pole positions evolves qualitatively
as before, but has a steeper slope at deviations from (0◦, 0◦), indicating a
very rapid correction of any deviations from vertical. This is demonstrated
in Fig. 8.9 where one can observe the time variation of the pole angle θ (top
diagram) and the learned forces f (bottom diagram) that occur after the

8. Extension of Kohonen’s Model 134

pole has been released from an initial angle of 40◦ from vertical.
Problems similar to the pole-balancing problem also arise in connection with
upright walking, rendering the pole-balancing solution interesting for biolog-
ical organisms as well as in robotics. Of presumably even higher interest, as
far as applications are concerned, is the control of arm motions, especially
under visual supervision. Chapters 10 and 11 are devoted to these issues. In
the next chapter, however, we will first consider an issue with a biological
background, namely the control of rapid eye movements that serve to center
a visual object on the retina and, thus, solve the task of “visual grasping.”
This latter task is taken up in Chapter 9 which then leads naturally into
issues in robotics.

9. The Oculomotor System: a Biological Example 135

9. THE OCULOMOTOR SYSTEM: A BIOLOGICAL
EXAMPLE

9.1 Oculomotor Control and Superior Colliculus

When reading, looking at a painting, or steering a car the eyes make numer-
ous movements, most of which consist of short, jerky jumps called saccades.
Saccades function to direct a small, slightly deepened region (the fovea) in
the center of the retina towards particular locations in the visual field. An
extraordinarily high number of light sensitive cells reside in the fovea, pro-
viding particularly high resolution of any object whose image resides there.
As soon as the attention of an observer is caught by an object the image
of which is outside of the fovea, a saccade moves the eyeball such that the
image leaps into the fovea. When reading, for example, only a few letters
can be simultaneously in focus, and even single words longer than two or
three letters must be viewed piecewise by successive saccades. Most of the
time, the saccade traverses an angle between four minutes and forty degrees
(Korn 1982). Larger changes in direction usually occur only when the eyes
and head move simultaneously.
The control of eye movements, the oculomotor control, has often been the
subject of neurophysiological investigations. The advantage one has in in-
vestigating the oculomotor system stems from the particularly close relation
between eye motions and motor nerve signals. Due to the relatively small and
constant mass of the eyeball and the capability of the muscle apparatus of
the eye to react with a comparatively large and extremely rapid deployment
of force, inertial effects play only a minor role, and the motions of the eyeball
provide an accurate mapping of the nerve signals that control the muscle.
It is not precisely known where the decision is made concerning which object
of the visual field should be in the primary focus. Clinical findings lead to
the inference that parts of the parietal lobe play a vital role in this decision
process (Wurtz et al. 1986). Experiments have shown that the saccades are

9. The Oculomotor System: a Biological Example 136

triggered in the superior colliculus, a mounded, multilayered neuron sheet
that is located in the upper region of the brain stem (Sparks and Nelson
1987). The relation between the location of receptors on the retina which
are, e.g., excited by a small light point, and the place of neurons in the upper
layer of the superior colliculus that are simultaneously excited, is continuous
and topology conserving. This implies that a topographic sensory map from
the retina to the upper layer of the superior colliculus, a so-called retinotopic
map, is realized. In contrast to that, and essential for the saccadic control of
eye movements, the lower layer provides an example of a motor map similar
to the one described in Chapter 8. Locations in this layer correspond in an
ordered way to saccadic changes in view direction that can be triggered by
excitation of neurons at the corresponding locations. Such excitations can be
artificially created by stimulation via inserted electrodes. With excitations
thus invoked, the direction of the saccades turns out to be quite independent
from the intensity of the stimulus; rather, their direction is mainly determined
by the location of the stimulus in the layer.
There is an interesting relationship between the retinotopic map in the upper
layer and the motor map in the lower layer. The layers lie against one
another such that local excitations of the neurons in the lower layer trigger a
saccade which moves the fovea to a location which was previously kept by the
receptive fields of the corresponding top-lying neurons of the upper layer. In
other words, if one transfers an excitation in the upper layer that was caused
by a localized light stimulus on the retina to the directly underlying neurons
of the motor map, then the result is an eye motion that leads the fovea to the
light stimulus. This correspondence led to the formulation of the fovealization
hypothesis: According to this hypothesis, the alignment of the sensory and
the motor map in the superior colliculus serves to create saccades for the
centering of images in the fovea (Robinson 1972).
The correct functioning of such a system demands that both maps correspond
precisely to one another. This requires an exact, topographically ordered
wiring from the retina to the sensory layer and also an exact, topographically
organized assignment of saccadic motion vectors to the neurons of the motor
layer. As experiments have also shown, the oculomotor system can adaptively
follow changes in the interrelation between visual input and the saccades
needed for centering. For example, test subjects were equipped with both
contact lenses and eye glasses such that the corrections of the glasses and the
contact lenses exactly cancelled each other. Because of the distance between
glasses and contact lenses, such a combination acts like a (weak) “Galileic

9. The Oculomotor System: a Biological Example 137

telescope,” and previously correct saccades now miss their target by some
degrees because of the combined devices. In the beginning the eye reacts
with additional corrective motions after each saccade to compensate for the
errors artificially created. This state of affairs does not remain, however;
it has been experimentally determined that already after 9–14 minutes the
oculomotor system has adapted the saccades so well that subsequent eye
motions can no longer be distinguished from eye motions of subjects without
the contact lenses/glasses combination. Larger corrective motions were no
longer required (Henson 1977). This shows that beyond the formation of
appropriate, topographically ordered connections, the oculomotor system can
use the appearance of errors to adaptively change its saccades.
In the following we present a simple model which, on the basis of a few sim-
ple learning principles, can adaptively form a sensory map and corresponding
motor map in order to control saccades. As before, we consider only a min-
imum of biological detail in order to motivate the following mathematical
model. The starting point of our model is a lattice A of formal neurons, as
they were described in Chapter 8. Each formal neuron r corresponds to a
receptive field centered on the retina at the location wr, and the excitation
of this neuron leads to a saccade which causes a translation of a visual object
on the retina by a vector w(out)

r . The two layers of sensory and motor neurons
are replaced by a single layer. The vectors wr and w(out)

r , respectively, bring
together the location of the receptive field of a sensory neuron r and the cor-
responding saccade which is triggered when the underlying motor neuron r is
stimulated. Furthermore, we describe the correspondence between the visual
stimulus and the resultant saccade simply by a pair of values (wr,w

(out)
r) of

the centrally localized neuron. In reality, the resultant saccade is determined
by a group of excited neurons localized at r. (In particular, in our model we
do not imitate the continuous interpolation which is caused by the simulta-
neous activity of many neurons.) As long as saccades w(out)

r do not lead to a
centering of the visual stimulus at the retina location wr, corrective saccades
are necessary. The following section will show how these corrective saccades
can be gradually reduced by a simple learning method and how, simultane-
ous to that, the arrangement of the receptive fields, whose center points are
determined by the vectors wr, can organize itself topographically.

9. The Oculomotor System: a Biological Example 138

9.2 A Stepwise Method for Learning Saccades

The learning algorithm of our model is suggested by the corrective saccades
of the oculomotor system. If an object within the visual field draws one’s
attention, a corresponding saccade is triggered. This saccade might not lead
the object’s image precisely into the fovea in which case a second, corrective
saccade would occur to reduce this error. If this correction step really brings
an improvement, i.e., the image moves closer to the fovea, the corrective
saccade will be accepted for later eye movements. This means that a model
neuron that has triggered a wrong saccade will next time trigger a saccade
that is the sum of the wrong saccade plus the correction step. Only a single
correction step is allowed in our model. After that, a new stimulus is pre-
sented, i.e., the attention is shifted to a new, randomly chosen object in the
visual field.
The model assumes that the new object of attention is randomly chosen
each time, yet the choice is governed by a fixed probability density which
qualitatively follows the natural distribution of receptors on the retina. The
region in the fovea is unused because, there, no saccades become triggered.
Figure 9.1 shows the chosen probability distribution of input stimuli as a
function of the distance from the center of the retina. It corresponds to a
Gaussian distribution with a width of σr = 40◦ notched out at the center.
The region of the fovea has a radius of 1.0◦ (Korn 1982).
The formation of the wiring between neurons and light receptors in the retina,
i.e., the sensory map, occurs in analogy to the formation of the somatotopic
map of the hand (Chapter 7). For the simulation we use the substitute dy-
namics described in Chapter 7 as well as two-dimensional coordinate vectors
wr. Again, an image point at the location v on the retina selects that neuron
s for which the distance ‖ws − v‖ is smallest and causes an adaptation step
(70) for the vectors wr which are the determining quantities of the “input
wiring.”
As a new feature, we add the learning of the output values, the saccade
vectors w(out)

r . The two-component vector w(out)
r depicts the displacement

of an image point on the retina that results from this saccade. In the ideal
case this displacement leads into the center, i.e., if one considers each vector
w(out)

r as “attached” to the receptor at wr, then all vectors must precisely
end in the fovea.
These learning rules can now be mathematically formulated as follows. If v
is the distance vector on the retina from the fovea to an image point and

9. The Oculomotor System: a Biological Example 139

Abb. 9.1: The probability density of the input stimuli in our model as a function
of the distance to the center of the retina. This probability density roughly
corresponds to the receptor density on the retina excluding the region of the
fovea.

w(out)
s the saccade of the neuron s which is most strongly excited by the

image at v, then the new retinal location of the image after executing the
saccade w(out)

s is given by v′ = v + w(out)
s . If v′ does not fall into the fovea,

i.e., ‖v′‖ > Rfovea, where Rfovea corresponds to a diameter of 1◦, v′ selects,

as v did previously, a neuron s′ which triggers another saccade w
(out)
s′ , the

corrective saccade. Every time this yields an improvement, i.e., every time
when ‖v+w(out)

s +w
(out)
s′ ‖ < ‖v+w(out)

s ‖, the original saccade w(out)
s becomes

improved by the corrective saccade w
(out)
s′ :

u = w(out,old)
s + w

(out,correction)
s′ . (9.1)

Here again, we take advantage of the continuity of the mapping between
retinal locations and saccade vectors by allowing the model neurons in the
neighborhood to participate in the learning process of the output value w(out)

s ,
in analogy with the learning step for wr. Just as in Chapter 8 we employ
the formula

w(out,new)
r = w(out,old)

r + ε′h′rs(u−w(out,old)
r). (9.2)

9. The Oculomotor System: a Biological Example 140

Here u is the improved estimation for w(out)
s defined in Eq. (9.1), and just

as hrs did previously, h′rs depends only on the lattice distance drs = ‖r− s‖
between the neurons r and s. The parameter ε′ measures the learning step
width.
Thus, our model for the oculomotor system can be summarized by the fol-
lowing steps:

0. Begin with a random assignment of the elements r of the lattice A with
receptive fields determined by the synaptic strengths wr, and with a
random assignment of the saccades w(out)

r to be triggered.

1. In accordance with the probability distribution P (v) shown in Fig. 9.1,
choose a vector v which represents a new “visual input.” v points from
the fovea to the retinal location of the new input.

2. Determine the center of excitation s in the layer A of formal neurons
by the condition

‖v −ws‖ ≤ ‖v −wr‖, for all r ∈ A. (9.3)

3. Perform a learning step

w(new)
r = w(old)

r + εhrs(v −w(old)
r), for all r ∈ A (9.4)

for the positions of the receptive fields.

4. Execute the saccade w(out)
s , so that the position v of the image is

changed according to

v′ = v + w(out)
s .

5.a) If the visual object lies in the fovea, i.e., ‖v′‖ < Rfovea, then go back
to step 1.

5.b) If the image does not lie in the fovea, i.e., ‖v′‖ ≥ Rfovea, then determine
the new center of excitation s′, belonging to the retinal location v′ of
the image, according to

‖v′ −ws′‖ ≤ ‖v′ −wr‖ for all r ∈ A. (9.5)

9. The Oculomotor System: a Biological Example 141

Execute a corrective saccade w
(out)
s′ . If the correction is an improvement

, i.e., ‖v′ + w
(out)
s′ ‖ < ‖v′‖, perform a learning step for the saccades

according to
u = w(out)

s + w
(out)
s′ (9.6)

w(out,new)
r = w(out,old)

r + ε′h′rs(u−w(out,old)
r) ∀r ∈ A (9.7)

and go back to step 1. If the correction does not yield an improvement,
i.e., ‖v′ + w

(out)
s′ ‖ ≥ ‖v′‖, then omit the learning step and return to

step 1.

Steps 1–3 constitute the algorithm for the formation of the topology-conserving
map onto A as explained in Chap. 7. The newly added steps 4 and 5 change
the assignment of A with output values w(out)

r . The change occurs accord-
ing to the principle of unsupervised learning as mentioned in the previous
chapter. The correct control actions must be discovered by the learning al-
gorithm itself. This requires a search process in the space of possible values.
In our algorithm this occurs by introducing corrective saccades. Again, a
reward function is available only to tell how well the control has mastered
the given task. In our case we employ the binary criterion “came closer to
the fovea” versus “moved away from the fovea,” which decides between the
alternatives “learn” versus “ignore.” By using the function h′rs, step 5 causes
the neighboring neural units r to participate in the learning process when
the search of the neural unit s is successful. This not only accelerates signif-
icantly the learning process but also contributes strongly to the convergence
of the system to the desired state. Without the participation of neighboring
neurons in the learning process, some of the neurons remain in a state in
which saccades grossly deviate from the target value. This will be elucidated
by the following presentation of simulation results.

9. The Oculomotor System: a Biological Example 142

Abb. 9.2: Learning saccadic eye movements according to Eqs. (9.3) – (9.11).
The figure shows the lattice in its initial configuration on the retina. The wiring
between the receptors and the neural net is chosen completely at random.

9.3 A Computer Simulation

Abb. 9.5: After 20,000 learning steps the saccades have already become crudely
ordered. All vectors point towards the center.

9. The Oculomotor System: a Biological Example 143

Abb. 9.3: The saccades associated with the lattice points at the start of the
simulation. The direction and length of each vector are chosen at random. The
variation in length corresponds to eye rotation angles between 0◦ through 9◦.

Abb. 9.6: Learning saccadic eye movements according to Eqs. (9.3) – (9.11).
The figure shows the state after 200,000 learning steps with an assignment be-
tween receptors and lattice points which is neighborhood-conserving and which
follows the density P (v) .

9. The Oculomotor System: a Biological Example 144

Abb. 9.7: After 200,000 learning steps the saccades point towards the center
of the retina. A blowup of the foveal region (Fig. 9.5) makes visible the precise
positions of the endpoints of the vectors wout

r .

Abb. 9.4: Learning saccadic eye movements according to Eqs. (9.3) – (9.11).
The figure shows the lattice after 20,000 learning steps. At this time a recogniz-
able ordering of the receptive fields has already taken place.

9. The Oculomotor System: a Biological Example 145

In a computer simulation of the above learning algorithm, we have chosen
a ring-shaped lattice A with 20×30 neurons. The simulation parameters
were chosen as follows: ε(t) = 1/(1 + 125t/tmax), σ(t) = 10 · exp(−5t/tmax),
ε′(t) = exp(−5(t/tmax)

2), and σ′(t) = exp(−5(t/tmax)
2) with tmax = 200, 000.

Recorded at three different stages of the simulation, Figs. 9.2-9.4 show the
assignment of A with receptive fields and the saccades to be executed.

Abb. 9.8: A blowup of Fig. 9.4b in the 1◦ foveal region which is indicated by
the circle. One can see that all saccades actually lead into the foveal region and
that the learning process has been successful.

The parameters for the learning of the receptive fields are chosen in such a
way that they loose a large part of their plasticity at an early stage of the
learning. This early freezing of the receptive fields is necessary because, when
a receptive field is shifted, the target value of the saccade that is required
at that location also changes. Without freezing, saccades that have already
been correctly learned would become invalid under further changes of the
receptive fields. For this reason the learning of the saccades requires the
stabilization of the receptive fields.
Because of the rotational symmetry of the input stimulus distribution, the
Kohonen net we employ is also rotationally symmetric. In the simulation the

9. The Oculomotor System: a Biological Example 146

net consists of twenty concentric rings with thirty neural units each. Every
neural unit has two radial and two circumferential neighbors. The depiction
of the net is done in an imaginary “projection onto the retina,” i.e., each
figure shows the retina, and for each neuron r the center wr of its receptive
field is marked on the retina. To indicate the adjacency of neural units, we
have connected the marks of lattice neighbors by lines.
The outer ring represents the whole visual field from −90◦ to +90◦. The
innermost ring encircles the fovea with a radius Rfovea which corresponds to
an area of the visual field of 1◦. The saccades w(out)

r at each lattice point are
drawn as arrows; they specify the shifting of an image on the retina when
the saccade is executed.
Figure 9.2 displays the initial-state assignment with random synaptic strengths
wr and random saccades w(out)

r . The magnitude of the saccades varies be-
tween 0◦ and 9◦. Figure 9.3 shows the situation after 20, 000 learning steps.
At this stage a regular assignment between the retina and lattice points has
already emerged and all the saccades are directed towards the center. In
Fig. 9.4, after 200, 000 learning steps, a well-ordered connectivity with the
retina that is in accordance with the input stimulus distribution P (v) has be-
come established. The receptive fields lie more densely in the region around
the fovea than farther out, where the decrease of the Gaussian input distri-
bution gives rise to a lower resolution. All the corresponding saccades now
actually point towards the center of the retina. Because, in Fig. 9.4b, the
positions of the endpoints of the vectors w(out)

r cannot be clearly observed,
Fig. 9.5 shows a blowup of the foveal region: one can notice that all saccades
actually lead the targeted image into the fovea; the learning method has been
successful.
The precise form of the distance measure between two neural units in the
lattice is inconsequential for the organizational process to converge; however,
sometimes a certain metric may fit a problem better than other distance
measures. For example, in the above simulation we used the “Manhattan”
rather than the Euclidean metric. (The “Manhattan-distance” between two
lattice points r and s is the minimal number of lattice steps required to go
from r to s.) Equal distances in the lattice, i.e., in the neuron layer, can
correspond to completely different distances between the corresponding re-
ceptive fields in the space of input signals. It is the distances between the
centers of receptive fields which become visible in pictures such as Figs. 9.2–
9.4. In contrast, it is the distances in the lattice which determine the spa-
tial interaction between the neurons themselves and, thereby, determine the

9. The Oculomotor System: a Biological Example 147

distance-dependent adaptation steps in the model. This feature can be quite
advantageous, as is particularly manifest in the vicinity of the fovea. There,
receptors that are directly opposite to each other lie close together but have
to learn saccades that differ as much as saccades that belong to receptive
fields directly opposite and at the periphery of the retina. At both receptor
pairs the required saccade directions of the partners differ by the same angle,
namely 180◦. Therefore, it makes sense to use the “Manhattan” metric which
yields, for the foveal and peripheral pair, the same lattice distance between
the diametrically opposite neural units, namely 15 lattice sites.

9.4 The Convergence of the Learning Process

In this section we demonstrate that under certain conditions the algorithm
which was employed to learn the saccadic eye movements must converge. For
this purpose we make two assumptions. First, we consider a stage at which
a corrective saccade always gives rise to an improvement. This is valid when
all vectors have oriented themselves towards the center which is, as one can
see in Fig. 9.3, already the case after comparatively few learning steps (in
most cases 10% of the total number is sufficient). In addition, we assume
that the receptive fields on the retina lie dense enough that we may make
the transition from discrete lattice points to a continuum of r-values, as we
did in Chapter 5 when we considered the representation of the ultrasonic
spectrum on the bat’s auditory cortex. By this assumption the sets of values
wr and w(out)

r meld into continuous vector fields w(r) and w(out)(r). Since
we assume the lattice to be maximally ordered, the inverse r(w) exists, and
we can define

w(out)(u) = w(out)(r(u)). (9.8)

w(out)(u) is the saccade which is triggered if the visual stimulus is at the
retina location u. In addition, a glance at the simulation data shows that
σ′, the range of the interactions between neighbors, has a very small value
from the start and decreases monotonically. We will see that from the time
when all vectors are beginning to point towards the inner region, cooperation
between neighbors is no longer necessary for convergence. If we set h′rs = δrs,
then only the saccade at the lattice point s, in whose receptive field the
stimulus v was located, experiences an adaptation step.
Under these conditions our learning algorithm can be mathematically formu-
lated as follows: with an input stimulus v the saccade w(out)(v) is triggered

9. The Oculomotor System: a Biological Example 148

and leads to the retinal location v+w(out)(v). The corrective saccade is then
given by w(out)(v + w(out)(v)). Thus, the saccade at v changes according to
step 5 of our algorithm by

∆w(out)(v) = ε′w(out)(v + w(out)(v)). (9.9)

It is beneficial to introduce the new variable

x(u) = u + w(out)(u). (9.10)

Here, x(u) is the shift which the saccade w(out)(u) still lacks to lead an image
into the fovea. In our algorithm x(u) should converge to zero since at the end
it should be true that w(out)(u) = −u. Equation (9.9) then can be written

xnew(v) = xold(v) + ε′ w
(out)
old (xold(v))

= (1− ε′)xold(v) + ε′
[
xold(v) + w

(out)
old (xold(v))

]
= (1− ε′)xold(v) + ε′xold(xold(v)). (9.11)

For estimation purposes we now want to make mathematically precise the
condition that at some point in time all vectors have become oriented towards
the center. “All vectors are oriented towards the center” shall mean

‖u‖ − ‖u + w(u)‖
‖u‖

> δ, for all u ∈ V, with δ > 0. (9.12)

There should exist a fixed δ > 0 which satisfies Eq. (9.12) for all u ∈ V
simultaneously. Rearranging (9.12) yields

‖x(u)‖ < ‖u‖(1− δ), for all u ∈ V. (9.13)

If we replace u by x(u) in Eq. (9.13), then

‖x(x(u))‖ < ‖x(u)‖(1− δ) for all u ∈ V (9.14)

is also true. Through the triangle inequality (9.11) becomes

‖xnew(v)‖ ≤ (1− ε′)‖xold(v)‖+ ε′‖xold(xold(v))‖
< (1− ε′δ)‖xold(v)‖, (9.15)

since 0 < ε′ < 1 and, because of (9.12), 0 < δ ≤ 1. Due to the nonexistent
lateral interaction, the saccade of a lattice point is changed only if the stim-
ulus falls into the lattice point’s receptive field. But then, according to the

9. The Oculomotor System: a Biological Example 149

above inequality, the residual error is diminished by at least a factor (1−ε′δ).
On average, after N learning steps the neural unit s has been excited HsN
times by a stimulus, where

Hs =
∫
Fs

P (v) dv. (9.16)

Fs is the size of the receptive field of neural unit s on the retina. There-
fore, as the number of learning steps N increases, the error of the saccade
at s approaches zero on average faster than (1− ε′δ)HsN , resulting in the
convergence of our algorithm under the above conditions.

Abb. 9.9: Learning saccadic eye movements according to Eqs.9.2 – 9.11, but
without cooperative learning as described through (9.11), i.e., with hrs = δrs.
After 200,000 learning steps the rotationally symmetric Kohonen net again dis-
plays the same assignment between receptors and lattice points.

9. The Oculomotor System: a Biological Example 150

Abb. 9.10: Without cooperation between neighbors, not all of the saccades
learn the targeted value. In particular a few saccades in the outer region of the
retina give rise to totally wrong directions.

If after only about 10% of the total number of simulation steps a state is
reached where the learning algorithm for the saccades, even without interact-
ing neighbors, safely converges towards the targeted values, then the question
arises whether we need the cooperation between neighbors at all, especially
since the range was very small from the start as we can see from the sim-
ulation parameters. An answer is apparent in Fig 9.6 where a simulation
result is shown with the same simulation parameters as before, except with
the cooperation between neighbors “turned off.” There we recognize that a
few saccades in the outer region of the retina deviate completely from their
targeted output values and even point away from the center. This is due to
those vectors, which after being acted upon by a stimulus, do not find an
appropriate corrective saccade leading the stimulus closer to the center and,
thereby, yielding a learning step (9.11). By an initial random assignment
there are always a few saccades which evolve by the learning algorithm in a
way that, at some point in time, they point into the receptive field of a neu-
ron whose corrective saccade does not give rise to an improvement. These
badly learned saccades appear mainly in the retina’s outer region because

9. The Oculomotor System: a Biological Example 151

there they often find only themselves for corrective saccades. In the learn-
ing algorithm without cooperation between neighbors these saccades have no
longer the opportunity to rotate into the correct direction. Furthermore, we
realize that the overall convergence of the system is slightly worse than in
the case of cooperative learning. In particular, the end points of all vectors
do not yet lead into the fovea even after the simulation has been terminated
after 200,000 steps. This arises simply from the reduced rate of convergence.
A reduced convergence rate is to be expected since without cooperation a
saccade only changes if the center of a stimulation lies precisely in the sac-
cade’s receptive field, and neurons no longer profit from their neighbors. In
principle, however, there is no reason why with further learning steps, except
for some “runaways” in the outer region, the same desired state should not
be reached.
At the beginning of the learning process, the cooperation between neighbors
is essential. At this stage, it has the task of rotating all vectors towards
the inner region. This cooperation is indispensable for a successful, overall
convergence. The isolated saccades which continuously point towards the
outside and which at the end of the simulation without cooperative learning
would not have changed their direction are now shifted towards the center by
their neighbors with more favorable starting values. Indeed, with cooperation
between neighbors, all saccades point towards the center after only 10% of
the learning steps (Fig. 9.3), creating a basis for the desired convergence of
the total system.

9.5 Measurements on Human Subjects

In the model for the learning of oculomotor control presented above, we
employed, with the introduction of corrective saccades, a very simple learning
principle. Perhaps too simple, since measurements by Becker and Fuchs
(1969) show that the simulation results of the algorithm do not quite agree
with experimental observations. The experiments of Becker and Fuchs with
human subjects show that the saccades almost never lead directly into the
fovea. One can infer, however, that the “mistakes” occur by design since the
errors of the first saccades are not randomly distributed around the fovea.
The first saccades are, with few exceptions, too short (undershoot). In fact,
it is believed that the intentional use of a first saccade which is too short
gives rise to advantages, possibly in a better planning and easier execution

9. The Oculomotor System: a Biological Example 152

of subsequent eye movements. Compared to those observations, our model
learns its saccadic eye motions much too “well” because at the end of the
learning process all of our saccades precisely lead in the fovea. In our simple
example we have omitted the complicated aspect of planning and restricted
ourselves to the images of immobile objects. An extension of the learning
model must deal with the tracking of objects, where planning ahead will play
an important role. Perhaps the intentional use of undershoots could provide
advantages for a learning method extended in such a way.
Through the pole-balancing and saccadic-control problems, we have seen
how self-organizing, topology-conserving maps can be used in a natural way
for the learning of input/output relations in the form of adaptively organized
“look-up” tables. The topology-conserving feature of the map makes possible
the cooperation between neighboring neural units, which strongly contributes
to the method’s rapid convergence. This will be developed further in the
following chapters. The adaptive capabilities of the map make possible an
automatic optimization of the choice of value pairs represented in the table.
Nonetheless, for mappings between higher dimensional spaces, a very high
number of value pairs must be stored. This difficulty can be somewhat eased
by the use of locally valid linear mappings instead of value pairs. With
linear mappings, more complex control tasks can be handled, such as those
that arise in the motion control of robots. In Chapters 10, 11 and 12 this
will be demonstrated with a neural network which learns the control of a
triple-jointed robot arm and one which learns to control a robot arm with
redundant degrees of freedom.

10. Problems of Robot Control 153

10. PROBLEMS OF ROBOT CONTROL

At any given moment our brain manages to control 244 different mechan-
ical degrees of freedom that involve more than 600 different body muscles
(Nourse 1964, Saziorski 1984). In fact, dozens of different muscles routinely
act simultaneously. For example, the muscles in each arm or leg control 30
mechanical degrees of freedom, utilizing rather complicated muscle combina-
tions (Saziorski 1984). This control is accomplished through feedback control
based on a variety of different sensors: stress and strain sensors in the mus-
cle, tactile sensors in the skin, joint sensors, and—often essential—the visual
system. Underlying these faculties lies the brain’s vast, unconscious power
of coordination of which we are fortunately unaware. The complexity of this
control becomes obvious as soon as one attempts to equip a robot arm with
only a small fraction of human dexterity.
Let us consider the simple example of grasping and inserting a screw. First
the robot must sense the screw. To do so, the robot must determine the
screw’s position, and then choose a suitable gripper position. The choice
depends on the shape of the screw, its location on the table, and the presence
of other objects which might hinder the robot. The screw might, for example,
lie in a box with other parts. The gripper position is also affected by the
screw’s purpose: it makes a big difference if the screw only needs to be moved,
or if it should actually be inserted. As soon as such questions are answered,
a trajectory to the screw’s target location can be determined. The screw’s
orientation and any possible obstacles must be factored into the trajectory
planning. The joint angles and torques required to move the arm as planned
are then calculated. The joint angles and torques depend on the geometry
and the moments of inertia of the robot arm and, while the movement should
be as fast as possible, the corresponding joint angles and torques must not
exceed, at any place in the trajectory, the mechanical limits of the robot. If
such violations occur, the trajectory planning must be repeated. After the
trajectory planning and after the screw has been brought to the appropiate
location, the threads must be aligned with a precision in the hundredths of

10. Problems of Robot Control 154

millimeters. This task seems, of course, much easier for people; after a rough
placement of the screw, one can make use of counter forces from the threads
in guiding the screw into the thread hole. In fact, our robot will need to
use a similar strategy of compliant motion since the very precise location
information is not achievable by cameras alone.
Presently, there are essentially two approaches for the solution of the prob-
lems mentioned. The first, artificial intelligence, is based on the development
of a number of sophisticated programs, ideally designed to foresee all poten-
tial situations. This method has yielded a remarkable number of successes.
Its weakness lies in the difficulty of finding the problem solving heuristics
that work for all important practical situations.
The second approach attempts to understand the strategy of movement con-
trol by biological organisms for the purpose of abstracting neural algorithms.
Our present state of knowledge of biological motion control, however, is still
too fragmented to make possible the construction of robot control on a bio-
logical basis which could compete successfully with conventional algorithms.
Nonetheless, there are a number of promising approaches based on concep-
tions of neural networks. Arbib (1981), and Arbib and Amari (1985), give
a good overview of the problems to be solved and provide some conceptual
presentations of their solutions.
Particularly important is the connection of motor action with sensory per-
ception (sensory-motor coordination). It is the perfection of this feature that
is so outstanding in higher biological organisms and that makes these organ-
isms so superior to our present technical solutions. This sensory-motor coor-
dination is not rigidly preprogramed, but rather, at least in higher animals,
adapts and develops in a maturing phase by concerted actions of sensory and
motor experience. If one artificially interrupts these concerted actions, then
the development of a sensory controlled dexterity does not take place (Held
and Hein 1963).
In Chapters 11 and 12 we show how such sensory motor coordination can
emerge during the formation of neural maps. This will be demonstrated
by a representative example, the problem of coordinating movements of a
robot arm with pictures from a pair of stereo cameras. We will examine
two computer simulations in order to focus on two different aspects of the
problem.
In Chapters 11 and 12 we explore the kinematics of a robot arm. There
a neural network will learn the relation between arm configurations as they
appear in the camera and corresponding joint angles. That relation must take

10. Problems of Robot Control 155

into account the geometrical features of the arm, the features of the optical
projection through the cameras, and the position of the cameras relative
to the arm. We will also see how the network model can gradually learn
visuomotor control from a sequence of trial movements without any prior
information. In Chapter 11 we will consider the task of positioning the end
effector of a robot arm. In Chapter 12 we will be concerned with the problem
of how an arm and its gripper can be properly oriented relative to an object
that the robot is supposed to grasp.
Through kinematics one takes into consideration only the geometry. From
this point of view all segments of the arm are massless and, therefore, with-
out inertia. In all cases where effects of inertia do not play a significant role,
a purely kinematic description is sufficient. For example, this is the case for
joint motors that are sufficiently strong to comply with the movement com-
mands. For fast movements or weaker motors, one must take into account the
effects of inertia, i.e., the dynamics of the arm. A network algorithm which
allows to learn the corresponding control will be the subject of Chapter 13.

11. Visuomotor Coordination of a Robot Arm 156

11. VISUOMOTOR COORDINATION
OF A ROBOT ARM

In this chapter we again use the extension of Kohonen’s model that includes
the learning of output values. By employing this extended model we will
enable a robot system to learn to automatically position its end effector at a
target that has been presented in the robot’s work space (Ritter, Martinetz,
and Schulten 1989; Martinetz, Ritter, and Schulten 1989, 1990a, 1990b).
“End effector” is the name given in robotics to a tool at the end of the
robot arm, e.g., a gripper, a welding electrode, etc. End effector positioning
is an integral part of almost any task with which a robot system might be
confronted. Examples of tasks include grasping of objects, application of
welding points, insertion of devices, or, to mention a task from robotics that
has not yet been satisfactorily accomplished, the planning of trajectories to
circumvent obstacles. Obviously, end effector positioning is fundamental for
all robot tasks and, therefore, we turn to this problem first.
Figure 11.1 shows a robot system as it has been simulated in the computer.
The robot consists of a triple-jointed arm, positioned in front of the work
space. The arm can pivot around its base (θ1), and the other two joints (θ2,
θ3) allow the arm to move in a vertical plane. For successful operation the
robot requires information about the location of the targets. Humans obtain
this information through their eyes. Correspondingly, we equip our robot
with two cameras which can observe the work space. It is important to use
two cameras in order to perceive the three-dimensionality of the space.
Since the work space of the robot is three-dimensional, we will now use, in
contrast to examples in previous chapters, a three-dimensional Kohonen net,
i.e., a Kohonen lattice. With this step we seem to deviate from the net-
works actually realized in the brain, which appear to have a two-dimensional
topology, because, as we know, the cortex consists of a two-dimensional
arrangement of neural functional units, the so-called micro-columns. (see,
e.g., Kandel and Schwartz 1985). But this discrepancy is only an apparent
one; the actual relevant topology, given by the connecting structure of the

11. Visuomotor Coordination of a Robot Arm 157

Abb. 11.1: Model of the simulated robot system. The arm has three degrees
of freedom: rotation around the vertical axis (θ1), a middle joint (θ2), and an
outer joint (θ3). The axes of the middle joint and the outer joint are parallel to
each other, and are both horizontal and perpendicular to all three arm segments.
Camera 1 is in front of the work space, and camera 2 is located on the left side
of the robot.

neurons or functional units, can very well deviate from the morphological
arrangement on the cortex. Suppose we take a three-dimensional wire lattice
and press it into a two-dimensional layer. The connecting structure between
the lattice nodes has of course not been changed by this modification; it

11. Visuomotor Coordination of a Robot Arm 158

is still three-dimensional in spite of the fact that all lattice nodes now lie
in a plane. Accordingly, the connecting structure between neural units in
the brain might be multi-dimensional even if the neurons are arranged in
a two-dimensional layer. The three-dimensional topology does not change
any essential features of Kohonen’s algorithm. Only the lattice vectors r are
three-dimensional, and the distance ‖r − s‖ to the excitation center is now
measured in a three-dimensional lattice.
During the training phase, the position of the targets in the work space are
chosen randomly. Before each movement the target is viewed by the cameras,
the signals of which are fed into the neural net. Each neural unit is responsible
for a particular region observed by the cameras. For each incoming signal
that neuron which is momentarily responsible for the location of the target
becomes activated and transmits its output values to the motor control.
The three-dimensional coordinates of the location of the target, however, are
not directly available; each camera only delivers the location at which the
target appears in its two-dimensional visual field. The network must then
derive proper output values for the joint motors to position the end effectors
properly.
The neural network does not receive any prior information about, for exam-
ple, the location of the cameras or the lengths of the robot arm segments.
Rather it has to learn these geometrical relationships in order to correctly
convert the camera information into motor signals. For this reason the un-
trained arm will initially not reach most targets. In each trial the deviation
is observed by the cameras and then used to improve the output values. At
each successive step a new target point is presented to the robot, providing
the opportunity for further learning. The robot represents an autonomous
system that works in a closed-loop mode and performs completely without a
teacher. The robot system receives all the information needed for adaptation
from its own stereo cameras and, thus, learns without an external teacher
(See also Ginsburg and Opper 1969; Barto and Sutton 1981; Kuperstein
1987, 1988; Miller 1989).

11.1 The Positioning Action

As displayed schematically in Fig. 11.2, each target point generates an im-
age point on the image plane of each camera. The two-dimensional position
vectors ~u1, ~u2 of the image points in the image planes of cameras 1 and 2

11. Visuomotor Coordination of a Robot Arm 159

implicitly transmit to the system the spatial position of the target point
which is uniquely defined by (~u1, ~u2). We combine both vectors to one four-
dimensional input signal u = (~u1, ~u2). In order to be able to correctly position
its end effector, the robot system must be able to perform the transformation
~θ(u) from image point coordinates u of the target to the required set of joint

angles ~θ = (θ1, θ2, θ3) of the arm. This transformation depends on the geom-
etry of the robot arm as well as on the location and imaging characteristics
of the cameras, and should be adapted automatically through the learning
method.

Abb. 11.2: Schematic diagram of the positioning action. The two-dimensional
coordinates ~u1 and ~u2 of the target in the image planes of cameras 1 and 2
are combined to a four-dimensional vector u = (~u1, ~u2) and then transmitted
to the three-dimensional Kohonen net. The neural unit s which is responsible
for the region in which the target is momentarily located is activated and makes
available its two output elements, the expansion terms of 0-th and first order,
~θs and As. These terms determine the joint angles needed for the movement
towards the target.

For each target u the neural unit whose receptive field entails the target
location responds. As before, the receptive fields are defined by synaptic

11. Visuomotor Coordination of a Robot Arm 160

strengths wr that now consist of four components as does u. A neural unit s
is responsible for all targets u for which the condition ‖ws− u‖ ≤ ‖wr− u‖
holds, where r denotes all neurons on the lattice that are different from s.
The responding neural unit provides as output values a suitable set of joint
angles ~θ = (θ1, θ2, θ3) that is transmitted to the three joint motors and that

should lead the end effector to the target. To generate ~θ, two output ele-
ments that must be learned are assigned to each neuron: a three-dimensional
vector ~θr and a 3×4-matrix Ar. At the end of the learning phase, when ~θr

and Ar have taken on the desired values, the angle positions ~θr will lead the
end effector to the center of the receptive field of neuron r; i.e., ~θr defines
the move of the end effector into the target position u = wr. The Jacobian
matrix Ar = δ~θ/δu serves to linearly correct the joint angles if the input vec-
tor u does not coincide with wr. This correction is accomplished by a linear
expansion around wr which is restricted to the region of responsibility of the
particular neural unit r. The angular configuration ~θ that is transmitted to
the joints by unit s is then given by

~θ = ~θs + As(u−ws). (11.1)

At the end of the learning process this expression corresponds to a linear
expansion around ws of the exact transformation ~θ(u). The vector ~θs is
given by the expansion term of zeroth order, and As is given by the Jacobian
matrix for ~θ(u) at ws.

The values ~θr and Ar should assume values ~θ 0
r , A0

r in the course of the
learning which minimize the average output error. By the use of Eq. (11.1)

the exact transformation of ~θ(u) is approximated by an adaptive covering of

the domain of ~θ(u) with locally valid linear mappings. When compared with
the sole use of discrete output values, the introduction of Ar implies that
maps with less discretization points (neural units) are sufficient to reach a
given precision.
The two vectors (~u1, ~u2), combined into the single vector u, span a four-
dimensional space. All the target positions lie within the three-dimensional
work space as indicated in Figs. 11.1 and 11.2. Hence, the input signals
u of the cameras are all located in a three-dimensional submanifold of the
four-dimensional input signal space, making it unnecessary to use a four-
dimensional Kohonen net to represent the input signal space—a Kohonen
net with a three-dimensional lattice topology is sufficient. If we knew the
relevant submanifold, i.e., if we had precise knowledge about the position

11. Visuomotor Coordination of a Robot Arm 161

of the image planes relative to the work space, then we could, with the
initialization, “plant” the nodes of the neural net into the submanifold, and
the learning algorithm, as before, would in principle only have to “unfold”
the net onto this submanifold.

Abb. 11.3: Occupation of the three-dimensional subspace with discretization
points. The four-dimensional input signal space, U , schematically displayed, is
initially homogeneously filled with the elements of the three-dimensional Kohonen
net. The input signals u lie exclusively within the three-dimensional submanifold
W . Therefore, all elements move rapidly into the relevant subspace of U , and a
“waste” of unused discretization points W is avoided.

However, supplying any a priori knowledge about the system to the learning
algorithm, e.g., precise information about the location of the cameras, should
be avoided. Our goal is for the robot system to find out such information by
itself while it is learning. Only then are the desired adaptive capabilities of

11. Visuomotor Coordination of a Robot Arm 162

an algorithm available to enable the robot to adapt to possible changes in the
precise system data, e.g., caused by corrosion, wear of its parts, or camera
shifts. In our model this means that the robot system must find for itself
the relevant three-dimensional submanifold in the space U = U1 ⊗ U2 of the
two connected image planes U1, U2 in order to distribute as homogeneously
as possible the lattice points that are necessary for the discretization.
Lacking a priori knowledge about the location of the relevant subspace,
we distribute the nodes of the neural lattice randomly within the four-
dimensional input signal space at the beginning of the learning phase. The
positions of the lattice nodes in the space U are described as before by four-
dimensional vectors wr. Because the incoming input stimuli u = (~u1, ~u2) all
lie within the yet unknown submanifold, just a few learning steps cause a
“contraction” of all net nodes onto this relevant subspace. This contraction
is schematically displayed in Fig. 11.3
The representation of only the submanifold by the network is a direct conse-
quence of the feature of Kohonen’s algorithm that has been discused exten-
sively in Chapter 5, i.e., adaptation of the density of the net nodes according
to the probability density of the input signals. Since the input probability
distribution in the present case differs from zero only on the submanifold, it
follows that in equilibrium the density of the net nodes will be zero outside
the submanifold. In this way the robot system can discover by itself the
subspace relevant for its functioning. In the ensuing course of learning, the
three-dimensional net will unfold within this three-dimensional subspace and
will homogeneously distribute its nodes as discretization points.
This again demonstrates the effectiveness of the model in using a finite num-
ber of neural units, or more generally, memory units. We could have initial-
ized the total, four-dimensional space with rigid discretization points. With
this naive approach, the number of memory elements required to achieve
a suitable representation would be much higher because the number of re-
quired memory elements increases exponentially with the dimensionality of
the space. If we used a 20×20×20 lattice in our model, then the memory
requirement to fill the total four-dimensional space with the same density
of discretization points would be greater by at least a factor of twenty. In
most cases the additional memory requirement would be even higher since
the actual work space spans only part of the visual field of each camera.
The output values are learned by analysing the positioning error. The posi-
tioning of the arm occurs in two steps. If s is the node which responds to the
target u, then in a first step the positioning of the end effector is achieved by

11. Visuomotor Coordination of a Robot Arm 163

means of the linear approximation (11.1) of the exact transformation ~θ(u).

The resulting position of the angle is denoted by ~θi. This first step causes
the joint angles to assume a position given by

~θi = ~θs + As(u−ws). (11.2)

The image point coordinates vi of the end effector corresponding to ~θi are
recognized by the cameras and are then used for a second step, a corrective
movement.
This correction is achieved in the following way: if the end effector is in the
vicinity of the target after the first step of the positioning process, then the
expression ‖u−vi‖ is already sufficiently small and, to a good approximation,
~θgoal−~θi = A0

s(u−vi), where ~θgoal is the angle configuration needed to reach
the target. Thus the corrective movement is simply given by the change in
joint angles

∆~θ = As(u− vi). (11.3)

The resulting image point coordinates vf of the final position of the end
effector are again recognized by the cameras and, along with vi, are put
into a subsequent adaptation step. The corrective movement can be iterated
several times, thereby reducing the positioning error as much as desired as far
as imperfections of the equipment permit this. Satisfying results can often
be obtained with just a single or very few corrective steps. In the following
description we assume, therefore, two positioning steps, a gross movement
described by (12.2) and a corrective movement described by (12.3).

11.2 The Learning Method

The learning algorithm for obtaining suitable elements ~θr and Ar for each
unit r uses a gradient descent on a quadratic error function. In each learning
step the gradients of the error functions are calculated from the positioning
error in order to obtain the direction to the minimum. If neural unit s was
responsible for generating the arm movements, the improved values of ~θs and
As are then given

~θ ∗ = ~θ old
s + δ1 ·A old

s (u− vi)

A∗ = Aold
s + δ2 ·Aold

s (u− vf)∆vT , (11.4)

where ∆v = vf − vi, vf and vi as defined in Section 11.1. A derivation
of these learning rules will be given in Section 11.3. The factors δ1 and δ2

11. Visuomotor Coordination of a Robot Arm 164

denote the step size of the gradient descent. On the one hand the step sizes
should not be too small, for otherwise the number of iterations would be
unnecessarily high. On the other hand, they should not be too large, for
then a learning step could overshoot the minimum. As we will see later
in a mathematical analysis of the learning method, the values δ1 = 1 and
δ2 = 1/‖∆v‖2 are optimal.

The new estimates ~θ ∗ and A∗ that were obtained by the gradient descent
(11.4) are used to improve the output elements of neural unit s as well as
those of its neighbors. Here, as in previous chapters, we employ a learning
procedure for the output elements that is analogous to Kohonen’s original
algorithm and is given by

~θnew
r = ~θold

r + ε′h′rs(
~θ ∗ − ~θold

r)

Anew
r = Aold

r + ε′h′rs(A
∗ −Aold

r). (11.5)

This learning step modifies a whole population of neural units in the vicinity
of unit s. As a following display of simulation results will show, the coop-
eration between neighboring neural units resulting from Eq. (11.5) is crucial
for rapid learning and for convergence to a satisfactory final state. With-
out cooperation between neighbors, some output elements ~θr and Ar might
not converge towards their desired values, and could become “stuck” in local
minima during the gradient descent in a way similar to what occurred in the
example of oculomotor control. A more detailed mathematical analysis of
this behavior will be given in Chapter 15.
Our learning algorithm for the Kohonen net and the output elements ~θr and
Ar can be summarized into eight steps as follows:

1. Present a randomly chosen target point in the work space.

2. Let the cameras observe the corresponding input signal u.

3. Determine the lattice point (neural unit) s := φw(u) to which u is
assigned in the lattice.

4. Move the end effector to an intermediate position by setting the joint
angles to

~θi = ~θs + As(u−ws),

and register the corresponding coordinates vi of the end effector in the
image planes of the cameras.

11. Visuomotor Coordination of a Robot Arm 165

5. Execute a correction of the end effector position from step 5 according
to

~θf = ~θi + As(u− vi),

and observe the corresponding camera coordinates vf .

6. Execute the learning step for the receptive field of r according to

wnew
r = wold

r + εhrs(u−wold
r).

7. Determine improved values ~θ ∗ and A∗ using

~θ ∗ = ~θ old
s + δ1 ·A old

s (u− vi)

A∗ = Aold
s + δ2 ·Aold

s (u− vf)(vf − vi)
T .

8. Execute a learning step for the output values of the neural unit s as
well as of its neighbors r

~θnew
r = ~θold

r + ε′h′rs(
~θ ∗ − ~θold

r)

Anew
r = Aold

r + ε′h′rs(A
∗ −Aold

r)

and continue on with step 1.

The second phase of the positioning process (steps 5–8), aside from the cor-
rection of the end effector position that resulted from the first motion phase,
generates pairs of camera coordinates vi and vf for the learning of Ar and ~θr.
The Jacobian matrices Ar describe the relation between a small change of the
joint angles and the corresponding change in position of the end effector in
the camera coordinates. The generally small corrective movements therefore
deliver value pairs that must be connected by the Jacobian matrices that are
to be learned, and thus, the corrective movements are used in Eq. (11.4) to
iteratively improve the Jacobian matrices Ar.
As soon as the Jacobian matrices have been learned, they can be used to
improve the expansion terms of zeroth order ~θr. Each term should lead the
end effector in camera coordinates towards the corresponding discretization
point wr. The corresponding error, as seen through the cameras, can be
evaluated by the Jacobian matrices to obtain a suitable correction of ~θr which
then results in an improved value ~θ ∗ in learning step (11.4).
Thus, the Jacobian matrices Ar contribute significantly to three important
aspects of the learning algorithm:

11. Visuomotor Coordination of a Robot Arm 166

1. Calculation of the joint angle changes for the corrective step in order
to

(a) reduce the positioning error, and

(b) generate a pair (vi,vf) for an adaptation step of Ar itself.

2. Improvement of the expansion terms of zeroth order by evaluating the
error seen through the cameras to obtain a correction for ~θr.

The Jacobian matrix Ar is a most essential element of the presented algo-
rithm for learning and controlling the kinematics of the robot arm. In the
next section we present a mathematical derivation of the learning algorithm
to further illuminate the crucial role of the Jacobian Ar during the learning
process.

11.3 A Derivation of the Learning Method

We now want to substantiate mathematically the method for determining
the estimates ~θ ∗ and A∗. For this purpose we consider the neural lattice
to be unfolded and stabilized to the extend that the space of input vectors
is well represented by the network nodes and that larger shifts of the dis-
cretization points wr no longer occur. We can then assume the location
of the discretization points to be sufficiently constant and can neglect their
change by the Kohonen algorithm, so that in the following we only need to
consider the behavior of the output elements ~θr and Ar.
If the end effector positions vf , vi, as provided by the cameras, lie sufficiently
close to the currently implicated discretization point ws, then the linear
relation

~θf − ~θi = A0
s(vf − vi). (11.6)

is approximately satisfied. The matrix A0
s in this equation is to be obtained

by the learning algorithm using the pairs (~θi, ~θf) and (vi,vf).

Knowing A0
s, we can calculate the 0-th order expansion term ~θ 0

s = ~θ(ws)
since the linear relation

~θ(ws)− ~θ(vi) = A0
s(ws − vi) (11.7)

holds in a sufficiently small vicinity around ws. Since ~θ(vi) = ~θi is given by

Eq. (11.2) from the positioning process of the joint angles, we obtain for ~θ 0
s

11. Visuomotor Coordination of a Robot Arm 167

the expression
~θ 0

s = ~θs + As(u−ws) + A0
s(ws − vi). (11.8)

Taking
~θ ∗ = ~θs + As(u− vi) (11.9)

as an improved estimate for ~θs (see Eq.(11.4)) leads to ~θ ∗ → ~θ 0
s with As →

A0
s. Therefore, it is sufficient to develop an algorithm which provides the

correct Jacobian matrix A0
s for every network node s, since then learning

step (11.9) is able to provide us with the correct zeroth order expansion

terms ~θ 0
s .

In the learning phase the points (~θi,vi), (~θf ,vf), and every target point u

are elements of a whole sequence (~θνi ,v
ν
i), (~θνf ,v

ν
f) and uν of training data

where ν = 1, 2, 3,1 In the following we will consider a single lattice point
s, and ν will index only that part of the sequence of training data that leads
to an improvement of the output values of s.
In principle it is possible to calculate A0

s from vi, vf and ~θi, ~θf in Eq. (11.6)
by using the method of least mean square error. The advantage of this
method is that, in terms of the only approximate linear relation (11.6), the
mean square error given by

E(As) =
1

2

∑
ν

[
(~θνf − ~θνi)−As(v

ν
f − vνi)

]2
(11.10)

can be minimized for all training data simultanously. Concerning the adap-
tivity of the system, however, such a procedure has the disadvantage that
first the quantities (~θνi ,v

ν
i), (~θνf ,v

ν
f) need to be accumulated before a result

becomes available. After that As is fixed, and the system can adapt to later
slow variations of the relation ~θ(u) only by a complete re-evaluation of As.
Moreover, a criterion would be needed to decide if a re-evaluation of As is
necessary. To avoid these disadvantages we opt for an iterative method that
improves an existing approximation As(t) of A0

s for every new value pair

(~θνi ,v
ν
i), (~θνf ,v

ν
f). A suitable iterative algorithm employes the technique of

linear regression and was suggested for application in adaptive systems by
Widrow and Hoff (1960).

1 It is not necessary that the values ~θi and ~θf are explicitly available to the learning
algorithm. Here they are only listed as intermediate values for the derivation of the
learning method and will later be replaced by expressions that will make it possible
to use exclusively vi and vf provided by the cameras.

11. Visuomotor Coordination of a Robot Arm 168

By this method one obtains an improved value A∗ = As + ∆As for As by
setting

∆As = δ ·
(
∆~θν −As∆vν

)
(∆vν)T . (11.11)

Here ∆~θν = ~θνf − ~θνi , ∆vν = vνf − vνi , and δ is the learning step width.
As long as δ � 1/‖∆v‖2 and a stationary probability distribution of the

quantities (~θνi ,v
ν
i), (~θνf ,v

ν
f) exists, then a sufficient number of steps (11.11)

approximates a descent along the direction

∑
ν

(
∆~θν −As∆vν

)
(∆vν)T = −dE(As)

dAs

(11.12)

where E(As) is the error function (11.10) to be minimized. Obviously, the
Widrow-Hoff method leads to a minimization of E(As) by realising a gradient
descent of the mean square error E(As) “on average.” Although an individual
step (11.11) may even increase E(As), many adaptation steps (11.11) lead
to an decrease of the error E(As).
In applying (11.3), the equation determining the corrective movement, one
can eliminate the explicit input of angle positions in learning step (11.11)
and, thereby, employ only values provided by the cameras, namely the image
coordinates u, vi, and vf of the target and the actual end effector posi-

tions. With ∆~θν = As(u
ν − vi) from (11.3) the adaptation step (11.11) can

be written
A∗ = Aold

s + δ ·Aold
s

(
uν − vνf

)
(∆vν)T . (11.13)

Since, in the course of learning, we approximate the Jacobian matrices with
increasing accuracy, the learning step (11.9) for the expansion terms of 0-th

order will deliver better and better values ~θ∗. Learning step (11.9) can also
be interpreted as a gradient descent on a quadratic error function. In this
case the quadratic error function is given by

E(~θs) =
1

2

∑
ν

(
~θνi − ~θs −A0

s

(
vνi −ws

))2
. (11.14)

Taking the derivative with respect to ~θs and employing Eq.(11.2) yields

−dE(~θs)

d~θs

=
∑
ν

(
As

(
uν −ws

)
−A0

s

(
vνi −ws

))
. (11.15)

11. Visuomotor Coordination of a Robot Arm 169

Since A0
s is initially unknown, we replace A0

s by the best available estimate,
namely As. The error caused by this substitution is reduced by the improve-
ment of As with every trial movement and vanishes at the end of the learning
process.2 As for the Jacobian matrices, the adaptation step

~θ ∗ = ~θ old
s + δ ·Aold

s

(
uν − vνi

)
(11.16)

leads to a gradient descent “on average” on the function (11.14).
When this learning step is compared to Eq. (11.8) (where the index ν is
again omitted), we recognize that both expressions become equivalent when
Aold

s = A0
s and the step size is δ = 1. Therefore, if the Jacobian matrices are

learned correctly, we obtain through Eq. (11.16) also a correct new estimate
~θ ∗ for the adjustment of the expansion terms of 0-th order, as long as we
choose for the step size its optimal value δ = 1.

11.4 Simulation Results

Having described the neural network algorithm for training the robot, we now
present the results of a simulation involving this algorithm. The lattice which
represents the work space consists of 7×12×4 neural units. As in previous
simulations, the values of the parameters ε, ε′, σ, and σ′ decrease with the
number of performed learning steps. For all four parameters we chose a time
dependence of xi(xf/xi)

t/tmax with tmax = 10, 000. For the initial and final
values, xi and xf , we chose εi = 1, εf = 0.005, ε′i = 0.9, ε′f = 0.5, σi = 3,
σf = 0.1, σ′i = 2 and σ′f = 0.05. The learning step widths δ1 and δ2 were set
to their optimal values δ1 = 1 and δ2 = 1/‖∆v‖2.
The three arm segments of the robot arm simulated have a length of 0.13,
0.31 and 0.33 units, respectively, starting with the segment at the base of
the robot. In the same units, the work space is a rectangular cube with
0.1 < x < 0.5,−0.35 < y < 0.35, 0 < z < 0.23, where the x- and y-axes lie
in the horizontal plane with the x-axis along the short edge. The aperture
of camera 1 is located at (x, y, z) = (0.7, 0, 0.12) and points towards the
coordinate (0.15, 0, 0); the aperture of camera 2 is located at (0.3, 1, 0.25)
and points towards (0.3 , 0 , 0.2). Both of the two cameras have a focal length
of 0.05 units.

2 Due to this error, the learning step does not point exactly in the direction of the
negative gradient.

11. Visuomotor Coordination of a Robot Arm 170

The Kohonen net in the four-dimensional space cannot, of course, be directly
displayed. In lieu of a direct display we show a projection of the network
nodes from the four-dimensional input space onto the image planes of cam-
eras 1 and 2. Each lattice point appears in the center of its receptive field on
the image plane of cameras 1 and 2. If wr = (~wr1, ~wr2) is the four-dimensional
spatial vector of the lattice point r, then we depict r at ~wr1 on the image
plane of camera 1 and at ~wr2 on the image plane of camera 2. In this way
the initial state of the net is shown in the two top frames of Fig. 11.4. The
distribution of the network nodes was generated by assigning, on the image
plane of camera 1, random values to the coordinate pairs ~wr1 from a ho-
mogeneous probability distribution. The coordinate pairs ~wr2 on the image
plane of camera 2 were initialized accordingly. Therefore, we see in the top
two frames of Fig. 11.4 a homogeneous distribution of the 336 lattice points.
This implies that the initial distribution of the discretization points wr in
the four-dimensional space U is homogeneous, as well.

11. Visuomotor Coordination of a Robot Arm 171

Abb. 11.4: Configuration of the neural lattice initially (top), after 2000 (mid-
dle), and after 6000 learning steps (bottom). The left column presents the image
plane of camera 1, showing wr1 for all lattice nodes; the right column shows the
image plane of camera 2, showing wr2

11. Visuomotor Coordination of a Robot Arm 172

The two middle frames of Fig. 11.4 show the Kohonen net after 2000 learning
steps. The work space and the robot arm have been displayed from the view
of the corresponding camera. In Fig. 11.1 camera 1 is opposite to the robot
arm, and camera 2 is to the right of the robot arm. Accordingly, we see the
scene on the image planes of the cameras. In the top two frames of Fig. 11.4
no details can be seen yet because the connections between the elements of
the Kohonen net completely cover the image planes. That the lattice, after
2000 learning steps, seems to “float” within the three-dimensional confines of
the work space demonstrates that the Kohonen net represents already only
the relevant subspace, however, only the central part of it.
The bottom frames of Fig. 11.4 show the Kohonen net after 6000 learning
steps, a stage of the learning process where the positioning error has already
reached its minimum value. The receptive fields of the network nodes have
developed in a way that all possible target positions in the work space are
equally represented. This gives rise to a “distortion” of the net to an extent
that is determined by the affine projection of the work space onto the corre-
sponding camera image plane and which in turn depends on the location of
the camera. This can be seen particularly well in the image plane of camera 2
as shown in the right column of Fig. 11.4. For an homogeneous representation
of the input signals, the network nodes on the image plane of camera 2 that
are responsible for the back region of the work space must lie significantly
more densely than the network nodes that represent target positions in the
front part of the work space. By a proper distribution of its receptive fields
according to the input stimulus density, the Kohonen algorithm yields this
required “distortion” automatically.
To depict the learning of the output values, we again display frames from
cameras 1 and 2 at different phases of the training. The two top frames of
Fig. 11.5 show the initial state of the terms ~θr which provide the zero order
contribution to the linear Taylor expansion (11.2) to be learned by each
neural unit. The corresponding position of the end effector, after setting the
joint angles ~θr, is marked by a cross in each camera’s visual field. These end
effector positions are obtained by aiming at the target points u = (~wr1, ~wr2),
for which the first order terms Ar(u − wr) in (11.2) vanish. At the end of

the training, the camera coordinates of the end effector corresponding to ~θr

should coincide with ~wr1 and ~wr2 of the lattice node r. The deviations of
the end effector positions from ~wr1 and ~wr2 indicate the residual error of the
output values ~θr. These errors are depicted in Fig. 11.5 in the visual field of

11. Visuomotor Coordination of a Robot Arm 173

each camera by a corresponding line segment. The initial values of ~θr were
chosen randomly, yet with the constraint that the end effector remains in
front of the robot.
The development of the Jacobian matrices Ar is illustrated in Fig. 11.6. For
the purpose of illustration we assume that the robot arm is asked to perform
small test movements parallel to the three edges of the work space. The
desired movements if carried out correctly form a rectangular tripod. The
starting positions for these test movements are the end effector positions that
correspond to the joint angles ~θr. Through the cameras we observe the test
movements actually performed. Initially, because of the random assignment
of the Jacobian matrices Ar, the test movements show no similarity what-
soever to the desired rectangular tripods. The initial values of the matrices
Ar were all chosen in the same way, namely, Aijr = η for all lattice points
r where η is a random variable that is homogeneously distributed in the
interval [−10, 10].
The middle frames of Fig. 11.5 and Fig. 11.6 present the test of the 0-th order
terms ~θr and of the Jacobian matrices Ar after 2000 learning steps. At this
stage the end effector positions resulting from the joint angles ~θr all lie within
the work space (Fig. 11.5). The test movements for Ar (Fig 11.6) already
look approximately like rectangular tripods, except that the amplitudes of
the movements are still too small. The bottom frames of Figs. 11.5 and 11.6
show the result after 6000 training instances, a stage where the positioning
error has already reached its minimum; the output values ~θr and Ar have
been optimized. As desired, the end effector positions resulting from ~θr,
indicated by cross marks, now coincide with the image locations ~wr1 and
~wr2 of the network nodes, and the test movements for testing the Jacobian
matrices are also performed as desired. Only near the base of the robot
do test movements deviate slightly from the shape of a perfect rectangular
tripod, an effect caused by a singularity in the transformation ~θ(u). Because

the Jacobian matrices A0
r represent the derivative ~θ(u) at the locations wr,

some elements of Ar must take on very large values. Therefore, a more
precise adaptation requires an unacceptably high number of learning steps.

11. Visuomotor Coordination of a Robot Arm 174

Abb. 11.5: The end effector positions corresponding to ~θr represented by cross
marks. The deviation from the desired locations u = (~wr1, ~wr1) is displayed by
lines appended to the cross marks. Shown are the states at the beginning (top),
after 2000 (middle), and after 6000 learning steps (bottom). Left (right) column:
view through the image plane of camera 1 (camera 2).

11. Visuomotor Coordination of a Robot Arm 175

Abb. 11.6: Training of the Jacobian matrices Ar. Displayed are the result of
small test movements parallel to the edges of the work space, at the beginning,
after 2000, and after 6000 learning steps. Left (right) column: view through the
image plane of camera 1 (camera 2).

11. Visuomotor Coordination of a Robot Arm 176

To demonstrate the success of the learning process we show in Fig. 11.7
the dependence of the mean positioning error on the number of trial move-
ments. The mean positioning error at different instances is determined by
an “intermediate test” after every 100 additional learning steps. During each
intermediate test the robot system is presented with 1000 targets which are
chosen at random within the work space. The arithmetic average of the
end effector deviations from the targets provides the mean positioning error.
During the intermediate tests the neural network remains untrained.

Abb. 11.7: The average deviation of the end effector from the target versus the
number of training steps. σ′ denotes the initial range of the cooperation between
neighbors. Without cooperation between neighbors (σ′i = 0) during the learning
of the output values, training progress is slow and the system does not reach an
error-free final state. With cooperation between neighbors (σ′i = 2) the desired
learning of an essentially error-free final state is achieved rapidly. The residual
error after 6000 learning steps is only 0.0004 length units—about 0.06% of the
length of the work space. After 7000 learning steps the third arm segment of
the robot was extended by 0.05 length units, about 10% of the size of the robot
arm. The resulting positioning error, which was initially 0.006 length units or
about 1%, decays with more adaptation steps until the previous minimum value
is regained.

11. Visuomotor Coordination of a Robot Arm 177

The cooperation between neighboring neural units as described by (11.5)
plays a decisive role in achieving a fast and precise visuomotor control. To
demonstrate this we show in Fig. 11.7 the positioning error from a simulation
without cooperation between neighbors (σ′i = σ′f = 0 for the neighborhood
function h′rs employed in (11.5)). The resultung error shows that the sys-
tem no longer achieves the learning goal. The positioning error remains
noticeable even after 10,000 trial movements. In contrast, cooperation be-
tween neighbors (initial range of cooperation of σ′i = 2.0) induces the error
to decay rapidly to a small, residual error. After 100 trial movements the
positioning error, in case of cooperation, has decayed to 0.034 length units,
i.e., approximately to about 5% of the length of the work space. After about
6000 learning steps the positioning error has stabilized at a value of 0.0004
length units which corresponds to about 0.06% of the length of the work
space. If the work space were one meter long, the robot would be able to
move to target locations within a few tenths of a millimeter.
To demonstrate the adaptative capability of the neural network algorithm,
we extended the last arm segment to which the end effector is connected by
0.05 length units. This corresponds to a change of about 10% of the total
length of the robot arm. Immediately after this modification, the positioning
error increases since the neural net needs a few adaptation steps to be able
to adjust to this new configuration. It is remarkable that immediately after
the modification the positioning error is about 1%—smaller by a factor of
ten than one would expect from the size of the modification. This is due
to the feedback inherent in the positioning process: the second step in the
positioning of the end effector, the corrective movement ∆~θ = Ar(u − vi),
corrects the deviation of the intermediate end effector position vi from the
targeted position u, which has been increased by the modification of the
robot arm. Extension of the last arm segment changes, for the most part,
the target values of the zeroth order expansion terms ~θr. In contrast to that,
the Jacobian matrices Ar are only affected slightly by the arm extension and,
therefore, are still suitable for the execution of the corrective movement and
for the correction of the error resulting from the wrong ~θr. Figure 11.7 shows
that after a few learning steps the neural net has completely adapted to the
arm extension, and the positioning error has decreased to its previous small
value.
The capability of the algorithm to adapt immediately to small changes in the
robot arm adds significantly to its flexibility. For example, robots trained
and controlled by the suggested algorithm could be equipped with different

11. Visuomotor Coordination of a Robot Arm 178

tools without the need for an entirely new course of training.
In the following section we will demonstrate the high degree of flexibility of
the described learning algorithm in another respect. It turns out that the
neural network can control a robot arm with more joints than necessary to
position the end effector to any point in the three-dimensional workspace
without additional modifications in the learning method. We will show how
the neural network algorithm can handle such robots with “redundant degrees
of freedom” which imply the difficulty that no unique relationship exists
between joint angles and end effector positions.

11.5 Control of a Robot Arm
with Redundant Degrees of Freedom

The triple-jointed robot that we discussed in previous sections could reach
any target location within the work space by a unique set of joint angles.3

Mathematically speaking, this implies that there existed a one-to-one map-
ping between target positions and sets of joint angles.
Nonetheless, most organisms capable of movement possess extra degrees of
freedom. The human arm, for example, has four degrees of freedom: three
in the shoulder joint and one in the elbow. It is indeed possible for humans
to reach an object by many different arm configurations. With more than
three degrees of freedom the set of joint angles is not uniquely determined by
the location of the target, but rather there is a whole range of different sets
of angles which will reach the target. From this range, a single set must be
chosen. Such a problem is called an ill posed or under-determined problem
since the constraints that must be fulfilled do not uniquely determine the
solution (Bernstein 1967; Saltzman 1979; Jordan and Rosenbaum 1988).
The redundant degree of freedom in the human arm is, of course, not su-
perfluous; it is particularly convenient when certain configurations are not
possible due to additional constraints, e.g., due to obstacles or when unique
approaches are compulsory. A huge palette of arm configurations offers the
chance to find one that works well.
In the following, however, we will not consider the implications of such con-
straints. We will stick to the task of positioning the end effector in a work

3 Actually there exist two sets of joint angles which lead to a given target location. They
correspond to a “convex” and a “concave” configuration of the arm. By prohibiting,
e.g., the concave configurations, the required set of angles becomes unique.

11. Visuomotor Coordination of a Robot Arm 179

space free of obstacles. We want to study the learning performance of the
algorithm of the previous sections as it is applied to an arm with more than
three degrees of freedom. Which arm configurations will the algorithm learn
when it can select from many possibilities for each target?

Abb. 11.8: Simulated robot with redundant degrees of freedom. The arm has
a total of five joints: one joint permitting rotation around the vertical axis and
four joints about which the arm can move in the vertical plane.

Common methods for the control of an arm with redundant degrees of free-
dom eliminate the under-determination of the control problem by selecting

11. Visuomotor Coordination of a Robot Arm 180

that joint angle configuration that minimizes a reward function in addition
to reaching the target point (Kirk 1970; Hogan 1984; Nelson 1983). Psy-
chophysical experiments show that humans also prefer arm configurations
that minimize certain “costs.” It has been shown (Cruse et. al. 1990) that
humans prefer arm configurations using middle-range angles, i.e., fully ex-
tended or tightly contracted angles are generally avoided. Such a tendency
can be modelled in an algorithm by selecting from all possible arm configu-
rations the one that minimizes a suitable reward function, such as,

E(~θ) =
L∑
i=1

(
θi − θ(0)

i

)2
. (11.17)

Here θ
(0)
i is a middle-ranged value for joint i. Joint angle configurations that

deviate from θ
(0)
i increase the “costs” and are therefore less desireable.

Another form of the reward function is obtained if the arm is supposed to be
as “lazy” as possible while moving, i.e., the change of the joint angles of the
arm should be as small as possible. This is a sensible, real-life requirement;
it reduces both the wear and tear and the energy consumption.
If we denote the difference between two points that are neighbors, either in
space or in camera coordinates, by ∆u, then the norm ‖∆~θ‖ of the difference
between the joint angles which correspond to these points should be as small
as possible on average. Mathematically, this constraint can be written as〈∑

i,j

(
∆θi
∆uj

)2〉
∆u

= Min. (11.18)

Here ∆θi denotes the change of the i-th joint angle and ∆uj denotes the
difference in the j-th component of the space or camera coordinates. If
we assume that the distribution of the occurring movements ∆u which is
averaged over in Eq. (11.18) is isotropic—which implies 〈∆u∆uT 〉 = γ1
where γ is a scalar and 1 is the identity matrix—then it can be shown that
the constraint to minimize the reward function (11.18) is equivalent to the

constraint that, for the inversion of the transformation u(~θ), the particular

inverse ~θ(u) must be selected from the whole range of possibilities for which
the norm ‖A‖ =

√
trAAT of the Jacobian

A(u) =
∂~θ(u)

∂u
(11.19)

11. Visuomotor Coordination of a Robot Arm 181

is minimal at each location u. It is natural then to look for the inverse that
fulfills this constraint.
The Jacobian matrices A(u) of all the possible inverse transformations ~θ(u)

generate joint angle changes ∆~θ = A(u)∆u for a given ∆u. If we denote

by B̂(~θ) the Jacobian matrices of the so-called “forward transformation”

u(~θ), which is, in contrast to its inverse transformation ~θ(u), uniquely de-
termined and which is often easily obtained, then it holds for every pair of
corresponding ∆u, ∆~θ,

∆u = B̂(~θ)∆~θ. (11.20)

The Jacobian matrices A(u) of the inverse ~θ(u) for which we are searching
must obey the condition

B̂
(
~θ(u)

)
A(u) = 1.

A cannot be determined from this equation by inversion of B̂ because in the
case of redundant degrees of freedom, B̂ is rectangular and, therefore, not
invertible. Here we face the same situation as in Chapter 3 where we had
to determine the optimal memory matrix of an associative memory. There
we obtained a solution with the help of the pseudo-inverse of B̂ (Albert
1972). From Chapter 3 we know that upon selecting the pseudo-inverse, the
constraint to minimize the norm ‖A‖ is fulfilled simultaneously. Thus, the
desired solution for A is

A = lim
α→0

B̂T
(
B̂B̂T + α1

)−1
. (11.21)

Of the many possible transformations that are inverse to the transformation
u(~θ), there is one that generates movements with minimal changes in the
joint angles. If that particular transformation is called for, then the inverse
~θ(u) whose Jacobian matrices are given by the pseudo-inverse (11.21) of the

Jacobian matrices of u(~θ) yields the solution.
In robotics the precise form of the reward function is often only of minor
importance. The reward function often only serves to smooth the robot
arm’s movements. For two adjacent target points an algorithm could select
two completely different arm configurations when there are redundant degrees
of freedom. By employing a reward function one ensures that adjacent target
points will be assigned to similar arm configurations.
The assignment of similar joint angles to adjacent target points is, in fact, one
of the main features of our learning algorithm. In contrast to other common

11. Visuomotor Coordination of a Robot Arm 182

methods, we do not have to minimize an explicitly formulated reward func-
tion. By the construction of a topographic map between input signal space
and neural net it is made sure that adjacent target points always activate
adjacent elements in the network. In addition, learning step (11.5) forces
adjacent lattice nodes to adapt their output towards similar values. At the
end of the learning phase the output values will vary smoothly from node to
node. Both features bring about a continuous and smooth transformation
from the input signal space of target points to the output space of joint angle
sets. This transformation guarantees smooth and efficient movements of the
arm.

11.6 Simulation Results

In Fig. 11.8 we see the robot system as simulated in the computer, now com-
posed of five joints and, therefore, having two redundant degrees of freedom.
As before the robot arm can pivot around its vertical axis, and the other
joint axes are parallel to each other and parallel to the horizontal plane. The
length of the arm segments were chosen as follows, beginning at the base
of the robot: 0.13, 0.19, 0.19, 0.19, and 0.15 length units. The Kohonen
net used in this simulation had the same size as the previous one, namely
7×12×4 lattice nodes. The parameters ε, ε′, σ and σ′ as well as their time
dependence, the location of the cameras, and the parameters describing the
work space were adopted unchanged from the simulation of the triple-jointed
robot arm. In connection with the five joints the vectors ~θr now have five
components, and the matrices Ar are now 5×4-dimensional.

11. Visuomotor Coordination of a Robot Arm 183

Abb. 11.9: The average deviation of the end effector from the target during
training for a robot system with redundant degrees of freedom. As for the robot
arm with only three joints the residual error after 6000 learning steps is 0.0004
length units, i.e., approximately 0.06% of the length of the work space. In order
to test the adaptation capability we extended the last arm segment after 7000
learning steps by 0.05 length units. The resulting positioning error decays with
additional adaptation steps until it has regained its previous value of 0.0004 after
2000 additional learning steps.

The graph in Fig. 11.9 shows the decay of the positioning error with the
number of performed learning steps. As with the robot arm with only three
degrees of freedom the error decays rapidly in the beginning and reaches, after
only 200 learning steps, a value of 0.027 length units, which corresponds
to about 4% of the length of the work space. It is noteworthy that the
positioning error after 6000 learning steps reaches the same minimal value
of 0.0004 length units as the triple-jointed robot, in spite of the increased
number of degrees of freedom. After 7000 trial movements, we again extended
the last arm segment by 10% of the length of the robot arm to test the
adaptational capability of the system. As in the triple-jointed case, the
positioning error initially increases but then decays again with additional
adaptation steps until the previous value of 0.0004 learning steps is regained.

11. Visuomotor Coordination of a Robot Arm 184

Abb. 11.10: Stroboscopic rendering of a movement of the robot arm. The
robot arm passes along the diagonal of the work space with its end effector.
Due to the redundancy of the robot arm each point along the trajectory can
be reached by an infinite number of joint angle sets. The topology-preserving
feature of the algorithm forces the use of joint angles that give rise to a smooth
movement.

In order to test how well adjacent target points are reached by similar arm
configurations, the robot is commanded to move along a trajectory of target
points. In Fig. 11.10 the arm’s movement in such a test is shown by monitor-
ing the arm’s position at different times. We recognize that the robot indeed

11. Visuomotor Coordination of a Robot Arm 185

performs a smooth motion while moving its end effector along the diagonal
of the work space. This demonstrates that the learning algorithm adapts to
those arm configurations out of the many possible ones that lead to smooth
changes in the joint angles as the arm moves. This is achieved without the
explicit minimization of a reward function. The development of a topology-
-preserving mapping between the input signal space and the neuron lattice,
and between the space of output values and the neuron lattice alone does the
job (Martinetz et al. 1990b).

11.7 The Neural Network as a
“Look-Up Table ”

The presented network for the learning of visuomotor control of arm move-
ments can adapt to arbitrary, continuous, nonlinear input-output relations.
The learning algorithm belongs to the class of “learning by doing” methods.
The approach of the algorithm really amounts to the generation of a look-
up table. After presentation of an input value (target position) an entry

(~θs,As) must be taken from a table (Kohonen net) that determines the joint
angles that are needed to reach the target. The table entry, however, does
not immediately deliver the required joint angles, which would correspond
to the approximation of the transformation ~θ(u) to be learned by a step

function, but rather two expansion terms for the representation of ~θ(u) up
to linear order are made available. From the expansion terms the required
joint angles can be determined to a much greater precision. Each table entry
is responsible for only a small subregion of the input signal space; thus, an
approximation of the input-output relation to be learned is obtained by a
covering of the input signal space with locally valid linear mappings.
The use of Kohonen’s algorithm offers the advantage of a flexible wiring be-
tween input values and the entries (network nodes) in the table (network),
which depends on the input values which have already occurred. The Ko-
honen algorithm ensures that, in fact, all slots of the table are utilized, and
by this the limited number of possible entries are optimally employed. Fur-
thermore, the Kohonen algorithm distributes the entries in the table such
that entries which are neighbors in the table are assigned to input values
which are neighbors in the input space, based on a given metric. In our ex-
ample we used the Euclidean metric in the camera coordinates. In order to
represent the three-dimensional work space in this neighborhood-conserving

11. Visuomotor Coordination of a Robot Arm 186

way, we employed a three-dimensional “table.” In addition to the Kohonen
algorithm which exclusively organizes the distribution of the entries of the
table, we used an algorithm for the learning of suitable entry contents. Here
we used an adaptation step following the Widrow-Hoff rule. An additional
cooperation between neighboring entries of the table supports the conver-
gence of the learning algorithm, because, as a consequence of the Kohonen
algorithm, neighboring table entries must take on similar contents. It even
turns out that without the transfer of each learning success to neighboring
entries, the table (neural net) does not converge towards the desired state.

The visuomotor control task with its input-output relation ~θ(u) is one ex-
ample among many other control tasks which can be learned by the neural
network described. In a real-life implementation there is an opportunity to
further abstract the notion of input and output values. Why should the im-
age point coordinates be used explicitly as input values and why should the
output values provide explicitly the angles to be set? The presented method
adapts arbitrary continuous nonlinear input-output relations. Therefore, a
sufficient prerequisite for the application of the learning method is the use
of a continuous coding of the input and output signals. Instead of the image
point coordinates that we have used so far, the voltage values provided from
the cameras could be directly used as input signals for the neural net, without
requiring the precise knowledge about the relation between object positions
and voltage values. Correspondingly, we would not have to take care of the
precise transformation from voltage impulses into rotation movements of the
joint motors, or of the amplifiers, filters etc. that might be installed between
the input and the output. In case of an “antropomorphic” arm, output
values that describe muscle contractions could be delivered instead of joint
angles. The algorithm would autonomously adapt the complicated nonlinear
transformation from muscle contractions to joint angles. It is only necessary
that the response of the robot arm to target points is continuous and repro-
ducible. The coding of the input-output relation can remain unknown and
also the inner workings of the robot system may be considered as a “black
box.” The neural network will adapt to all unknown specifications with the
help of the learning algorithm and will achieve its learning goal without help
from outside.
With this we conclude this chapter about the learning of one of the basic tasks
in robotics, namely end effector positioning. After the robot has learned to
reach objects at arbitrary locations in the work space, the next step will be

11. Visuomotor Coordination of a Robot Arm 187

to learn simple manipulations. For these manipulations in most of the cases
the grasping of objects will be necessary. The grasping of objects is the next
basic task that a robot must accomplish after end effector positioning, which
is the reason that we consider this problem more closely in the following
chapter.

12. Control of a Manipulator by a Hierarchical Network 188

12. CONTROL OF A MANIPULATOR BY A
HIERARCHICAL NETWORK

12.1 The Robot for the New Task

In Chapter 11 we have shown how an artificial neural network can learn to
position a robot arm with its gripper at a desired target. This fundamental
capability is the basis of our approach to a new and more complex task in
robotics: the control of coordinated grasping movements for simple objects
(Martinetz and Schulten 1990).
As we reach for a can of beer or soda, we hardly ever think about the vast
complexity involved in grasping an object or, correspondingly, what must be
regarded in detail while driving an artificial manipulator. For one thing, the
movement to be performed depends on the location of the object in the work
space. The shape of the object plays a crucial role in planning a grasping
movement. It must be estimated where the center of mass lies because,
if there is too large a distance between the center of mass and the chosen
grasping position, then undesirable torques can arise which make it difficult
to hold the object steadily. The object has to be sufficiently narrow at some
place to account for the limited opening of the gripper. The orientation of the
object must be considered since grasping an upright object like a beverage
requires a different gripper position than that which is effective for the same
object on its side. Even the contour of the object must be considered so that
the gripper does not slip, and so on.
These complications make us realize the difficulty in developing an overall
grasping strategy, and so it should not come as a surprise that this problem
forms an area of current research. So far there have been only partial solu-
tions. One promising approach, for instance, uses potential fields of artificial
charge distributions which guide the arm and the gripper along the desired
trajectory towards the final position (Hwang 1988, Ritter 1990).
We restrict the discussion in this chapter to the complications surrounding

12. Control of a Manipulator by a Hierarchical Network 189

the orientation and location of an object to be fetched. We consider a pliers-
type end effector of the form displayed in Fig. 12.2, and we choose a relatively
simple shape for the object to be grasped, namely, a cylinder. By choosing
a rotationally symmetric object the problems relating to the selection of a
proper grasping point are simplified, since in this case reaching for the center
of the cylinder from any direction is appropriate. Aside from the position in
the work space, the orientation of the cylinder is the only other factor which
determines the final position of the arm and the gripper.
In Fig. 12.1 we see the model of the robot that we used in our computer sim-
ulations. Neither the position of the cameras nor the work space has changed
relative to the simulation model of the previous chapter. The geometry of the
present robot model, however, imitates the shape of the human arm. This
configuration allows the robot always to approach presented objects from the
front. By “from the front” we mean that it is possible to bring the gripper
into a position between the object and the base of the robot, and from this
position the gripper proceeds to grasp the object. This anthropomorphically
designed form of the robot arm will later allow the robot to use a grasping
strategy which corresponds to a motion that is typical for humans. When
grasping an object by hand, humans usually reach from the front. Only in
exceptional cases does one opt for a different strategy as might happen, for
example, when impeded by an obstacle or when picking up an object from
its far side. The robot arm has three degrees of freedom by which each arm
configuration is uniquely determined (there is no redundancy). As before,
the arm can rotate around its vertical axis (θ1) and around the axes of the
middle (θ2) and the outer (θ3) joints, which are parallel to each other and
parallel to the horizontal plane. For the orientation of the gripper, two de-
grees of freedom are available. The first degree of freedom is given by the
axis at the “wrist,” which is parallel to the middle and outer joint of the arm.
The second degree of freedom allows rotation around the gripper’s symmetry
axis.
Figure 12.2 shows a sketch of the gripper with its two joint angles β1 and β2

and the normal vector n which describes the orientation of the gripper. This
vector is perpendicular to the symmetry axis and perpendicular to the flat
side of the gripper. The point P in Fig. 12.2 denotes the place of the gripper
which must be guided towards the center of the cylinder to be grasped.
Simultaneously, it is necessary to orient the normal vector n parallel to the
axis of the cylinder. Therefore, this normal vector must be able to take on
any orientation. This is ensured by the two joint angles β1 and β2. The

12. Control of a Manipulator by a Hierarchical Network 190

Abb. 12.1: Model of the robot used in the simulation, the two cameras, and
the work space. The robot itself is now in its geometry similar to the form of
the human arm. This construction makes it always possible to drive towards
objects from the front. The robot’s arm has three degrees of freedom: rotation
around the vertical axis plus the middle and outer joint, whose axes are parallel
to each other and perpendicular to the vertical direction as in previous models.
The orientation of the gripper can be modified by two degrees of freedom. The
axis of the first joint is parallel to the joint axes of the middle and the outer joint
of the arm. The second joint can rotate the gripper around its own symmetry
axis.

12. Control of a Manipulator by a Hierarchical Network 191

Abb. 12.2: A sketch of the gripper with its two joint angles β1 and β2 and the
normal vector n, which describes the orientation of the gripper. Also shown is a
coordinate system which is attached to the last segment. The components n1,
n2, and n3 of the normal vector n relative to this coordinate system are given
by Eq. (164). The point P denotes the center and, thereby, the location of the
gripper which must be guided towards the center of the cylinder to be grasped.

relation between the three components of the normal vector n and the joint
angles is given by

n1 = − sin β1 cos β2

n2 = − sin β2

n3 = cos β1 cos β2 (12.1)

where n1, n2, and n3 are the projections of n on the coordinate system shown
in Fig. 12.2, spanned by the unit vectors n̂1, n̂2, and n̂3. In Fig. 12.2 n̂1 runs
parallel to the longitudinal axis of the outer segment, n̂2 is perpendicular to
n̂1 and lies parallel to the x-y plane, and n̂3 is perpendicular to both.
That we are really able to orient n in any direction can be recognized particu-
larly well when we perform the transformation β1 → −β̄1 and β2 → β̄2−90◦.

12. Control of a Manipulator by a Hierarchical Network 192

Then we obtain

n1 = sin β̄1 sin β̄2

n2 = cos β̄2

n3 = cos β̄1 sin β̄2, (12.2)

which corresponds to the polar representation of a three-dimensional vector
n with β̄1 as the polar angle and β̄2 as the azimuthal angle.

12.2 View through Cameras

The task of the neural network is again to transform input signals, delivered
by the cameras, into suitable joint angles for the arm and the gripper. In the
previous chapter we assumed that an image processing system extracts the
required image coordinates of the target location from the camera images.
Again we do not want to be concerned with details of the image processing,
and we take for granted that we have a suitable image processing system
which extracts the required input data from the camera images. To be able
to grasp a cylinder, the neural network needs, in addition to the information
about the location of the cylinder in the work space, information about the
cylinder’s orientation in space. At each position in the work space, the cylin-
der has two additional orientational degrees of freedom which determine the
angles of the configuration that is required for arm and gripper while grasp-
ing.
In what form do the cameras deliver the necessary information about the
orientation of the cylinder? In Fig. 12.3 we see the bars that result from the
projection of a cylinder onto the image planes of the two cameras. The bar
locations in the two image planes implicitly contain the information about
the location of the cylinder in space. The orientations of the bars in the
image planes provide the information about the spatial orientation of the
cylinder axis.
As can be seen in Fig. 12.3 we describe the location of the center of each
bar by its two-dimensional coordinates in the respective image plane of each
camera and combine the two coordinate pairs to a four-dimensional vector u.
To describe the orientation of each bar we use its projection onto the x- and
y-axes of each camera’s image plane. To be able to determine this projection
uniquely with respect to its sign, it is necessary to assign a direction to the
bar in the image plane. In Fig. 12.3 a particular end of the bar is marked

12. Control of a Manipulator by a Hierarchical Network 193

Abb. 12.3: The cylinder as seen from cameras 1 and 2. One end of each
bar is marked by an arrow head (see text). The position of the centers of
both bars described by (ux1, uy1, ux2, uy2) determines the spatial position of the
cylinder. The coordinate set (xx1, xy1, xx2, xy2) in a normalized form contains
the information about the orientation of the cylinder that is needed by the neural
net.

by an arrowhead. It does not matter which end is picked, but it must be
certain that in both image planes the special end is the same actual end
of the cylinder. This demands that the image processing system is able to
identify the corresponding ends of both bars. This could be achieved, for
example, through comparison of textures. In the case of a soda can, the
image processing system must be able to find out which end of both bars
corresponds, e.g., to the top.
Thus, there are always two equal possibilities for selecting the special end
of the bars. In our simulation, which will be described in greater detail, we
choose always that end of the bar that lies “higher” in the image plane of
camera 2, i.e., in the coordinate system of the camera’s image plane, the
one located in the more positive region of the y-axis. The image processing
system must then identify the corresponding end of the bar in the image
plane of camera 1, and also mark it there.
The projections yield a pair of two-dimensional vectors denoted by (xx1, xy1)
and (xx2, xy2) which uniquely describe both bars, including the selected di-
rection. Combining this pair of vectors, we obtain a four-dimensional vector

12. Control of a Manipulator by a Hierarchical Network 194

that contains, in addition to the orientation, information about the length
of both bars. Because the information about the length of both bars which
is correlated to the length of the cylinder is not relevant for the task, we
normalize (xx1, xy1, xx2, xy2) and obtain the four-dimensional input signal x
that now exclusively contains the required information on the cylinder’s ori-
entation. The two four-dimensional vectors u and x together comprise the
complete information that is needed by the neural net to direct the grasping
movement.

12.3 Hierarchical Arrangement of Kohonen
Networks

To represent the input signals describing the location and the orientation
of the cylinder, we use a network that is composed of an hierarchical ar-
rangement of many subordinated Kohonen nets. As depicted in Fig. 12.4,
the network architecture is composed of a set of two-dimensional sub-lattices
which are arranged in a three-dimensional super-lattice.
To represent the input signals responsible for the spatial position, we again
choose, as in the last chapter, a three-dimensional Kohonen lattice, however,
providing it with two-dimensional subnets at its nodes. Each node of the
three-dimensional super-lattice, i.e., each sub-lattice, specializes in a small
subregion of the work space during the learning process. Within each of
these subregions of the work space, a topology-conserving representation of
the different orientations of the cylinder emerges through the corresponding
subnet.

12. Control of a Manipulator by a Hierarchical Network 195

Abb. 12.4: Hierarchical arrangement of Kohonen nets. A two-dimensional sub-
lattice is assigned to every node of the three-dimensional super-lattice. If s is
the subnet of the super-lattice that is closest to the cylinder, then the element q
within s that best describes the orientation of the cylinder is selected to determine
the output.

The output values are attached to the elements of the two-dimensional sub-
lattices. A hierarchically organized selection process chooses the element out
of all sub-lattices whose output values will later determine the joint angles for
the particular object position and orientation. The selected element should
represent the spatial position of the cylinder better than all the other ele-
ments. In the selection process we can restrict ourselves to that sub-lattice
of the three-dimensional super-lattice which is closest to the object position.
The element of this subnet that is also closest to the input signal in the space
of cylinder orientations will then finally determine the output values.
If we denote the position of every subnet r in the four-dimensional space of
camera coordinates U by wr, then we search for the particular subnet s for
which holds

‖u−ws‖ ≤ ‖u−wr‖, for all r.

This is followed by the selection of the neural unit within the subnet s which
is finally to be activated. By zsp, we denote the position attached to every
element p of the sub-lattice s in the space of the input signals x which de-
scribe the cylinder’s orientation. By taking also into account the information

12. Control of a Manipulator by a Hierarchical Network 196

about the cylinder’s orientation, the element q of s which finally determines
the output signals is defined by

‖x− zsq‖ ≤ ‖x− zsp‖, for all p.

Because of the hierarchical organization of the Kohonen nets, the time needed
to search for the neural unit responsible for the output can be kept short.
In our case the relevant submanifold of the whole input signal space, i.e.,
U ⊗ X, is five-dimensional because of the five degrees of freedom of the
cylinder. If one made an unstructured assignment of this space with equal
discretization points, e.g., by applying a five-dimensional Kohonen net, the
time needed for the selection of the element q would increase as N5 where
N is the number of elements of the Kohonen net along a single dimension.
Due to the hierarchical structure of the network and, consequently, due to
the hierarchically organized selection method, the search time tsearch in our
case increases only as

tsearch ∼ N3
S +N2

E. (12.3)

Here N3
S is the number of subnets and N2

E is the number of elements per
subnet. The selection of the responding neuron can consequently be managed
much faster, assuming NE ≈ NS ≈ N . Although the control task has become
much more complex, the search time tsearch does not increase faster with the
number of net nodes per dimension than in the case of a robot without a
gripper. The search time still increases only as N3.
After the selection of the subnet with ws closest to u and the neural unit
with zsq closest to x, adaptation steps are performed on both levels of the
hierarchy of the network. These steps cause (i) a shift of all subnets in the
space of camera coordinates U and (ii) an adjustment of all elements of all
subnets in the space of cylinder orientations X. The shift of the subnets is
accomplished by the familiar adaptation step

wnew
r = wold

r + ε · hrs(u−wold
r), for all r . (12.4)

The adjustment of the elements of the selected subnet s is also accomplished
according to the Kohonen rule, which yields

znew
sp = zold

sp + δ · gpq(x− zold
sp), for all p. (12.5)

Just as hrs determined the neighborhood within the three-dimensional super-
lattice, now gpq determines the neighborhood within each two-dimensional

12. Control of a Manipulator by a Hierarchical Network 197

subnet. By the adaptation step ((12.4) we obtain a topology-conserving dis-
tribution of subnets in the input signal space U . Therefore, it is guaranteed
that subnets that are neighbors in the super-lattice must represent a sim-
ilar distribution of input signals x. Hence, it makes sense to extend the
adaptation step for the neurons p in the selected subnet s onto all neighbor-
ing subnets r in a way that decreases with the distance from s. To do so we
again use hrs as a measure for the neighborhood within the three-dimensional
super-lattice. This motivates us to replace ((12.5) by the adaptation step

znew
rp = zold

rp + δ · hrsgpq(x− zold
sp), for all r,p (12.6)

for all neurons p of all subnets r.
A hierarchical arrangement of Kohonen nets is useful when the input channels
can be combined to groups of different modality with different priority for
the quality of their representation. In our case the input signals had the
modalities “position” and “orientation.” In selecting the best, i.e., closest
to u and x, element of the network, the modality “position” had a higher
priority because the gripper attached to the end effector has to be first placed
at the object before an alignment of the gripper position makes any sense.
By combining elements into groups with identical receptive fields in the space
of location information, we obtain a whole set of elements that represent the
location information of a cylinder equally well. Within this set, the element is
selected which, in addition, provides the best information on the orientation
of the cylinder.
Interestingly enough, one finds similar hierarchical structures in the visual
cortex of higher animals (Hubel and Wiesel 1974; Blasdel and Salama 1986;
Obermayer et al. 1990, 1991). Orientation-sensitive neurons are arranged
according to a hierarchically composed topographic map in the visual cortex.
Locations on the map represent “locations in the visual field” as well as the
“orientation” of a bar appearing on the retina. The visual cortex can be
parcelled into many small sections, each of which corresponds to one location
in the visual field. Within each of these sections, each neuron is specialized
for a different bar orientation, and the whole orientation spectrum of 180◦

is represented within each section. In this way, a connection between the
sections on the visual cortex and the subnets presented in this chapter can be
made. The arrangement of the sections on the visual cortex then corresponds
to the arrangement of the subnets in the super-lattice.

12. Control of a Manipulator by a Hierarchical Network 198

12.4 The Output Values and the Positioning Process

The required joint angles are uniquely given by the spatial position and the
orientation of the cylinder, i.e., by the presentation of the target for P and
the direction for n (see Fig. 12.2). The overall five degrees of freedom of the
robot’s arm and gripper are required in order to handle the three degrees
of freedom for the spatial position plus the two degrees of freedom of the
cylinder’s orientation. It is not possible to decouple the arm and gripper
configurations which are required for the different positions and orientations
of the cylinder. Similar orientations of the cylinder at different locations in
the work space require not only different configurations of the arm but also
different alignments of the gripper’s joints. The situation is similar when the
cylinder at the same location appears with different orientations of its axis.
In this case not only must the orientation of the gripper be changed, as one
might at first assume, but also the arm must compensate by small corrections
of its joint angles for the small shift of the gripper’s center P that was caused
by a change of the direction of the normal vector n. Mathematically put, this
means that the arm’s joint angles ~θ = (θ1, θ2, θ3) and the angles of the gripper
~β = (β1, β2) depend simultaneously on u as well as on x. If we combine all

five joint angles to the vector ~φ = (θ1, θ2, θ3, β1, β2), then it holds

~φ(u,x) =

(~θ(u,x)
~β(u,x)

)
. (12.7)

After presentation of the object the neural unit q within the subnet s is
selected which will be responsible for determining suitable output values for
setting the joint angles ~φ. For this purpose each element p of every subnet
r, in the following denoted by rp, stores two terms, a term ~φrp for gross-
positioning and a tensor Arp which serves to lineraly interpolate between

neighboring units rp. ~φrp in this case is a five-dimensional vector and Arp is

of dimensions 5×8. The representation of the transformation ~φ(u,x) that has
to be learned is achieved by covering the input signal space with locally valid
linearizations of ~φ(u,x). The linearizations are done around the locations
w̃rp = (wr, zrp), where w̃rp denotes the position in the whole input signal
space (the product space U ⊗ X) connected with unit rp. If we combine
both input signals u and x into ũ = (u,x), then the responding neural unit
sq generates as an output signal the joint angles

~φi = ~φsq + Asq(ũ− w̃sq). (12.8)

12. Control of a Manipulator by a Hierarchical Network 199

Equation (12.8) is of the same form as Eq. (12.2) for a robot arm without a
gripper.
Equation (12.8) determines the first movement step which is followed by a
corrective movement—just like in the case of the robot arm without a grip-
per. For this purpose it is necessary to determine the position of the arm and
gripper from both camera perspectives after the first movement step. For one
thing, one needs the image coordinates of the center P of the gripper in cam-
eras 1 and 2. The pair of two-dimensional image coordinates is combined to a
four-dimensional vector denoted by vi. Furthermore, one needs information
about the orientation of the gripper that is provided by the direction of the
normal vector n (see Fig. 12.2). If we imagine the normal vector n projected
onto the camera image planes, then we obtain a two-dimensional vector in
each camera. The orientations of both vectors describe the orientation of
the gripper in camera coordinates, and they must be brought into alignment
with the orientation of the two vectors (xx1, xy1) and (xx2, xy2) that describe
the orientation of the cylinder. The pair of two-dimensional vectors that
describe the orientation of n after the first movement step is combined to a
four-dimensional vector yi. The absolute value of the difference ‖x− yi‖ of
the vector yi and the input signal x is to be minimized.
How can the projection of the normal vector n on the image planes be deter-
mined from the images of the gripper? One possibility would be to attach a
mark that can easily be identified, e.g., a light, on each of the two flat sides
of the gripper directly opposite to each other. The difference vector from the
positions of the two lights as seen from the first camera yields the projection
of the normal vector n onto the image plane of camera 1. Analogously, we
obtain the projection of n onto the image plane of camera 2. Both difference
vectors are then combined to a four-dimensional vector and are normalized
to eliminate the irrelevant information about the distance of both lamps to
each other. In that way, information about the direction of the virtual normal
vector or equivalently, about the orientation of the gripper, can be obtained
in a very simple way from the camera pictures of the gripper.
The information about the intermediate position of the arm vi and about
the intermediate orientation of the gripper yi (resulting from the angles ~φi as
given by (12.8) are again combined into a vector ṽi = (vi,yi). The residual
difference ũ − ṽi between the target coordinates ũ and the intermediate
coordinates ṽi determines a corrective step. This step uses the Jacobian
matrix of the responding neural unit sq and determines a correction for all

12. Control of a Manipulator by a Hierarchical Network 200

five joint angles,
∆~φ = Asq(ũ− ṽi), (12.9)

by which we obtain the final joint angle configuration ~φf = ~φi+∆~φ. The cor-
responding position and orientation of the gripper is again observed through
the cameras and denoted by ṽf = (vf ,yf).
The corrective step (12.9) can be performed several times in succession to
further reduce the positioning and orientation error to values only limited
by the imperfections of the devices used in practice, e.g., by the camera
resolution. The corrective step, being based on feedback control, will later
allow us to use a grasping strategy that is similar to the grasping strategy
that humans use. The feedback process allows to move toward an object
cautiously, thereby avoiding a collision with the object. In the following
considerations we will confine ourselves to a single corrective step (12.9).

12.5 The Learning Method for the Output
Values

The use of a vector ~φrp and of a Jacobian matrix Arp to represent the trans-

formation ~φ(u,x) is analogous to the learning algorithm for the robot arm
without a gripper in the previous chapter. This is also true for the posi-
tioning process with its two phases, gross positioning according to (12.8) and
corrective step according to (12.9) (step 5 and step 6 in Section 11.2). There-
fore, we can adopt the algorithm presented in Section 11.3 that we employed
for the learning of the end effector positioning to improve the output values
~φrp and Arp. Only the transformation of the learning success of one neural
unit onto its neighbors will be of a different form because of the hierarchical
architecture of the network.
The corrective movement (12.9) again serves to iteratively determine the
Jacobian matrices from small changes in the joint angles in conjunction with
the corresponding small changes in the camera coordinates. This makes it
possible to determine an improved estimate A∗ for Asq. Combined with the

step that determines an improved estimate ~φ∗, we obtain

~φ∗ = ~φsq + δ1 ·Asq(ũ− ṽi)

A∗ = Asq + δ2 ·Asq(ũ− ṽf)∆ṽT , (12.10)

where ∆ṽ = ṽf − ṽi. For the adaptation step widths δ1 and δ2 we choose, as
in Section 11.2, the optimal values δ1 = 1 and δ2 = 1/‖∆ṽ‖2.

12. Control of a Manipulator by a Hierarchical Network 201

The new estimates ~φ∗, A∗ obtained by means of Eq. (12.10) are used to im-
prove the output values of the neural unit sq and its neighbors. But in the
present case of a robot arm with gripper we have two hierarchies of neighbor-
hoods, one within the subnet that is described by the neighborhood function
g′pq, and the other between the subnets described by the neighborhood func-
tion h′rs. Not only the neighboring neurons p within the subnet s participate
in the learning of the activated neuron sq, but also the subnets r which are
neighboring in the super-lattice participate according to their distance to the
subnet s. This leads to the adaptation step

~φ new
rp = ~φ old

rp + ε′h′rsg
′
pq

(
~φ ∗ − ~φ old

rp

)
Anew

rp = Aold
rp + ε′h′rsg

′
pq

(
A∗ −Aold

rp

)
(12.11)

for the neural units of all subnets.
The learning steps (12.11) for the output values are of the same form as the
learning step (12.6) for the position zrp attached to each element rp. Both
affect neural units that are neighbors in the subnet and also subnets that are
neighbors in the super-lattice. Instead of the input signals x, the improved
estimates ~φ ∗ and A∗ occur in Eq. (12.11).

12.6 Simulation Results

In this section we describe the results of a simulation of the learning algo-
rithm. For the computer simulation we have employed a super-lattice con-
sisting of 4×7×2 subnets. Each of the subnets contains 3×3 neural units.
The parameters that describe the work space and the position of the cameras
are the same as in the previous chapter.

12. Control of a Manipulator by a Hierarchical Network 202

Abb. 12.5: The three-dimensional super-lattice, initially (top), after 1000 (mid-
dle), and after 10,000 learning steps (bottom). The left column shows the focal
plane of camera 1, and the right column shows the focal plane of camera 2. At
each node of the super-lattice the corresponding subnet is schematically depicted.

12. Control of a Manipulator by a Hierarchical Network 203

In total, the robot arm performed 10,000 learning steps. In Fig. 12.5 we
present the development of the three-dimensional super-lattice. We again
show the focal planes of cameras 1 and 2. In the left column of Fig. 12.5
we see the projection of the centers wr of the receptive fields of the subnets
on the focal plane of camera 1. In the same way the projections of wr

on the focal plane of camera 2 are depicted in the right column. In each
projection, subnets which are adjacent in the super-lattice are connected by
straight lines. The state of the super-lattice is shown at the beginning, after
1000, and after 10,000 learning steps. The development of the super-lattice
corresponds, except for a lower number of lattice points, to the development
of the three-dimensional Kohonen lattice in the previous chapter.
We illustrate the development of all the two-dimensional subnets by display-
ing the development of one of them. The input signals of each subnet consist
of four-dimensional vectors x = (xx1, xy1, xx2, xy2), the components of which
were restricted to the interval [−1, 1] through the imposed normalization.
The input signals x are represented by the four-dimensional vectors zrp that
are assigned to the elements of each subnet. The first two components of
zrp represent the occurring bar orientations (xx1, xy1) as seen by camera 1,
and the last two components represent the bar orientations (xx2, xy2) seen
by camera 2. In Fig. 12.6 we show the state of the subnet in the beginning,
after 1000, and after 10,000 learning steps. In the left column the first two
components and in the right column the last two components of zrp are de-
picted. Each of the squares in Fig. 12.6 represents the region −1 < xx < 1,
−1 < xy < 1.
Since the edges of the presented cylinders always lie on the surface of a sphere
(end-points of normalized vector x), it follows that the two-dimensional sub-
manifold that is to be represented by a subnet is also spherical. Each of the
two-dimensional subnets tries to adhere to the surface of the sphere. In the
right column of Fig. 12.6 we see that the subnet shown lies completely in
the upper half of the box. This results from our assignment of the “special”
end of the bar in camera 2 to the end with the larger y-value. Hence, xy2

is always positive and at the end of the learning, only the upper half of the
sphere is covered by the subnet. The vector that describes the bar as seen by
camera 1 may have almost any direction in the focal plane. Thus, in the left
column of Fig. 12.6 the net at the end of the learning phase is more evenly
spread out.
In the simulation just described, we assumed for all the parameters ε, δ,
ε′, σ, σ′, ρ, and ρ′ the same time dependence xi(xf/xi)

t/tmax with tmax =

12. Control of a Manipulator by a Hierarchical Network 204

Abb. 12.6: The state of a sample subnet at the beginning (top), after 1000
(middle), and after 10,000 learning steps (bottom).

10, 000. The parameters ρ and ρ′ denote the width of the Gaussians gpq and
g′pq introduced in 12.6) and (12.11). For the initial and final values of the
parameters we chose εi = 1, εf = 0.01, δi = 1, δf = 0.01, ε′i = 0.8, ε′f = 0.4,
σi = 1.5, σf = 0.3, σ′i = 1, σ′f = 0.3, ρi = 1, ρf = 0.1, ρ′i = 1, ρ′f = 0.3.
In Fig. 12.7 we illustrate the learning success by presenting the positioning
and orientation error as a function of the number of learning steps. The
corresponding errors were determined by performing a test after every 100
trial movements. For each test we suspended the learning and monitored the
performance by presenting a randomly oriented cylinder at 1000 randomly
chosen locations within the work space. The mean error at that stage of
learning was computed by averaging over the errors of the 1000 test move-
ments. Two quantities were monitored: (i) the positioning error, i.e., the
difference between the center of the gripper P and the center of the cylinder,

12. Control of a Manipulator by a Hierarchical Network 205

Abb. 12.7: The mean positioning (in % of the length of the workspace) and
orientation error (in degree) as a function of the number of learning steps. Af-
ter 10,000 learning steps the positioning error is 0.004, which corresponds to
about 0.6% of the length work space. The slightly larger error compared to the
robot arm without a gripper in the previous chapter is due to the smaller three-
dimensional main lattice. The orientation error of the gripper decreased to the
small value of 1.7◦ after 10,000 learning steps. This value is much smaller than
necessary for successful performance of the task.

and (ii) the difference between the gripper orientation and the orientation of
the cylinder, measured in degrees. The positioning error after 10,000 learning
steps has decayed to 0.004, which corresponds to 0.6% of the length of the
work space. The positioning error is slightly larger than in the previous chap-
ter where only the end-effector positioning was learned. This results from
a six-times smaller number of nodes of the three-dimensional super-lattice
and, therefore, a much smaller resolution for the positioning task. Yet, a po-
sitioning error of 0.004 is still acceptable for the task. The error in orienting
the gripper at the end of the learning phase measured 1.7◦. The precision in
orienting the gripper is much higher than is usually necessary for grasping
tasks and comparable to human performance. It is remarkable that such a

12. Control of a Manipulator by a Hierarchical Network 206

precision could be achieved through subnets consisting of only nine nodes.

12.7 A Simple Grasping Strategy

We have seen that the robot system can learn orientation and positioning of
a gripper in relation to a cylindrical object. However, this is not enough in
order to be able to grasp the object. In addition, an adequate strategy for
approaching the object is necessary. The object has to be approached such
that the robot’s arm and gripper do not collide with it. For that reason we
have chosen, as mentioned earlier in this chapter, a robot architecture which
allows the robot to always approach the object from the front (see Fig. 12.1).
That means the gripper can always be positioned between the base of the
robot and the object. In the following we present a grasping strategy which
takes advantage of such a robot architecture.
Humans usually carry out grasping movements by first coarsely position-
ing the hand in front of the object and then, controlled by a feedback loop,
smoothly approach and finally grasp the object. We will choose a correspond-
ing strategy for the robot arm. Until now the robot has tried to directly move
the center of the gripper P to the center of the cylinder by means of move-
ment step (12.8). However, such an approach would lead in most cases to
a collision with the object. The learning algorithm has to acquire a trajec-
tory of the manipulator which during the transition from the previous joint
angles to the new ones avoids collisions. Which type of trajectory avoids
collisions with the cylinder? If we assume that the gripper already has its
proper orientation, then it is sufficient for the last portion of the trajectory to
be arranged such that the continuation of the symmetry axis of the gripper
always crosses the symmetry axis of the cylinder. To ensure this, we must
modify our previous moving strategy.
For that purpose the point P which until now was placed in the center of
the gripper and by design was moved to coincide with the center of the
cylinder, is now slid out along the symmetry axis of the gripper to a position
shown in Fig. 12.8, namely to a position in front of the gripper. The learning
algorithm, by placing the point P at the center of the cylinder, positions
the gripper in front of the cylinder rather than colliding with it. At the
same time, during the first movement step, the gripper adjusts to its proper
orientation. A feedback-guided movement follows that leads the center of the

12. Control of a Manipulator by a Hierarchical Network 207

Abb. 12.8: The sketch of the gripper shown in Fig. 12.2. We slide the point
P , which is to be moved to the center of the cylinder by the first movement
step, out along the symmetry axis of the gripper until it lies well in front of the
gripper.

gripper smoothly and without collisions towards the center of the cylinder.1

Ê To accomplish the latter motion we employ a corrective movement de-
scribed by (12.9). This corrective movement, rather than having to reduce
the deviation between P and the center of the cylinder, now has to reduce
the remaining discrepancy between the center of the gripper and the center
of the cylinder. This latter discrepancy may be relatively large, depending
on how far P lies in front of the gripper. Therefore, we now have to carry
out the corrective movement not just once, but several times, until the resid-
ual positioning error drops below a desired minimal value. By v′i we denote
the location of the center of the gripper after the first movement step (12.8)
as seen by the cameras. This location along with the orientation yi of the

1 The reader may note the similarity between the approach presented here and the ob-
served strategy of saccadic eye movements which undershoot fovea targets as discussed
in Section 9.5

12. Control of a Manipulator by a Hierarchical Network 208

gripper is denoted by ṽ′i = (v′i,yi). We then obtain

∆~φ = γAsq(ũ− ṽ′i) (12.12)

for the corrective movement in approaching the object, where γ is the pa-
rameter which determines the step size.
With the first movement step, we achieve the crossing of the symmetry axis
of the gripper with the symmetry axis of the cylinder. While the gripper
approaches the cylinder by the corrective movements (12.12), these axes must
remain intersected with one another. This would be guaranteed if Asq(ũ−ṽ′i)

were exactly the required joint angle difference ~φ(ũ) − ~φ(ṽ′i). Since this is
not exactly the case, the choice of γ = 1 can lead to a significant deviation of
the resulting trajectory from the desired trajectory along the line connecting
the gripper center and the center of the cylinder. By choosing γ � 1 and,
consequently, by adding a number of feedback loops (12.12), we force the
deviation from the desired trajectory to remain small, enabling the approach
towards the object to proceed smoothly and collisionless.
As an improved estimate for ~φsq we obtain, as before,

~φ∗ = ~φsq + δ1 ·Asq(ũ− ṽi). (12.13)

Nonetheless, the equation that determines the improved estimate for Asq

needs to be modified compared to (12.10) since we now employ several cor-
rection movements with step sizes γ < 1. As before we denote the position of
P on the focal planes of the cameras after the first movement step by vi, and
in combination with yi we define ṽi = (vi,yi). If, as before, we denote the
position of P and the gripper’s orientation after the first corrective movement
by ṽf , the expression

A∗ = δ1 ·
[
∆~φ−Asq(ṽf − ṽi)

]
[ṽf − ṽi]

T (12.14)

which corresponds to Eq. (11.11) yields in conjunction with (12.12)

A∗ = δ1 ·Asq [γ(ũ− ṽ′i)− (ṽf − ṽi)] [ṽf − ṽi]
T (12.15)

as an improved estimate for Asq. As in the earlier procedure, A∗ is computed

using only values provided by the cameras. As adaptation steps for all ~φrp

and Arp we employ again (12.11).
Without major revisions we have been able to realize the described grasping
strategy by our algorithm; the Jacobian matrices Arp allow us to set up the

12. Control of a Manipulator by a Hierarchical Network 209

Abb. 12.9: “Stroboscopic” rendering of a grasping movement of the robot. The
chosen movement strategy enables the robot to approach the cylinder without
collisions.

feedback loop in a natural way. The robot arm is now able to approach
the cylinders that are presented within the work space without inadvertently
colliding with them. To demonstrate the action of the robot arm, we show
“stroboscopic” renderings of two grasping movements in Figs. 12.9 and 12.10.
In every approach of the cylinder three corrective fine movements (12.12)
were carried out after the gross positioning. For the step size γ of the fine
movements, we chose 0.3 + 0.2 · n with n = 1, 2, 3 as the number of the

12. Control of a Manipulator by a Hierarchical Network 210

Abb. 12.10: “Stroboscopic” rendering of a second grasping movement. Again
the robot carries out the grasping movement successfully.

currently preformed correction step. One can see in Figs. 12.9 and 12.10
that in both cases the robot arm system accomplishes the grasping movement
successfully.
We have seen that it is possible by the neural network algorithm introduced
to solve not only the basic problem of end-effector positioning, but also to
approach the more complex task of grasping simple objects. It turns out
that less computational power and memory for controlling the robot arm
are required if, as the complexity of the task rises, the network architecture

12. Control of a Manipulator by a Hierarchical Network 211

becomes increasingly structured. By employing a hierarchical arrangement of
Kohonen networks, the input signals for controlling the grasping movements
can be represented in a natural way. In Chapter 13 we will turn to questions
which arise under the dynamic control of robot arms.

13. Learning Ballistic Movementsof a Robot Arm 212

13. LEARNING BALLISTIC MOVEMENTS
OF A ROBOT ARM

13.1 Problem and Model Approach

After a sufficiently long training phase, the network described in the pre-
ceding chapters can provide the required joint angles for any desired arm
position. However, setting the joints to these angles is left to the joint servo
motors of the arm. Such motors achieve the target position by changing their
torque in opposite direction to any angular deviation from the target joint
settings. For slow movements, this is an appropriate strategy because the
individual joint movements can then be regarded to good approximation as
independent of one another. However, for rapid movements, the inertia of
the arm segments leads to a coupling between movements of different joints.
For example, the movement of an inner (proximal) joint leads to an accelera-
tion of all outer (more distal) joints and, hence, to the occurrence of torques,
which must additionally be overcome by the joint motors. Conversely, the
inner joint motors must counterbalance the action of outer joint motors.
In summary, inertial, centrifugal, and gyroscopic forces occur, the interplay
of which leads to a complex, nonlinear coupling of all joints. In this situ-
ation, a single motor can no longer determine its torque from the present
and given joint position alone, but rather its torque must also depend on the
movements of all the other joints. Thus, to achieve the desired movement,
it is no longer sufficient to take into account the connection between arm
position and joint angles alone, i.e., the kinematics of the arm. The Newto-
nian equations of motion of the arm, i.e., its dynamics, must be included as
well. Although the Newtonian equations can be given in closed form, they
become enormously complicated for multi-joint systems. A closed solution is
possible only in exceptional cases, and even approximate solutions require a
knowledge of the inertia tensors of the individual arm segments. In this case,
a real-time computation of the arm torques is possible by means of recent

13. Learning Ballistic Movementsof a Robot Arm 213

algorithms whose computational effort grows only linearly with the number
of arm joints. However, the inertia tensors required for such a computation
are frequently known only imprecisely. This is due to the fact that the spatial
mass distribution of the arm, which is described by these tensors, in general
is very complicated for real systems. Hence, adaptive algorithms with the
ability to learn these properties of the arm are highly desirable.
equations. the arm are
In this chapter we show how the extended Kohonen algorithm can also be
applied to the problem of moving a robot arm by accounting for the arm’s
dynamics. We choose the task to control a three-link robot arm as introduced
in Section 11.1 by means of briefly applied torque pulses at its joints in such
a way as to accelerate its end effector to a prescribed velocity. During the
remaining time, the arm is to move freely. The relationship between arm
configuration, desired velocity, and required torque pulse is to be learned
by a network again through trial movements. In contrast to the previous
situation, this requires taking into account not only arm kinematics but also
arm dynamics, i.e., effects of inertia. Since we have shown in Chapter 12 how
a network may learn to compute the transformation from visual information
to joint angles, we will not consider this part of the problem here anymore
and encode arm configuration directly by joint angles. As before, the arm
can move its end effector freely in every spatial direction and reach any point
on the working area which is now the planar surface of a table located in
front of it. In the simulation, the relationship between end effector motion
and joint torques is to be learned for those configurations for which the end
effector is located directly above the working area. The configuration of
the arm is again specified by its joint angles, expressed in vector notation
by ~θ = (θ1, θ2, θ3). The movement of the arm is effected by three torques
=. (d1, d2, d3) acting on its joint axes. Let q denote the position of the end
effector in Cartesian coordinates. The equations of motion of the arm are
then given by (see for example Brady et al. 1984)

di(t) =
3∑
j=1

A(~θ)ij”qj +
3∑

j,k=1

B(~θ)ijkq̇j q̇k + gi(~θ). (13.1)

A(~θ) and B̂(~θ) are configuration-dependent matrices which describe the dy-

namical properties of the arm. The term g(~θ) takes the contribution of
gravity into account. If the end effector is initially at rest, a briefly applied

13. Learning Ballistic Movementsof a Robot Arm 214

torque pulse
(.t) = ~τ · δ(t) (13.2)

thus imparts to it the velocity v = q̇ satisfying

~τ = A(~θ)v. (13.3)

Here ~τ = (τ1, τ2, τ3) denotes three torques acting on the three joints of the
robot arm. In particular, the coefficients Bijk and gi do not influence the
velocity attained immediately after the torque pulse (the change in v during
the subsequent force-free motion, which is affected by Bijk and gi, is not
included here). Motions generated by the brief torque pulses described by
(13.3) are termed ballistic movements. Equation (13.3) describes a relation-

ship between configuration ~θ, torque amplitude ~τ , and resulting end effector
velocity v in a form similar to that of Eq.(143). Hence, the learning algo-
rithm developed in Chapter 11 is again applicable. As before, we make use
of a lattice and define a vector wr and a matrix Ar for each lattice site r.
Just as in Chapter 11, each wr specifies an arm configuration, but this time
in terms of joint angles. Thus, wr is now a three-component vector.
In the course of the learning phase, each lattice site r becomes responsible for
a small subregion of the arm’s configuration space, the subregion extending
about the configuration defined by the joint angles wr. The matrix Ar should
converge to the transformation matrix which, according to (13.3) connects
the desired end effector velocity v and the required torque amplitudes ~τ in
this subregion.
The training phase of the robot consists again of a sequence of trial move-
ments. For each trial, the starting configuration ~θ is obtained by requiring
the end effector to be at some randomly chosen position within the working
area. From there, the end effector is to be moved with a prescribed velocity
u (also chosen at random during the learning phase). On the basis of the

initial configuration ~θ, the system selects that transformation matrix As, for
which ‖ws − ~θ‖ = minr ‖wr − ~θ‖. On the basis of the prescribed velocity u,
it then performs the movement resulting from the torque amplitude

~τ = Asu. (13.4)

From the end effector velocity v actually obtained, an improved estimate

A∗ = As +
ε′

‖v‖2
(~τ −Asv)vT (13.5)

13. Learning Ballistic Movementsof a Robot Arm 215

is derived for As, and, taking into account the input quantity ~θ, the learning
steps

w(new)
r = w(old)

r + εhrs(~θ −w(old)
r) (13.6)

A(new)
r = A(old)

r + h′rs(A
∗ −A(old)

r) (13.7)

are carried out for the variables wr, Ar, respectively. Subsequently, the next
trial movement is executed.

13.2 A Simulation

In the following simulation hrs and h′rs were again chosen as Gaussians, and
σ(t), σ′(t), ε(t) and ε′(t) were all of the familiar form x(t) = xi · (xf/xi)t/tmax .
The motion of the robot arm was simulated on a computer, using a dynamics
simulation algorithm as suggested by Walker and Orin (1982). The mass
distribution was assumed to consist of three unit point masses located at
the middle and front joints, and at the end of the arm. Let us consider a
Cartesian coordinate system whose origin is located at the base of the arm
and whose xy-plane coincides with the plane of the working surface. The x
and y-axes run parallel to the short and long edges of the working surface,
respectively. For each trial movement, the desired velocity was chosen as a
random vector with an isotropic distribution of direction and its length a
random value uniformly distributed between 0 and 1.
The network consisted of a planar, rectangular 15×24 lattice of 360 neural
units. A random initial state was generated in the following way: For each
lattice site r, an end effector position on the working surface was selected at
random, and wr was set to the corresponding joint angles. For this position,
the correct transformation matrix A was computed. The individual elements
of Ar were then calculated from the elements of A by superposition of random
errors according to

(Ar)ij = Aij + α‖A‖ · η. (13.8)

Here, η ∈ [−1, 1] is a uniformly distributed random variable, and α is a pa-
rameter measuring the deviation of the initial matrices Ar from their correct
values. The simulation data were α = 0.25, εi = 0.8, εf = 0.02, ε′i = 1,
ε′f = 0.5, σi = σ′i = 3, σf = σ′f = 0.2 and tmax = 10, 000.
The initial state of the lattice is shown in Fig. 13.1. To illustrate the cor-
respondence between lattice sites and arm configurations, in Fig. 13.1a a

13. Learning Ballistic Movementsof a Robot Arm 216

Abb. 13.1: Assignment of end ef-
fector positions to lattice sites at the
beginning of the simulation.

Abb. 13.2: The reaction of the end
effector to two test movements along
the horizontal x-direction and vertical
y-direction for the end effector posi-
tions of Fig. 13.1a.

perpendicular view of the working surface is shown. For each of the 360
neural units the end effector position pertaining to the arm configuration
associated with that site is marked and connected in the familiar way with
those other end effector locations that pertain to neighboring neural units.
Since a similar illustration of the matrices Ar is not directly possible, in
Fig. 13.1b we instead show the reaction of the end effector to test move-
ments. For each of the end effector positions of the 360 neural units, the
reaction of the end effector to two different target movements with velocities
in the x- and in the y-direction is shown. Initially, these reactions only show
a small correlation with the desired velocities, due to the considerable errors

13. Learning Ballistic Movementsof a Robot Arm 217

Abb. 13.3: As in Fig. 13.1a, but
after 500 trial movements. By this
time, a recognizable order has already
emerged.

Abb. 13.4: An improved agreement
with the target movements is also vis-
ible in the test movements of the end
effector.

in the matrices Ar (see Fig. 13.1b). Figure 13.2 shows the state of the robot
after 500 trial movements. At this stage, a recognizable, lattice-type corre-
spondence between end effector positions and neural units has emerged, and
the actual velocities resulting for the test movements point approximately
in the x- and y-directions. Finally, Fig. 13.3 shows the result after 10,000
trial movements. In Fig. 13.3a, a regular mapping between lattice sites and
end effector positions can be recognized in the working surface. The test
movements are now carried out with good accuracy (Fig. 13.3b).
The representation chosen can only visualize the reaction to test movements
that lie in the plane of the working surface. Therefore, for the developmental
stages of Fig. 13.2 and Fig. 13.3, the Euclidean matrix norm er := ‖Ar −

13. Learning Ballistic Movementsof a Robot Arm 218

Abb. 13.5: The final result after
10,000 trial movements shows the
formation of a good correspondence
between lattice sites and end effector
positions of the working area.

Abb. 13.6: Now the correspond-
ing test movements of the end effec-
tor agree well with the target move-
ments.

Aexact(wr)‖ of the deviation from the exact transformation matrix is given
in Fig. 13.4 for each lattice site r as a height above the end effector position
in the working surface corresponding to wr. Hence, an “error surface” above
the working surface is created, whose height at each point is a measure of the
discrepancy between desired and actual movement, averaged over all spatial
directions. Figure 13.4 shows that the remaining errors are inhomogeneously
distributed and are largest for those configurations in which the end effector
is located near the base of the arm. This is due to the singular character of
the transformation between torque amplitude and velocity for positions close

13. Learning Ballistic Movementsof a Robot Arm 219

Abb. 13.7: “Error surface” above
the working surface after 500 trial
movements. At this time, the errors
are still relatively large.

Abb. 13.8: After 10,000 trial move-
ments, no significant errors remain
except for end effector positions near
the base of the arm.

to the base,1 near which a convergence of the procedure will take a larger
number of trial movements.
During our discussion of models of oculo-motor control and visuo-motor co-
ordination in Chapters 9, 11, and 12 we repeatedly came to see the important
role of neighborhood cooperation between neurons for the success of learning
the output mapping. Also in the present case, neighborhood cooperation
has a positive effect on the convergence of the learning algorithm. This can
be illustrated by repeating the simulation as before, except that neighbor-
hood cooperation is suppressed for the learning steps of As. This is achieved
by setting the parameters characterizing the range of h′rs to values σ′i = 0
and σ′f = 0 (implying h′rs = δrs). Figure 13.5 illustrates the limited learn-
ing success by showing the reaction to the two test movements in the x- and
y-direction. A closer inspection shows that Ar converges to the correct trans-
formation only for those neural units with sufficiently “good” initial random
values of Ar. The remaining units do not achieve convergence, even if further
learning steps are allowed.

1 The singularity is analogous to the one in the transformation between joint angles
and effector positions encountered in Sect. 11.4.

13. Learning Ballistic Movementsof a Robot Arm 220

Abb. 13.9: Result of the same simulation as in Fig. 13.1-13.3, obtained after
10,000 learning steps, but without lateral interaction between the array variables
Ar, i.e., with h′rs = δrs. In this case, the desired convergence is only achieved
for a fraction of all end effector configurations. This illustrates the important
contribution of lateral interaction to a robust convergence behavior of the system.

Abb. 13.10: Improvement of the convergence behavior by lateral interaction
between the lattice sites. For three different initial ranges σ′i of the lateral in-
teraction h′rs, the diagram shows the decrease, as a function of the number of
learning steps, of the average error between target velocity u and actual velocity
v of the robot end effector. For the two shorter ranges, a considerable error
remains at the end.

13. Learning Ballistic Movementsof a Robot Arm 221

The essential role of neighborhood-based cooperative learning is also evident
in Fig. 13.6 where we present the average error 〈‖v−u‖〉 between the target
movement u and the actual movement v performed as a function of the
number of learning steps carried out. The average was taken over all lattice
points and over isotropically distributed, unit target velocities u. The three
curves correspond to three simulations with the same disordered initial state
but distinct initial ranges σ′i = 0.5, σ′i = 1.0, and σ′i = 2.0 for the lateral
interaction h′rs. The initial state was generated according to Eq. (13.8)
with a value α = 2, i.e., the deviations of the initial matrices from their
correct values were significantly higher than in the simulations of Figs. 13.1-
13.4. The remaining simulation data were chosen as before. In the case of
the long-range interaction σ′i = 2 the error decreases fastest and the system
achieves a very small residual error. In the case of shorter ranges σ′i = 1,
σ′i = 0.5, the decay of the error during training is slowed down and only some
of the matrices Ar manage to converge to their correct values. The residual
errors are correspondingly larger, the smaller of the two occurring for the
longer of the two ranges.
The procedure described here is not restricted to the learning of ballistic
movements. Another conceivable application would be to learn in this man-
ner the relationship between joint torques and the force exerted by the end
effector. This would be of interest for movements in which the end effector
is guided in its motion by contact with a surface and in which the contact
is to be maintained with a specified contact force (“compliant motions”).
Similarly, it would be possible to learn configuration-dependent joint torques
compensating for the influence of gravity on the arm, thus eliminating one of
the main factors responsible for changes in the end effector velocity during
force-free, ballistic phases of the motion.
This concludes our investigation of the capabilities of Kohonen’s model and
its extensions by means of computer simulations. In the subsequent chapters,
we will take a closer look at important mathematical aspects of the model
and analyze some of its properties that became evident in the simulations.

14. Mathematical Analysis of Kohonen’s Model 222

14. MATHEMATICAL ANALYSIS OF KOHONEN’S
MODEL

The preceding chapters have shown the versatility of self-organizing maps
for sensory processing and control by means of a series of examples. The
properties of self-organizing maps that became evident in these examples
will be characterized in this chapter from a more general mathematical point
of view, and their relationship to other signal processing algorithms will be
pointed out.

14.1 Overview

First, there is an important connection between self-organizing maps and
algorithms for adaptive data compression. The latter algorithms are dealing
with the coding of given data in a more compact form, so that later the
original data can be recovered with as little error as possible. Obviously, in
the interest of obtaining the highest possible “compression factor,” a certain
reconstruction error must be permitted. The method of vector quantization
is a class of compression procedures leading to minimization of a prescribed
measure of the reconstruction error. We will show that self-organizing maps
can be regarded as a generalization of this approach. The neighborhood
function modifies the error quantity to be minimized as compared to that
minimized in conventional procedures.
Maps have a second important connection to the various procedures of prin-
cipal component analysis of data. In these procedures, one seeks to describe
as faithfully as possible the distribution of data points embedded in a high-
dimensional space, using only a space of lower dimension. In principal com-
ponent analysis, this occurs by linear projection onto a space spanned by
those eigenvectors of the data distribution that belong to the largest eigen-
values of the two-point correlation matrix. Topology preserving maps offer a
generalization of this linear procedure by providing a projection onto nonlin-

14. Mathematical Analysis of Kohonen’s Model 223

ear, so-called principal manifolds. Projections onto principal manifolds can
yield a low-dimensional image of the original data with smaller projection
errors, i.e., more faithful representations of the original data compared to
linear procedures that use the same projection dimension.
The problems of data compression and of obtaining “good” projections onto
lower-dimensional spaces are related and play an important role for numerous
information processing tasks. A large part of the applicability of topology
preserving maps is due to their relevance to both kinds of problems. Hence,
it may not be too surprising that topology preserving maps are found in
various areas of the brain.
The map formation process is adaptive and is driven by a random sequence
of input signals. Mathematically, the process corresponds to an adaptively
changing map that gradually evolves toward a stationary state. This leads to
the question of the convergence properties of the process. We will investigate
this question in Sections 14.6–14.9 more closely and, among other things, we
will derive convergence conditions as well as expressions for the magnitude
of fluctuations that occur due to the random distribution of input signals.
For this purpose we derive a Fokker-Planck equation describing the adapta-
tion process and allowing a more precise discussion of the dependence of the
stationary map on the input signal distribution. We can then show that,
under certain conditions, the map takes on a structure which is spatially pe-
riodic with respect to a subset of the components of the input signal. This
result is especially interesting in view of experimentally established spatial
periodicities in the response behavior of many neurons belonging to cortical
and noncortical areas of the brain. A well-known example of such periodic-
ity is provided by the ocular dominance stripes observed in the visual cortex,
along which neurons segregate into groups with preference for one eye or the
other. A similar structure on a smaller scale than occular dominance stripes
in the striate cortex are orientation columns, a segregation of neurons with
receptive fields favouring different orientations in the visual field of an animal
(Blasdel and Salama 1986).

14.2 Vector Quantization and Data Compression

An important prerequisite for any kind of information processing is the es-
tablishment of an appropriate encoding for the data under consideration. In
the case of the brain, this encoding has to a large extent been determined

14. Mathematical Analysis of Kohonen’s Model 224

by nature, and indeed one of the principal research questions is to decipher
the coding schemes that underly brain function. In the case of artificial in-
formation processing systems, the decision for an appropriate encoding of
the data is left to the designer, and a determination of which features are
to play an important role and must be coded well may be very task specific.
However, there are also important aspects of more general relevance. One
such aspect is the average code length required for transmission of a specified
amount of information. For example, one current scheme for text encoding
uses 8-bit words, the so-called ASCII-characters, for individual letters. The-
oretically, 28 = 256 distinct characters can be encoded in this way. However,
in many cases 128 characters suffice, which can be coded with only 7 bits per
character. Taking into account the different frequency with which different
characters occur, one can find still more efficient codes. If the characters in
the sequence are statistically independent of one another, and if pi denotes
the probability for the occurrence of the ith character, then the lower limit
for the most efficient code is

S = −
∑
i

pi ld(pi) (14.1)

bits per character (“ld” denotes the logarithm to the base two). The quantity
S is known as the so-called Shannon information (see for example Khinchin
1957) transmitted on the average by a single character. However, for most
character sequences, the assumption of statistically independent characters
does not hold. By exploiting correlations between several characters, one can
find even more efficient codes. For example, in the case of language, one can
encode whole words in place of individual letters, thus achieving a further
compactification. Written Chinese provides an example of this strategy.
This sort of code optimization is of particular importance when large quan-
tities of data are to be stored or transmitted. This happens particularly in
image processing. The bitwise transmission of a raster image with a resolu-
tion of 1,000×1,000 pixels and 256 gray levels per pixel requires the transfer of
about 1 Mbyte of data. However, in most images, adjacent pixels are strongly
correlated, and significantly more efficient coding schemes than simple bit-
wise transmission can be found. Interestingly enough, the brain also seems
to make use of such possibilities. The optic nerve contains only about 106

nerve fibres, whereas the retina is covered by about 108 light sensitive recep-
tors (Kandel und Schwartz 1985). Hence, the optic nerve constitutes a kind
of “bottleneck” for the transmission of visual information from the retina to

14. Mathematical Analysis of Kohonen’s Model 225

the brain. However, before transmission occurs, the signal is subjected to an
extensive preprocessing stage in the retina, involving nearly 100 different cell
types and enabling a subsequent transmission of all necessary information
through the optic nerve.
Hence, data compression is an equally important task for both artificial and
natural information processing systems. A general approach developed for
the solution of this task is the method of vector quantization (see, e.g.,
Makhoul et al. 1985). This method supposes that the data are given in
the form of a set of data vectors v(t), t = 1, 2, 3, . . . (possibly of rather high
dimension). The index t numbers the individual vectors. The components
of a vector v(t) may take binary, integer, or analogue values, corresponding
for example to bits of a binary sequence, gray level values of image pixels, or
amplitudes of a speech signal. “Compression” of the data occurs by approx-
imating every data vector v(t) by a reference vector ws of equal dimension.
This presupposes that a fixed, finite set W of reference vectors ws has been
established, determined such that a “good” approximate vector ws ∈ W
can be found for every data vector that may arise. The set W of reference
vectors plays the role of a code book assigning to each data vector v that
reference vector ws ∈ W for which the norm of the difference δ = ‖v −ws‖
assumes its minimum over all code book vectors. As the new code for the
data vector v, it then suffices to specify the index s of the reference vector
ws that yielded the most accurate approximation. In the case of a code book
with N reference vectors, this requires specification of at most ld N bits.
Therefore, the smaller the code book can be chosen, the better the resulting
data compression factor. 1 However, this gain has its price: the original
data can no longer be exactly recovered from the codes s. For reconstruction
of the original data vector v from its code s, only the reference vector ws

is available. This gives rise to a “reconstruction error” that is equal to the
approximation error δ = ‖v −ws‖.
Crucial for the whole procedure is the construction of a good code book W . It
should contain sufficiently many appropriately distributed reference vectors
to enable a good approximation to any data vector v by a reference vector
ws. For a mathematical formulation of this requirement, one often considers

1 The astute reader will notice that the probability distribution of the discrete codes
s may be nonuniform. Exploiting this circumstance in the assignment of code words
(shorter code words for more frequent codes), one can improve the code efficiency still
further.

14. Mathematical Analysis of Kohonen’s Model 226

the expectation value of the squared reconstruction error, i.e., the quantity

E[W] =
∫
‖v −ws(v)‖2P (v) dv, (14.2)

where P (v) is the probability density describing the distribution of data
vectors v. E[W] depends on the ensemble W of all code book vectors ws. A
frequently appropriate requirement demands the minimization of E subject
to the constraint of a fixed, prescribed number of code book vectors ws

(without such a constraint, E could be reduced to arbitrarily small positive
values simply by increasing the number of code vectors. However, this would
also entail an arbitrary reduction of the compression effect, since the effort
required to specify a single value of s increases with the numberN of reference
vectors).
The minimization of E with respect to reference vectors ws is a complicated,
nonlinear optimization problem, for which in most cases no closed solutions
are known. Hence, one must resort to iterative approximation methods. In
Chapter 15 we will see that these approximation methods are closely related
to Kohonen’s map-formation algorithm. The maps provided by Kohonen’s
procedure can be regarded in this context as code books of a vector quan-
tization procedure in which the topology preserving property of the maps
leads to a modification of the original error quantity (14.2).

14.3 Self-Organizing Maps and Vector Quantization

The construction of a good code book requires the minimization of the aver-
age reconstruction error E[w] with respect to the reference vectors wr. The
simplest procedure for this is gradient descent. Starting with initial values
wr(0), all reference vectors are changed according to

wr(t+ 1) = wr(t)−
ε

2
· ∂E
∂wr

(14.3)

= wr(t) + ε ·
∫

s(v)=r

(v −wr(t))P (v) dv, (14.4)

where we employed (14.2).
The integration condition s(v) = r restricts the region of integration to
those v-values for which wr is the most suitable reference vector (s(v) de-
fined through ‖ws(v) − v‖ = minr′ ‖wr′ − v‖). For a sufficiently small step

14. Mathematical Analysis of Kohonen’s Model 227

size parameter ε, repeated application of (14.4) leads to a decrease of E[W]
until a local minimum is reached. Equation (14.4) was first suggested by
Linde, Buzo, and Gray (1980) and is known as the “LBG”-procedure. Al-
though this procedure does not guarantee that a global minimum is achieved,
in many important cases the local minimum reached provides a sufficiently
good solution. If required, better local minima can be found by repeating
the procedure with different initial values or with the help of “annealing
techniques” (see, for example, Kirkpatrick et al. 1983).
However, carrying out the procedure in this form requires a knowledge of
the probability distribution P (v) of the data vectors. Usually, P (v) is not
known explicitly. This difficulty can be avoided by replacing (14.4) with the
simpler prescription

ws(v)(t+ 1) = ws(v)(t) + ε ·
(
v −ws(v)(t)

)
, (14.5)

where for each step (14.5) a new data vector v selected at random from
the (unknown) distribution is used. For sufficiently small step size ε, the
accumulation of many individual steps (14.5) will lead to an approximate
realization of the integration in (14.4) (the “step counting parameters” t of
(14.4) and (14.5) of course no longer agree).
Comparison of equation (14.5) with the adaptation rule (4.15) in Kohonen’s
model of self-organizing maps shows that (14.5) represents a special case of
Kohonen’s algorithm which results in the limit of vanishing neighborhood
cooperation (i.e., hrs = δrs). Kohonen’s algorithm can thus be understood
as a generalization of a vector quantization procedure for data compression.
The “synaptic strengths” wr correspond to the reference vectors, the map
provides the code book, and the choice of the excitation center s for an input
signal v defines the mapping v 7→ s(v), i.e., corresponds to the coding step
of the vector quantization procedure. The “receptive fields” Fs introduced
earlier (Eq.(99)) comprise just those input signals for which the coding step
leads to the same excitation center s.
The shift of a reference vector ws in the LBG-procedure (14.4) always occurs
in the direction of the center of gravity

∫
Fr

vPdv of the density distribution
of the input data, but restricted to the field Fs. This leads to a distribution
of reference vectors, in which each reference vector coincides with the center
of gravity of the data in “its” field Fs.
The introduction of the neighborhood functions hrs leads to a modification
of the distribution of reference vectors compared to standard vector quanti-

14. Mathematical Analysis of Kohonen’s Model 228

zation. The average shift of a reference vector then becomes

〈∆wr〉 =
∑
s

hrs

∫
Fs

(v −ws)P (v) dv, (14.6)

i.e., the shift of wr now occurs in the direction of the mean center of gravity
of all fields Fs, the contribution of each field being weighted by the neighbor-
hood function hrs. In a stationary state, every reference vector wr therefore
coincides with a weighted average density, where the weighting is taken over
a neighborhood and includes contributions with relative weight hrs from all
neighboring fields s for which hrs 6= 0.
This no longer leads to minimization of the reconstruction error (14.2), but
to a minimization of a modified expression. For the case of a one-dimensional
“chain” of reference vectors, each with n neighbors on both sides (i.e., hrs = 1
for ‖r − s‖ ≤ n, and hrs = 0 otherwise), one finds

E[W] =
∫
‖v −ws(v)‖rP (v) dv, (14.7)

where the exponent r now differs from the value r = 2 in (14.2) taking instead
the smaller value

r =
1

2
+

3

2(2n+ 1)2
(14.8)

(Ritter 1989). This can be interpreted as implying that the inclusion of
a neighborhood region in each adaptation step leads to a vector quantizer
which, relative to a vector quantizer minimizing the quadratic error quantity
(14.2), suppresses small quantization errors.

14.4 Relationship to Principal Component
Analysis

Gaining deeper insights into an observed phenomenon often depends crucially
on the discovery of a more effective description, involving a smaller number
of variables than needed before. This has motivated the search for algorithms
that could, at least to some extent, automate the generation of more effective
data descriptions.
A rather general and frequent case is the availability of a number of measure-
ments v(1),v(2), . . . of the parameters v = (v1, v2, . . . , vL)T of an experiment.

14. Mathematical Analysis of Kohonen’s Model 229

As a rule, the individual parameters vi will not vary completely indepen-
dently of one another, but rather will be correlated to a greater or lesser
extent, the type of correlation being often unknown. This entails the follow-
ing question: to what extent can one attribute the observed variation of the
measurements to a dependence of the vi on a smaller number of “hidden”
variables r1, r2, . . . , rD, D < L? If such dependency exists, one can find L
functions f1, . . . , fL of the hidden variables for which

vi = fi(r1, r2, . . . , rD), i = 1, . . . , L, (14.9)

holds. The variables ri enable then a more economical description of the
observed phenomenon compared to the directly available measurements vi.
In particular, they are more likely to correspond to the true “degrees of
freedom” that are involved and the number for which, in many cases, is
smaller than the number of observed parameters vi.
Here, one should keep in mind that the new parameters — if such a simplifi-
cation is possible — are not uniquely determined. Any invertible one-to-one
mapping of the ri onto an equal number of new variables r′i provides, a priori,
an equally “good” set of parameters for a description of the variation of the
original variables vi. Mathematically, each of these different, but equivalent
parametrizations can be regarded as a “coordinate system” on an abstract
manifold (indeed, this manifold characterizes the system independently of
any special choice of coordinates).
However, the non-uniqueness of the parameters ri makes their general deter-
mination difficult. The procedure most frequently applied, principal compo-
nent analysis, makes the simplifying assumption of a linear relationship be-
tween the variables ri and vi. This assumption can be viewed geometrically as
the introduction of a D-dimensional “hyperplane” lying in the L-dimensional
data space, the location and orientation of which are chosen such that every
data point can be approximated well by a point of the hyperplane (Fig. 14.1).
This corresponds to a representation of each data point in the form

v = w0 +
D∑
i=1

wiri(v) + dw(v), (14.10)

where w0, . . . ,wD ∈ RL are D + 1 vectors specifying the hyperplane and
r1(v), . . . , rD(v) are the new parameters belonging to data point v. Since,
as a rule, not all data points will be located within the hyperplane, for most
data points a nonvanishing distance dw(v) perpendicular to the hyperplane

14. Mathematical Analysis of Kohonen’s Model 230

results (the index w is a reminder of the fact that this distance depends
on the choice of hyperplane). The choice of hyperplane is optimal if the
vectors wi are determined such that the weighted mean square residual error
〈dw(v)2〉, where the weighting factor is the probability density P (v) of the
data, takes its smallest possible value, i.e.,

∫
‖v −w0 −

D∑
i=1

wiri(v)‖2P (v) dLv = Minimum! (14.11)

One can show that the solution of this minimization problem yields

w0 =
∫

vP (v) dLv, (14.12)

i.e., w0 coincides with the center of gravity of the data distribution, whereas
the remaining vectors wi, i = 1, 2 . . . , D, must form a basis of the eigenspace
spanned by those D eigenvectors of the correlation matrix that have the
largest eigenvalues

C =
∫

(v −w0)⊗ (v −w0)TP (v) dLv (14.13)

(see for example Lawley and Maxwell 1963) when ⊗ denotes the tensor prod-
uct of two vectors, i.e., (u⊗ v)jk = ujvk. One possible special choice for the
wi (i > 0) are the D normalized eigenvectors of C corresponding to the
largest eigenvalues. In this case, the new parameters ri turn out to be the
projections of the data vectors along D “principal axes” of their distribution
and are called “principal components” of the distribution:

ri = wi · v, i = 1, 2, . . . , D. (14.14)

Geometrically, this implies that the hyperplane passes through the center of
gravity w0 of the data distribution and is spanned by the D eigenvectors or
“principal axes” of the correlation matrix that have the largest eigenvalues.
One can show that the orientation of the hyperplane determined in this way
maximizes the variance of the perpendicular projection of the data points.
The D variables ri can thus be characterized by the property to account for
(with a linear ansatz) the total data variation as much as possible . However,
for the quality of such a description the adequacy of the underlying linearity
assumption is crucial: the more the actual distribution of data points deviates

14. Mathematical Analysis of Kohonen’s Model 231

Abb. 14.1: Description of a two-
dimensional data distribution (shaded
region) by a straight line (one-
dimensional “hyperplane”). The best
description of the distribution results
if the line passes through the center of
gravity w0 and is directed parallel to
the “principal eigenvector” w1 (i.e.,
the eigenvector with largest eigen-
value) of the correlation matrix C.

Abb. 14.2: If the form of the data
distribution is too “nonlinear,” no
straight line (lowerdimensional hyper-
plane) leading to a good description
of the data can be found.

from a hyperplane, the worse the description resulting from a projection onto
the principal axes of the distribution (Fig. 14.2).
Topology-preserving maps overcome this problem by replacing the linear
principal axes or hyperplanes with curved surfaces, which enable a better
description of nonlinear data distributions. Here, the maps approximate so-
called principal curves or principal surfaces, which represent a generalization
of linear principal axes or eigenspaces. In the following section, we discuss
this generalization and its relation to topology-preserving maps.

14.5 Principal Curves, Principal Surfaces and Topology
Preserving Maps

Principal component analysis yields a linear description of a prescribed data
distribution by a hyperplane that is characterized by the property (14.12),

14. Mathematical Analysis of Kohonen’s Model 232

(14.11). This can be interpreted geometrically as a minimization of the
“mean squared perpendicular distance” 〈dw(v)2〉 between the data points
and the hyperplane. This property motivates a generalization from a hyper-
plane to nonlinear manifolds (Hastie and Stuetzle 1989). Let us first con-
sider the one-dimensional case. Let f(s) be a “smooth” curve in the space
V parametrized by arc length. To every point v ∈ V one can define then a
distance df (v) to the curve f . Thus, for any such curve and for any density
distribution P (v) of points in V we can define a mean squared distance Df ,
given by

Df =
∫
d2
f (v)P (v) dLv. (14.15)

We call the curve f a principal curve of the density distribution P (v), if Df

is extremal, i.e., if the curve is stationary with respect to small, “sufficiently
smooth” deformations of the curve.2

Abb. 14.3: Principal curve as nonlinear generalization of the concept of principal
axes of a density distribution (shaded). We consider the center of gravity of the
density distribution in the region between two “infinitesimally seperated” curve
normals. For a principal curve, this center of gravity must always lie on the curve
itself.

Intuitively, this requirement demands that a principal curve pass “right
through the middle” of its defining density distribution. For better illustra-
tion of this situation, we consider a principal curve for the two-dimensional

2 A precise mathematical discussion requires consideration of the special situation at
the curve endpoints. We will not go into this problem here. The reader interested in
a more thorough discussion is refered to Hastie and Stuetzle (1989).

14. Mathematical Analysis of Kohonen’s Model 233

distribution presented in Fig. 14.3. The figure demonstrates that for the
principal curve the center of gravity of the density distribution enclosed by
two “infinitesimally” distant normals lies on the principal curve. This prop-
erty must hold, in fact, for every such pair of normals since, otherwise, the
mean squared distance Df could be decreased by a local deformation of the
curve in the direction of the deviation, which would contradict the extremal
property of Df . Conversely, the extremality of Df follows from the fact that
the center of gravity of every such “normal strip” coincides with a point on
the curve f .
Principal axes arise as a special case of principal curves. One has the following
theorem: If P (v) has zero mean and a straight line as principal curve, then
this principal curve coincides with one of the principal axes of the distribution
P (Hastie and Stuetzle 1989).
The generalization to principal surfaces and higher-dimensional “principal
manifolds” proceeds analogously to the one-dimensional case:

Definition of a principal surface: Let f(s) be a surface in the vector
space V , i.e., dim(f) = dim(V) – 1, and let df (v) be the shortest
distance of a point v ∈ V to the surface f . f is a principal surface
corresponding to a density distribution P (v) in V , if the “mean squared
distance”

Df =
∫
d2
f (v)P (v) dLv (14.16)

is extremal with respect to local variations of the surface.

Thus, Kohonen’s algorithm can be interpreted as an approximation proce-
dure for the computation of principal curves, surfaces, or higher-dimensional
principal manifolds. The approximation consists in the discretization of the
function f defining the manifold. The discretization is implemented by means
of a lattice A of corresponding dimension, where each weight vector wr indi-
cates the position of a surface point in the embedding space V . In Kohonen’s
algorithm, a volume region Fr was assigned to each point r of the surface,
containing all those points v for which wr is the surface point with the short-
est distance (Eq.(99)). Fr is thus the realization of a volume region which
in the continuous limit would be bounded by a “bundle of normals” of in-
finitesimal cross section penetrating the surface perpendicularly at the point
wr (Fig. 14.4). The crucial property of Kohonen’s algorithm now consists in
iteratively deforming the discretized surface in such a way that the center of

14. Mathematical Analysis of Kohonen’s Model 234

Abb. 14.4: 2d-Kohonen lattice as discrete approximation to a “principal sur-
face”. To each lattice point wr, a volume Fr is assigned which is bounded
by planes perpendicularly bisecting the distances to the lattice neighbors. The
lattice possesses the property of a principal surface, if each lattice point wr co-
incides with the center of gravity of the part of the density distribution enclosed
within the volume Fr. This state is approximately achieved as a result of the
adaptation procedure of Kohonen’s algorithm.

gravity of the density distribution P (v) contained within the volume Fr co-
incides with the surface point wr for every r. But this is just the (discretized
form) of the condition leading to extremality of the mean squared distance
Df and thus to the “principal surface property” of the stationary state.
As we saw in Section 14.3, however, this property results if and only if
hrs = δrs holds for the neighborhood function. Otherwise, in addition to
Fr, other volumes Fs contribute to the calculation of the equilibrium loca-
tion of wr. These volumes lie in a neighborhood about Fr whose extension
is determined by the size of the region within which hrs differs significantly
from zero. This has the effect of “broadening” the volume region over which
the averaging of the probability density is performed in order to obtain the
equilibrium location of the center of gravity for the determination of wr. This
is a desirable property for the practical application of the procedure, because
most of the data are not given as continuous distributions, but rather as
discrete distributions of a finite number of “trials.” Strictly speaking, con-

14. Mathematical Analysis of Kohonen’s Model 235

tinuous principal manifolds can no longer be defined for such discrete data. A
way out of this predicament consists in “smearing out” the data to obtain a
better approximation of their underlying probability distribution. The neigh-
borhood function hrs has just such a “smearing effect,” where the amount of
“smearing ” can be adjusted through the range σ of the neighborhood func-
tion. The optimal choice of σ depends on the density of the available data:
the principal surfaces thus obtained yield a good description of the data if
the neighborhood determined by σ contains sufficiently many data points.
For values of the “smearing ” that are too small, the surface attempts to
touch every single data point, and the desired “smooth” interpolation of the
data by a principal surface is lost. In the case of a one-dimensional lattice
A, we encountered this behavior (which in that context was desired) in the
“traveling salesman problem” of Chapter 6: the curve obtained at the end
of the simulation touched every one of the prescribed “cities.” The “Peano
curve” which, as discussed in Section 4.3, results for a one-dimensional lat-
tice of an infinite number of nodes embedded in a two-dimensional space is
another example. For a further discussion of this problem, see also Hastie
and Stuetzle (1989).
This section can thus be summarized as follows. Kohonen’s algorithm for
topology-preserving maps leads to a generalization of standard principal com-
ponent analysis. The mathematical background of this generalization con-
sists of a nonlinear extension of the concept of principal axes and eigenspaces
to so-called principal curves and principal manifolds. These nonlinear con-
cepts allow one to find dimensionally reduced descriptions even for very
nonlinear data distributions, and Kohonen’s model can be regarded as an
implementation of the required calculations in a neural network.

14.6 Learning as a Stochastic Process

Many learning systems, including Kohonen’s self-organizing maps, achieve
their goal by means of a sequence of finite adaptation steps. Every single
adaptation step results from an “interaction” with the environment. Through
these “interactions” information about the environment is obtained. To en-
sure that the whole sensory space V is explored a random process is employed
to generate the sequence of adaptation steps. For example, in the case of sen-
sory maps each of the sensory stimuli v are chosen at random.
Nevertheless, the assumption of some probability distribution P (v) (usually

14. Mathematical Analysis of Kohonen’s Model 236

unknown to the system) for the sensory stimuli frequently provides a reason-
able idealization (at least in a stationary environment). The random sequence
of input stimuli v leads to a corresponding random sequence of adaptation
steps. Let us denote by w the ensemble of system parameters which are
subject to the learning process (in our case w = (wr1 ,wr2 , . . . ,wrN) is again,
as in Section 5.4, the ensemble of all synaptic strengths of a network). Each
adaptation step then induces a transformation

wnew = T(wold,v). (14.17)

Here, v is a random variable with probability distribution P (v). Equa-
tion (14.17) does not describe a fixed, deterministic sequence, but rather a
“stochastic process.” The simulation of such a process provides in each case
only one of its infinitely many realizations, a so-called “sample,” of the pro-
cess. To what extent a specific realization represents a “typical” case can
only be judged by sufficiently frequent repetition of the simulation. In this
way, an “ensemble” of realizations is created, by means of which typical re-
alizations can be identified through their particularly frequent occurrence.
Thus, ideally one would like to know the distribution function S̃(w, t) of the
realizations of an ensemble of infinitely many simulation runs after t time
steps, t = 1, 2, An intuitive picture of S̃(w, t) can be given as follows:
We consider the space spanned by the synaptic strengths of a network and
regard each network of the ensemble as a point with position vector w in this
space (for a network with N neurons and D synaptic strengths per neuron,
this space is a N ·D-dimensional space). The ensemble can thus be regarded
as a cloud of points in this space, and S̃(w, t) is the density distribution of
the points in the cloud. Thus, after t adaptation steps, an “infinitesimal”
volume element dNw centered at w contains a fraction S̃(w, t) dNw of all
ensemble members.
If S̃(w, t) is known, then all of the statistical properties of the stochastic
process can be calculated from it. A typical question can be posed as follows:
one has some function F (w) of the synaptic strengths w and is interested
in the average value 〈F 〉t to be expected after t adaptation steps. This
“expectation value” is then given by

〈F 〉t =
∫
F (w)S̃(w, t) dNw. (14.18)

Hence, S̃(w, t) contains all information to calculate the expectation values
of arbitrary functions of the system parameters w. If, for example, one

14. Mathematical Analysis of Kohonen’s Model 237

wishes to know the average value w̄ of the synaptic strengths, one chooses
F (w) = w, whereas the choice F (w) = (w − w̄)2 yields their mean squared
deviation due to the statistical sequence of adaptation steps.
By sufficiently many simulations, one can in principle generate a large en-
semble and with it the approximate distribution function S̃(w, t). However,
the required computational effort rapidly rises to an unfeasible level as the
desired accuracy and the complexity of the stochastic process increase. In
that case, the derivation of analytic results becomes indispensable. This will
be the aim of the following sections. The technical point of departure is the
derivation of a so-called Fokker-Planck equation, which describes the evo-
lution of the distribution function S̃(w, t) in the vicinity of an equilibrium
state and which is valid in the limit of small learning step size ε. From this
we obtain a necessary and sufficient condition for convergence of the learning
procedure to an asymptotic equilibrium state during the final phase of the
algorithm. The condition involves an appropriate decrease of the learning
step size ε(t). Provided the distribution P (v) is restricted to a multidimen-
sional box volume and is constant there, the statistical fluctuations about the
asymptotic equilibrium state can be computed explicitly. From this result,
one can conclude that the learning step size must be chosen inversely propor-
tional to the number of lattice points in order that the remaining fluctuations
not exceed a fixed tolerance threshold. We also investigate the ability of the
algorithm to automatically use the directions of maximal signal variation as
the primary map dimensions. We show that this property derives from an
instability which arises when the variance of the sensory events v along a
direction which is “poorly” represented by the map exceeds a critical value.
The occurrence of this instability manifests itself by strong fluctuations of a
characteristic wavelength. Both the critical variance and the characteristic
wavelength are computed for the case of a multidimensional box volume.

14.7 Fokker-Planck Equation
for the Learning Process

For the derivation of a Fokker-Planck equation that governs the stochastically
driven learning process, we consider an ensemble of systems whose states w
after t learning steps are distributed according to a distribution function
S̃(w, t). As in Chapter 5, we assume that all systems are close to the same
asymptotic equilibrium state w̄ and that the learning step size ε is sufficiently

14. Mathematical Analysis of Kohonen’s Model 238

small so that transitions into the neighborhood of different equilibrium states
can be neglected. We thus restrict our attention to the asymptotic phase of
the convergence behavior which, actually, takes up the largest part of the
total computing time in simulations. We obtain the new distribution S̃(w, t+
1) after an additional learning step from the previous distribution S̃(w, t) by
integrating over all transitions from states w′ to states w. Each transition
contributes with a weight given by the product of the transition probability
Q(w,w′) from w′ to w to the probability S̃(w′, t) of the occurrence of the
state w′ in the ensemble. Both factors were first introduced in Section 5.4.
This yields

S̃(w, t+ 1) =
∫
dNw′ Q(w,w′)S̃(w′, t)

=
∑
r

∫
dNw′

∫
Fr(w′)

dv P (v)δ(w −T(w′,v, ε))S̃(w′, t)(14.19)

where P (v) and T(w′,v, ε) are defined in Section 5.4. In order to carry out
the w′-integration, which is taken over all N vector variables w′r, r ∈ A, we
require the inverse Jacobian

J(ε) =

[
det

∂T

∂w

]−1

. (14.20)

By assuming for the moment v ∈ Fs(w
′), we obtain

J(ε) =

[∏
r

(1− εh0
rs)

]−d
. (14.21)

Here, d is the dimension of the input vectors v and we have denoted the
excitatory response by h0

rs. Since h0
rs should only depend on the difference

r− s, J is independent of s and depends only on ε.
The w′-integration yields

S̃(w, t+ 1) = J(ε)
∑
r

∫
χr

(
T−1(w,v, ε),v

)
×P (v)S̃

(
T−1(w,v, ε), t

)
dv. (14.22)

Here, χr(w,v) is the characteristic function of the region Fr(w), i.e.,

χr(w,v) =
{

1, if v ∈ Fr(w);
0, otherwise.

(14.23)

14. Mathematical Analysis of Kohonen’s Model 239

T−1 denotes the inverse of the transformation T(. ,v, ε). For v ∈ Fs(w),
T−1(w,v, ε) is given by[

T−1(w,v, ε)
]
r

= wr + εhrs(wr − v), (14.24)

where we have introduced the new function hrs := h0
rs/(1 − εh0

rs). In this
section hrs stands for a rescaled excitatory response differing from the original
excitatory response h0

rs only in order ε.
For ε� 1 and v ∈ Fs(w), we can expand S̃(T−1(w,v, ε), t) as

S̃(T−1(w ,v, ε), t) = S̃(w, t) + ε
∑
rm

hrs(wrm − vm)
∂S̃

∂wrm

+

+
1

2
ε2
∑
rm

∑
rn

hrshr′s(wrm − vm)(wr′n − vn)
∂2S̃

∂wrm∂wr′n

+ O(ε3) (14.25)

Correspondingly, J(ε) can be expanded as

J(ε) = 1 + εJ1 +
1

2
ε2J2 + . . . , (14.26)

where
J1 = d ·

∑
r

hrs = d ·
∑
r

hr0 (14.27)

is independent of s. Substituting Eq.(14.25) and (14.26) into (14.22) while
keeping derivatives up to second order and of these only the leading order in
ε, we obtain

1

ε

[
S̃(w, t + 1)− S̃(w, t)

]
= J1S̃(w, t)

+
∑
s

∫
Fs(w)

dv P (v)
∑
rm

hrs(wrm − vm)
∂S̃

∂wrm

+
ε

2

∑
s

∫
Fs(w)

dv P (v)

×
∑
rm

∑
rn

hrshr′s(wrm − vm)(wr′n − vn)
∂2S̃

∂wrm∂wr′n
. (14.28)

14. Mathematical Analysis of Kohonen’s Model 240

In the vicinity of the stationary state we expect S̃(w, t) to be peaked around
the asymptotic equilibrium value w̄. Therefore, we shift variables and define

S(u, t) := S̃(w̄ + u, t), (14.29)

i.e., S(u, t) is the distribution function of the deviations u from the asymp-
totic equilibrium value w̄. In what follows it is useful to introduce the quan-
tities

P̂r(w) : =
∫

Fr(w)

dvP (v), (14.30)

v̄r : =
1

P̂r(w)

∫
Fr(w)

dvP (v)v, (14.31)

Vrm(w) : =
∑
s

(wrm − v̄sm)hrsP̂s(w), (14.32)

Drmr′n(w) : =
∑
s

hrshr′s

[
(wrm − v̄sm)(wr′n − v̄sn)P̂s(w)

+
∫
Fs(w)

(~vm~vn − v̄smv̄sn)P (v)dv
]

(14.33)

P̂r(w) is the probability for neuron r to be selected as excitation center,
and v̄r is the expectation value of all input signals giving rise to this case.
−Vrm(w) can be interpreted as the expectation value for the change δwrm

(change of the synapse between incoming axon m and neuron r) under
an infinitesimal learning step, but normalized to ε = 1. Correspondingly,
Drmr′n(w) is the expectation value of the product δwrmδwr′n, also normal-
ized to ε = 1.
For sufficiently small ε we can evaluate the O(ε)-term in (14.28) directly
at w = w̄ and replace S(u, t + 1) − S(u, t) by ∂tS(u, t). This yields the
Fokker-Planck equation

1

ε
∂tS(u, t) = J1S(u, t) +

∑
rm

Vrm(w̄ + u)
∂S(u, t)

∂urm

+
ε

2

∑
rmr′n

Drmr′n(w̄)
∂2S(u, t)

∂urm∂ur′n
. (14.34)

The term with the first derivative represents a “back driving force.” It van-
ishes for u = 0 and must therefore be kept up to linear order in u. This

14. Mathematical Analysis of Kohonen’s Model 241

gives

∑
rm

Vrm(w̄ + u)
∂S(u, t)

∂urm

= −
∑
rm

∂Vrm

∂wrm

S +

+
∑

rmr′n

∂

∂urm

(
∂Vrm

∂wr′n
(w̄)ur′nS

)
. (14.35)

In order to obtain a more convenient form of
∑

rm ∂Vrm/∂wrm, we make use
of

Vr(w) =
∑
s

hrs

∫
Fs(w)

dvP (v)(wr − v)

=
1

ε

∫
dv P (v)

(
wr −T(w,v, ε)r

)
(14.36)

and obtain ∑
rm

∂Vrm

∂wrm

=
1

ε

∫
dv P (v) Tr

(
1− ∂T

∂w

)
(14.37)

where Tr denotes the trace operation. The deviation of the Jacobi matrix
∂T/∂w from the unit matrix is of order ε. Hence, ∂T

∂w
= 1+εA, and together

with (14.20), one has

J(ε) = det(1− εA) +O(ε2) = 1− ε · Tr A +O(ε2). (14.38)

Comparison with (14.26) yields

J1 = − Tr A =
1

ε
Tr

(
1− ∂T

∂w

)
. (14.39)

Substituting this into Eq. (14.37), we obtain the relation

∑
rm

∂Vrm

∂wrm

= J1. (14.40)

This leads us to the final form of our equation for the distribution density
S(u, t)

1

ε
∂tS(u, t) =

∑
rmr′n

∂

∂urm

Brmr′nur′nS(u, t)

+
ε

2

∑
rmr′n

Drmr′n
∂2S(u, t)

∂urm∂ur′n
(14.41)

14. Mathematical Analysis of Kohonen’s Model 242

where the constant matrix B is given by

Brmr′n :=

(
∂Vrm(w)

∂wr′n

)
w=w̄

. (14.42)

(14.41 is the desired Fokker-Planck equation for the asymptotic phase of the
map formation process.
One can derive explicit expressions for the expectation value ūrm(t) = 〈urm〉S
and the correlation matrix Crmsn(t) = 〈(urm − ūrm)(usn − ūsn)〉S of the dis-
tribution S (see, for example, van Kampen 1981; Gardiner 1985). Defining

Y(t) = exp
(
−B

∫ t

0
ε(τ) dτ

)
, (14.43)

one obtains for ū(t), The vector with components ūrm,

ū(t) = Y(t)ū(0). (14.44)

Here, ū(0) is the expectation value at t = 0. The quantity ū(t) gives the
trajectory of the expectation value of the synaptic strengths and provides a
good approximation for the evolution of the system in the limit of sufficiently
small learning step size ε. For the correlation matrix C(t), one has (van
Kampen, 1981)

C(t) = Y(t)
[
C(0) +

t∫
0

ε(τ)2Y(τ)−1D(Y(τ)−1)T dτ
]
Y(t)T . (14.45)

If the initial distribution is δ-like, i.e., if S(u, 0) =∏
rm δ(urm − u(0)rm) and C(t) is positive definite, then S(u, t), the solution

of Eq. (14.410, is a Gaussian distribution

S(u, t) = det(2πC)−1/2 exp

(
−1

2
(u− ū)TC−1(u− ū)

)
. (14.46)

If ε(t) is chosen such that the initial conditions become irrelevant in the limit
t→∞, for example if ε = constant, the stationary solution can by obtained
by substituting the asymptotic values for C and ū. If B and D commute and
ε is constant, a further simplification occurs. In this case, one can carry out
the integration of (14.45) explicitly and obtains for the stationary distribution
the Gaussian (14.46) with

C = ε (B + BT)−1D. (14.47)

14. Mathematical Analysis of Kohonen’s Model 243

14.8 Convergence Condition on Sequences of Learning
Step Sizes

The goal of the algorithm is convergence to an asymptotic equilibrium state
w̄. In order for this to occur with probability one for every member of the
ensemble, the sequence of learning step sizes ε(t) must decrease sufficiently
slowly with the number t of learning steps, so that both the variance of the
distribution function and the average ū(t) of its deviation w̄ vanish in the
limit t→∞. In the following, we derive a necessary and sufficient condition
for this.
From (14.45), one has (van Kampen 1981)

Ċ = −ε(t)
(
BC + CBT

)
+ ε(t)2D. (14.48)

Hence, one obtains for the time derivative of the Euclidean matrix norm
‖C‖2 :=

∑
rmr′n C2

rmr′n

1

2
∂t‖C‖2 = −ε(t) Tr C(B + BT)C + ε(t)2 Tr DC. (14.49)

In the following, we require that C remains bounded if ε(t) is constant and the
initial correlation matrix C(0) is sufficiently small, but otherwise arbitrarily
chosen. This is a stability requirement on the equilibrium state w̄. Since C
and D are both symmetric and nonnegative, one has Tr DC ≥ 0. Hence,
by the stability requirement, (B + BT) must be positive. Thus, there exist
constants β > 0 and γ > 0 such that

Tr C
[
B(w̄) + B(w̄)T

]
C > β‖C‖2/2, (14.50)

and, hence,
∂t‖C‖2 ≤ −ε(t)β‖C‖2 + ε(t)2γ. (14.51)

Integration yields the inequality

‖C(t)‖2 ≤ γ

t∫
0

ε(t′)2 exp
(
−β

∫ t

t′
ε(t′′) dt′′

)
dt′. (14.52)

Every positive function ε(t) for which the RHS of (14.52) vanishes asymp-
totically guarantees the desired convergence of C to zero. In the appendix

14. Mathematical Analysis of Kohonen’s Model 244

at the end of this chapter, it is shown that this condition is equivalent to the
requirement limt→∞ ε(t) = 0, together with

lim
t→∞

∫ t

0
ε(t′) dt′ =∞. (14.53)

With limt→∞C(t) = 0, this also guarantees limt→∞ ū(t) = 0 and, hence,
convergence to the equilibrium average w̄ with probability one. This crite-
rion cannot be weakened: because of Eq.(14.28), limt→∞ ε(t) = 0 is neces-
sary for the asymptotic vanishing of the variance, and according to (14.43)
and (14.44), condition (14.53) is required for limt→∞ ū(t) = 0. Hence, for
convergence to an asymptotic equilibrium state w̄ satisfying the stability
requirement, we have shown the following:

Let ε(t) > 0 for all sufficiently small t so that the Markov process
(4.15) can be described by the Fokker-Planck equation (14.41) in the
neighborhood of an equilibrium state. Then the two conditions

lim
t→∞

t∫
0

ε(t′) dt′ = ∞, (14.54)

lim
t→∞

ε(t) = 0 (14.55)

together are necessary and sufficient for the convergence to w̄ of any
initial state lying sufficiently close to w̄.

The demand (14.54) is identical to the first convergence condition of Cottrell
and Fort (1986) for a closely related process. Their second condition, the re-
quirement

∫∞
0 ε(t)2 dt <∞, is overly strict in the present case and has been

replaced by the weaker condition (14.55). In particular, (14.54) and (14.55)
are satisfied for all functions ε(t) ∝ t−α with 0 < α ≤ 1. In contrast, the con-
ditions of Cottrell and Forts require 1/2 < α ≤ 1. For α > 1 or exponential
vanishing of ε(t), (14.54) is no longer satisfied, and a nonvanishing residual
deviation remains even in the limit t→∞. Nevertheless, (14.44) and (14.45)
show that the residual error ū of the average becomes exponentially small
with increasing

∫∞
0 ε(t) dt. For

∫ t
0 ε(t

′) dt′ � 1, the main contributions to
the residual error come from the equilibrium fluctuations of the correlation
matrix C. Hence this error is of order ε. Thus, in practical applications,
aside from a small residual ε(t), the condition,

∫
ε(t)dt� 1 is sufficient, and

the precise behavior of ε(t) is of little importance as long as the decrease is
monotonic.

14. Mathematical Analysis of Kohonen’s Model 245

14.9 Uniform Signal Density Restricted to a Rectangular
Box

In the following sections we consider a Kohonen net which is a two-dimensional
lattice A with a three-dimensional input space V . The probability density
P (v), v ∈ V is assumed to be uniform and restricted to the region of a rect-
angular box. We also assume that the learning step size ε varies sufficiently
slowly with the number of learning steps such that at any time t the density
S(u, t) may be replaced by its stationary value for fixed ε. Since the input
vectors v are drawn from a volume of dimension three, i.e., larger than the di-
mension two of the Kohonen net, the Markov process will attempt to project
onto the Kohonen net those two directions along which the distribution has
its largest variance. In this way, the resulting map is a two-dimensional pro-
jection reproducing the higher-dimensional region V as faithfully as possible.
Figure 14.5 illustrates this for a three-dimensional rectangular box V of size
40×40×10 and a 40×40-lattice A. Figure 14.5a shows the resulting map
again as an “imbedding” in the box V . Since the box is relatively flat, the
map is basically a simple projection onto the subspace that is aligned with
the two longest sides of the rectangular box.
For nonvanishing ε, the learning steps cause continual fluctuations about
an average “equilibrium map.” These fluctuations appear in Fig. 14.5a as
shallow “bumps” and as weak tangential distortions of the lattice. These
“bumps”are destortions which will be described quantitatively in this section.
If inputs in case of a d-dimensional input space scatter too much along some
or all of the additional d−2 dimensions not represented by a two-dimensional
Kohonen net, then for many vectors v the restriction of the projection to a
reproduction of the two principal directions of V would be unsatisfactory. In
this case, the simple projection just described loses its stability and changes
into a more complicated equilibrium map. Usually, this new map possesses a
lower symmetry and corresponds to an imbedding of the lattice A in V that
is strongly folded in the direction of the additional dimensions. This prop-
erty, known as “automatic choice of feature dimensions,” (Kohonen 1984a)
is apparent in Fig. 14.5b. In comparison to Fig. 14.5a, the height of the
box was increased from 10 to 14 units. The symmetric projection is now no
longer stable, and the corresponding imbedding seeks a new configuration.
This new configuration breaks the symmetry of the probability distribution
P (v) in order to enable a better reproduction of the vertical variation of v

14. Mathematical Analysis of Kohonen’s Model 246

by means of an appropriate folding. In the following, we will show that this
change to a new equilibrium state arises at a critical value 2s∗ of the height
of the box and that, approaching that value from below, the maps exhibit
increasing equilibrium fluctuations of a typical wavelength λ∗. Both values
s∗ and λ∗ will be calculated in the following.

Abb. 14.5: “Snapshot” of a Monte Carlo simulation for a 40×40-Kohonen net
A and a 40 × 40 × 10 units large rectangular box representing the input space
V . Due to the sufficiently small box height (10 units), the resulting mapping is
essentially a projection perpendicular to the two principal (long) directions of the
box. Fluctuations about the equilibrium value due to the statistical sequence of
learning steps are evident as shallow “bumps.”

In the mapping of a multidimensional box volume (dimension d) onto a two-
dimensional neural net A, each of the d−2 “height dimensions” contributes in
the same manner and independently of the other dimensions to the instability
and to the equilibrium fluctuations. Hence, there is no loss of generality if
we consider a three-dimensional box V . We choose for A a square lattice
of N×N points3 and for V the volume 0 ≤ x, y ≤ N, − s ≤ z ≤ s. This
yields P (v) = [2sN2]−1 as a homogeneous distribution. In order to avoid
boundary effects, we assume periodic boundary conditions along the x- and
y-directions. From symmetry considerations, we expect that for sufficiently
small s the assignment w̄r = r, r = mex + ney represents the average
for S̃(w, t → ∞). In this case, the state w̄ is stable up to equilibrium
fluctuations. The equilibrium fluctuations can be computed from Eq. (14.46).
In the following, let S(u) = limt→∞ S(u, t) be the stationary distribution

3 Note that the number of lattice points is now N2 instead of N .

14. Mathematical Analysis of Kohonen’s Model 247

Abb. 14.6: The same simulation as in
Fig. 14.5a, but for a box height of 14 units. In this case, the state of
the net in Fig. 14.5a is no longer stable and a less symmetric configuration
emerges. The resulting imbedding achieves a better reproduction of the vertical
direction of the map by means of folds extending along this direction.

of the deviations u = w − w̄ from the average value (let ε be constant).
Due to translational invariance , both Drmr′n and Brmr′n depend only on the
difference r− r′ and on n and m. Hence, we can decouple Eq. (14.41) if we
express S(u) in terms of Fourier amplitudes

ûk =
1

N

∑
r

eik·rur. (14.56)

In fact, the individual amplitudes are distributed independently of one an-
other, i.e., one can express

S(u) =
∏
k

Ŝk(ûk), (14.57)

and obtains a set of mutually independent, stationary Fokker-Planck equa-
tions for the distributions Ŝk of the individual modes∑

mn

B̂(k)mn
∂

∂um
unŜk(u) +

ε

2

∑
mn

D̂(k)mn
∂2

∂um∂un
Ŝk(u) = 0. (14.58)

Here, D̂(k) and B̂(k) are the d×d matrices

D̂(k) =
∑
r

eik(r−r′)Drr′

=
1

N2

[
(∇kĥ(k))(∇kĥ(k))T + M ĥ(k)2

]
(14.59)

14. Mathematical Analysis of Kohonen’s Model 248

and

B̂(k) =
ĥ(0)

N2

[
1− ĥ(k)

ĥ(0)
â(k)

]
− 1

N2

(
i∇kĥ(k)

)
b̂(k)T . (14.60)

For a more compact notation, we defined k := (kx, ky, 0)T . M is given by

M =
1

2s

∫
Fr(w̄)

dv (vvT − v̄rv̄r
T) =

 1/12 0 0
0 1/12 0
0 0 s2/3

 , (14.61)

i.e., M is the correlation matrix of the distribution P̂ (v) restricted to one
of the regions Fr(w̄). Since all of the Fr(w̄) are equal and since P̂ (v) is
constant, M is independent of the choice of r. The function ĥ(k) is the
discrete Fourier transform of the neighborhood function hrs, i.e.,

ĥ(k) =
∑
r

eik·rhr0. (14.62)

The matrix â(k) and the vector b̂(k) are the Fourier transforms of the func-
tions

arr′ : =
∂v̄r(w)

∂wr′

∣∣∣∣∣
w̄

, (14.63)

brr′ : =
1

P̂r

∂P̂r(w)

∂wr′

∣∣∣∣∣
w̄

. (14.64)

respectively. The quantities â and b̂ depend only on the geometry of the
vectors wr in the equilibrium state, but not on the excitatory response h. The
matrix â describes the shift of the center of gravity of a region Fr under an
infinitesimal change of the equilibrium state, and b̂ describes essentially the
corresponding volume change of Fr. In the present case, Fr(w) is the volume
that is enclosed by the four planes perpendicularly bisecting the distances
wr − wr′ (r′ are the nearest lattice neighbors of r) together with the two
planes z = ±s. For this geometry and after some calculation, one obtains

arr′ = δrr′

 2/3 0 0
0 2/3 0
0 0 4s2/3

−

−1/4 0 0
0 1/12 0
0 0 s2/3

 · (δr+ex,r′ + δr−ex,r′)

14. Mathematical Analysis of Kohonen’s Model 249

−

 1/12 0 0
0 −1/4 0
0 0 s2/3

 · (δr+ey ,r′ + δr−ey ,r′) (14.65)

and

brr′ =
1

2

∑
n=±ex,ey

n (δr+n,r′ − δrr′). (14.66)

The corresponding Fourier transforms are then

â(k) =
1

6
(4 + 3 cos kx − cos ky)exe

T
x

+
1

6
(4− cos kx + 3 cos ky)eye

T
y

+
2s2

3
(2− cos kx − cos ky)eze

T
z , (14.67)

b̂(k) = − i · (ex sin kx + ey sin ky). (14.68)

With this, we can discuss the behavior of the system in the vicinity of the
state w̄. We can see from limk→0 b̂(k) = 0 and limk→0 âmn(k) = δmn(1 −
δm,3) that, in the limit of small wavenumbers, for deviations of w̄ along
the x- and y-directions the restoring force vanishes, which is consistent with
the two vanishing eigenvalues of B̂(k) in this limit. Hence, long-wavelength
fluctuations of these modes can become very large. In contrast, the restoring
force to displacements along the z-direction is always nonvanishing even at
k = 0.
However, displacements in the z-direction are subject to a different insta-
bility. Since â33(k) ∝ s2, B̂(k) according to (14.60) can develop a negative
eigenvalue for these modes, if s becomes too large. Hence, some or all of these
modes can become unstable if s exceeds a critical value s∗. If the variance of
P (v) along the “transverse” dimensions is too large, this causes the system
to assume a new equilibrium state which as a rule breaks the symmetry of
the distribution P (v). A precursor to this symmetry breaking is an increase
of fluctuations of a characteristic wavelength λ∗.
For a more detailed analysis and calculation of λ∗ and s∗ we now turn to the
two cases of long- and short-range interactions (neighborhood functions) hrs.

14. Mathematical Analysis of Kohonen’s Model 250

14.9.1 Long-Range Interaction

We consider as the interaction a Gaussian

hrr′ =
∑
s

δr+s,r′ exp

(
− s2

2σ2

)
(14.69)

with range σ, where we require 1� σ � N . In this case, we can replace the
discrete Fourier series to a good approximation by the continuous transform
and obtain

ĥ(k) = 2πσ2 exp(−σ2k2/2). (14.70)

Substitution of (14.70 into (14.51) yields

D̂(k) =
4π2σ4

N2

[
kkTσ4 + M

]
exp(−k2σ2). (14.71)

The nonvanishing elements of B̂(k) are

B̂11 =
2πσ2

N2

[
1− 1

6
(4 + 3 cos kx − 6kxσ

2 sin kx − cos ky) · e−
1
2
k2σ2

]
,

(14.72)

B̂22 =
2πσ2

N2

[
1− 1

6
(4− cos kx − 6kyσ

2 sin ky + 3 cos ky) · e−
1
2
k2σ2

]
,

(14.73)

B̂33 =
2πσ2

N2

[
1− 2s2

3
(2− cos kx − cos ky) exp(−k2σ2/2)

]
, (14.74)

B̂12 =
2πσ4

N2
· kx sin ky · exp(−k2σ2/2), (14.75)

B̂21 =
2πσ4

N2
· ky sin kx · exp(−k2σ2/2). (14.76)

In order to simplify these expressions, we use the fact that for σ � 1 either
e−σ

2k2
is very small or kx and ky admit an expansion of the angular functions.

Neglecting as well the k2-terms compared to k2σ2-terms, we obtain for B̂ the
simpler form

B̂(k) ≈ 2πσ2

N2

[
1−

(
1− σ2kkT +

s2k2

3
eze

T
z

)
exp

(
−k2σ2/2

)]
. (14.77)

14. Mathematical Analysis of Kohonen’s Model 251

In this approximation, B̂(k) and D̂(k) commute with each other and, in fact,

possess the same eigenvectors, i.e., ~ξ3 = ez, ~ξ2 = k and the vector ~ξ1 = k⊥

perpendicular to both of these. The corresponding eigenvalues λBn and λDn
for B̂(k) and D̂(k) are

λB1 (k) =
2πσ2

N2

(
1− e−k2σ2/2

)
;

λD1 (k) =
π2σ4

3N2
e−k

2σ2

; (14.78)

λB2 (k) =
2πσ2

N2

(
1− (1− k2σ2)e−k

2σ2/2
)
;

λD2 (k) =
π2σ4

3N2
(12k2σ4 + 1)e−k

2σ2

; (14.79)

λB3 (k) =
2πσ2

N2

(
1− s2k2

3
e−k

2σ2/2
)
;

λD3 (k) =
4π2σ4

3N2
s2e−k

2σ2

. (14.80)

B̂ gives the strength of the “drift term” driving the expectation value of the
distribution toward the equilibrium average. Hence, by (14.78) and (14.79),

the system exhibits more “stiffness” against displacements along the ~ξ2-mode
and, thus, parallel to k than against displacements along the ~ξ1-mode and,
thus, perpendicular to k. For wavelengths large compared to the range σ
of hrs, we have asymptotically λB2 (k) = 3λB1 (k) = O(k2), i.e., the ~ξ2-mode

is three times stiffer as the ~ξ1-mode, and both “stiffnesses” vanish in the
limit k → 0. However, this does not hold for the ~ξ3-mode, which owes its
stability to sufficiently small values of s. If s becomes too large, then λB3 (k)
can become negative for a whole band of k-values. The corresponding modes
~ξ3(k) then become unstable, the chosen state w̄ no longer represents the
average equilibrium value, and the system seeks a new equilibrium. This can
be seen even more clearly from the fluctuations of the corresponding mode
amplitudes un. From (14.47) follows

〈un(k)2〉 =
ελDn (k)

2λBn (k)
, n = 1, 2, 3. (14.81)

14. Mathematical Analysis of Kohonen’s Model 252

All other correlations vanish. We thus obtain

〈u1(k)2〉 = επσ2 exp(−k2σ2)

12(1− exp(−k2σ2/2))
, (14.82)

〈u2(k)2〉 = επσ2 (12k2σ4 + 1) exp(−k2σ2)

12− 12(1− k2σ2) exp(−k2σ2/2)
, (14.83)

〈u3(k)2〉 = επσ2 s2 exp(−k2σ2)

3− s2k2 exp(−k2σ2/2)
. (14.84)

For the fluctuations of u1 and u2, the deviation of wr from the equilibrium
w̄r lies along one of the two principal directions of the map. In the map,
these fluctuations affect the image locations r of the region Fr and, therefore,
are called “longitudinal” in what follows. From (14.82) and (14.83), we see
that these fluctuations for wavelengths shorter than σ are practically absent.
Hence, the main contribution to statistical distortions of the map comes from
fluctuations of long wavelength, whose amplitudes are subject to a 1/k2-
singularity. For an estimate of the influence of these fluctuations, we expand
(14.82) for the lowest possible wavenumber k = 2π/N , where we assume
kσ = 2πσ/N << 1. This yields

〈u2
1〉1/2 ≈ N

√
ε/24π ≈ 0.12Nε1/2. (14.85)

In order for this not to exceed a fixed, prescribed number of lattice constants,
ε must be chosen inversely proportional to the number N2 of lattice points
of A. For practical applications, these distortions, which are smooth and
distributed over large distances, are not disturbing, since one is often mainly
interested in the correct, two-dimensional reproduction of the neighborhood
relationships in the original higher-dimensional space V . Therefore, for many
applications, a significantly larger learning step size ε is allowable even in the
final phase of the algorithm.
The u3-mode describes the deviation of each wr along the direction perpen-
dicular to the local imbedding plane of A in V . According to (14.84), its
amplitude remains bounded, in contrast to u1 and u2, even at k = 0, but, as
mentioned previously, its stability depends crucially on s. Instability occurs
for s-values for which the denominator of (14.84) no longer is positive for

all k-values. This is the case for s > s∗ = σ
√

3e/2 ≈ 2.02 σ. For s = s∗,

the wavelength of the marginally unstable mode is λ∗ = σπ
√

2 ≈ 4.44 σ.
A mapping is hence stable if and only if the variance of P (v) transverse to

14. Mathematical Analysis of Kohonen’s Model 253

the imbedding plane does not exceed a maximal value that is proportional
to the range σ of hrs. If necessary, the algorithm enforces this condition by
an appropriate folding of the imbedding. By the choice of σ, one can control
what variance will be tolerated before folds occur. If s approaches the limit-
ing value s∗ from below, the system exhibits fluctuations which grow as the
difference to s∗ becomes smaller, and which are particularly evident in the
vicinity of the wavelength λ∗. The fluctuations, in case of further increasing
s, lead to a destabilization of the symmetric equilibrium distribution above
s∗.

14.9.2 Short-Range Interaction

We consider now the short-range limit, in which hrs extends only as far as
the nearest neighbors, i.e.,

hrs = δrs +
∑

n=±ex,ey

δr+n,s. (14.86)

In this case holds
ĥ(k) = 1 + 2 cos kx + 2 cos ky. (14.87)

For the representative case ky = 0, k := kx, one has

〈u1(k)2〉 =
ε · (3 + 2 cos k)2

4(1− cos k)(9− 2 cos k)
, (14.88)

〈u2(k)2〉 =
ε · (44 sin2 k + 12 cos k + 13)

12(1− cos k)(11 + 6 cos k)
, (14.89)

〈u3(k)2〉 =
εs2 · (1 + 2κ)2

2(4s2κ2 − 6s2κ+ 15− 4s2)
, (14.90)

with κ := cos kx + cos ky. Expression (14.90) also holds for ky 6= 0. There is

again a 1/k2-singularity of the longitudinal fluctuations. As before, B̂11(k) >
B̂22(k), i.e., the restoring force for displacements in the direction of k is again
higher than for displacements perpendicular to it. Due to D̂11(k) = D̂22(k),
this behavior arises also for the smaller fluctuations of the “stiffer” mode.
By considerations similar to those of section 14.9.1, one has 〈u1(k)2〉1/2max ≈
0.2ε1/2N . Hence, the limitation of the fluctuations to a fixed number of lattice
constants requires ε ∝ 1/N2. The critical limit for the occurrence of the

transverse instability becomes s∗ =
√

12/5 = 1.549, and the corresponding

14. Mathematical Analysis of Kohonen’s Model 254

first unstable modes belong to κ∗ = 3/4. For ky = 0, this corresponds to the
relatively small wavelength of 3.45 lattice constants, i.e., again as in the long
wavelength case, a wavelength of the order of the range of hrs.

14.9.3 Comparison with Monte-Carlo Simulations

In this section, we compare the analytical results obtained in Sections 14.9.1
and 14.9.2 with data from Monte-Carlo simulations of the Markov process
(4.15) for the cases of long-range (Eq.(14.39) and short-range (Eq.(14.86))
excitatory response hrs.

Abb. 14.7: Dependence of the fluctuations of the “soft” mode u1 for a short-
range excitatory response of Eq. (272) on the wavenumber k. The data points
are from a Monte-Carlo simulation of the Markov process (70) with fixed ε = 0.01
and s = 10−4. Superimposed is the dependence according to Eq.(274).

In the first simulation, we use a square 32×32-lattice (i.e., N = 32) with
the short-range excitatory response (14.86) and constant learning step size
ε = 0.01. Beginning with the equilibrium state w̄r = mex + ney, m, n =
1, 2, . . . , 32, 20,000 “snapshots” of the Markov process described by (4.15)
were generated in intervals of 2,000 Markov steps for the evaluation of the
correlation function 〈un(k)2〉. For the ensemble of states obtained in this
manner, the correlation function fn(k) := 〈un(k)2〉1/2, n = 1, 2, 3 was eval-
uated at the discrete wave vectors k = ex · 2πl/N , l = 1, . . . , 32. The
data points, thus obtained for the “hard” mode u1 and the “soft” mode u2,

14. Mathematical Analysis of Kohonen’s Model 255

Abb. 14.8: Fluctuations of the “hard” mode u2, obtained from the same simu-
lation as in Fig.14.6 (analytic result according to Eq.(275)). For small wavenum-
bers, the fluctuations are smaller than for u1.

Abb. 14.9: Fluctuations of the
“transverse” mode u3 (analytic results according to Eq. (276)) for three
different values of the height parameter s: for s = 10−4, i.e., an essentially two-
dimensional probability distribution, there are only small transverse fluctuations.
For s = 1.3, the fluctuations begin to show a broad maximum near k = 0.58π.
This is quite evident for s = 1.5, i.e., just below s∗.

14. Mathematical Analysis of Kohonen’s Model 256

Abb. 14.10: Dependence of the longitudinal fluctuations on the wavenumber
k for a Gaussian excitatory response (255) with σ = 5. The data points pertain
to a Monte-Carlo simulation of a chain with N = 128 points. Superimposed is
the theoretical graph according to Eq.(277). The exponential fall-off at large
wavenumbers is correctly reproduced by the data.

are presented for s = 10−4 in Fig. 14.6 and Fig. 14.7. Also shown are the
predictions on the basis of (14.88) and (14.89). Obviously, the analytical
description agrees very well with the simulation data. Figure 14.8 shows
the dependence of the transverse fluctuations (in units of s) on the height
2s of the box for parameter values s = 10−4, s = 1.3, and s = 1.5. The
transverse fluctuations are described by the correlation function f3(k) and
were obtained through simulations and from Eq. (14.90). For s = 10−4,
i.e., essentially a very flat, two-dimensional box, the fluctuations decrease
monotonically with wavelength. As s approaches the critical value s∗, the
fluctuations of the modes near k∗ = 0.58π increase markedly. At s = 1.5, i.e.,
just below s∗ ≈ 1.54, the fluctuations already take up a significant fraction
of the box volume height and, thus, indicate the incipient instability. For all
three parameter values, the agreement between the theoretical graphs and
simulation data is very good.
A similar Monte-Carlo simulation for the long-range excitatory response is
difficult to perform because of the considerably higher computational effort.
Therefore, for this case we have carried out a simulation for a one-dimensional
lattice consisting of N = 128 points. The box volume is replaced by a

14. Mathematical Analysis of Kohonen’s Model 257

Abb. 14.11: The corresponding transversale fluctuations for three different
values of s (analytical results according to Eq.(278)). In comparison to Fig. 14.8,
the critical value is now s∗ ≈ 10.1, and the fluctuations show an exponential fall-
off for larger k-values. The maximum, related to the transverse instability, is
shifted in comparison to Fig. 14.8 toward lower k-values.

rectangular strip of length N and vertical extension 2s. The learning step size
was again ε = 0.01. In this case, we generated an ensemble of states consisting
of 10, 000 “snapshots” at intervals of 1000 Markov steps. The derivations of
the preceding Section are easily adapted to the present situation and yield
for the equilibrium fluctuations of the longitudinal (u1) and transverse (u2)
modes (here the only ones):

〈u1(k)2〉 =
εσ
√

2π(12k2σ4 + 1) exp(−k2σ2)

12(2− [1 + cos k − 2σ2k sin k] exp(−k2σ2/2))
, (14.91)

〈u2(k)2〉 =
εσ
√

2πs2 exp(−k2σ2)

6− 4s2(1− cos k) exp(−k2σ2/2)
. (14.92)

These expressions are, up to an additional factor of (σ
√

2π)−1, identical to
the results (14.82) and (14.84) for the two-dimensional lattice in the limit
k → 0. In particular, for s∗ and λ∗ we obtain the same values as before.
Figure 14.9 and Fig. 14.10 show a comparison of the shape of the theoretical
correlation functions according to (14.91) and (14.92) with the data from a
Monte-Carlo simulation at σ = 5. Figure 14.9 shows the data points of the
simulation for the longitudinal fluctuations f1(k) and s = 0.1. The expected

14. Mathematical Analysis of Kohonen’s Model 258

exponential fall off for k2σ2 > 1 is reproduced well. On the other hand, the
expected 1/k-singularity for f1(k) is not visible, since the very small k-values
required are possible only for considerably longer chains. Figure 14.10 shows
the transverse fluctuations f2(k) for the three cases s = 0.1, i.e., essentially
a one-dimensional input vector distribution, s = 9.0 (still significantly below
the critical value s∗ ≈ 2.02σ ≈ 10.1), and s = 9.9 which is just below s∗. The
main differences between the present case and the short-range case presented
in Fig. 14.8 turn out to be the shift of the instability (maximum of f2(k))
to shorter wavenumbers and the exponential fall-off of the fluctuations for
kσ >> 1.

14.10 Interpretation of Results

In this section, we summarize the results of the preceding sections 14.8–14.9
and interpret them in terms of biological maps.
The situation analysed in Section 14.8 can be regarded as the simplest possi-
ble “scenario” in which a “dimensionality conflict” arises between the mani-
fold of input signals (3-dimensional rectangular box) and the topology of the
map (two-dimensional surface). The quantity determining the “strength” of
the “conflict” is the height dimension 2s of the box volume. For small values
of s, the variation of the input signal along the vertical dimension is hardly
noticeable, and the structure of the resulting map is not affected by this part
of the input signal variation. In this case the map corresponds geometrically
to a vertical projection of the box onto a horizontal plane.
However, as shown by our analysis, this map only remains stable as long as

s ≤ s∗ = σ
√

3e/2 is satisfied. In this stability region, the components wr3

of all weight vectors fluctuate about their common average value zero, and
the size of the fluctuations decreases with the square root of the adaptation
step size. The “stability threshold” s∗ can be interpreted essentially as that
distance in the space of input signals which corresponds to the range of the
neighborhood function hrs in the lattice. For s > s∗, a map with periodic
“distortions” develops. Mathematically, these “distortions” stem from those
components wr3 the average values of which are no longer spatially constant
above the stability threshold, but rather vary with position r in the map.
This variation exhibits a periodic pattern and begins to makes itself felt even
below the threshold s∗ by an increase of wavelike fluctuations about the equi-
librium value wr3 = 0. Here, contributions from fluctuations of wavelength

14. Mathematical Analysis of Kohonen’s Model 259

λ∗ = σπ
√

2 dominate, that is, the scale of the dominant wavelengths is also
determined by the range of the neighborhood function.
In the context of a pattern processing task, the x- and y-coordinate would
have the interpretation of two “primary” features, characterized by large
variations. In contrast, the z-coordinate would correspond to a “secondary”
feature with less strongly evident variation. As long as s < s∗, the system
converges to a topographic map of the two “primary” features alone, and the
“secondary” feature remains completely invisible in the map. As soon as the
variation of the “secondary” feature exceeds the threshold value given by s∗, a
map is created in which the “secondary” feature is also visible. This happens
in such a way that the components of the weight vector wr become position
dependent in the direction of the “secondary” feature. If one represents the
values wr3 of these components by gray levels, one finds an irregular pattern
consisting of black and white stripes, as shown in Fig. 14.11.
Interestingly enough, in the brain one finds a whole series of two-dimensional
arrangements of neurons whose response properties are distributed in qual-
itatively similar spatial patterns. The best-known examples of this are the
“ocular dominance stripes,” an irregular pattern of stripes containing neu-
rons that prefer either the left or the right eye as their input, as well as
the “orientation columns,” along which neurons reacting to stimulation of
the retina by brightness edges of the same orientation are grouped. In both
cases, the response behavior of the neurons is described (to a first approxima-
tion) by three “stimulus variables,” and there is a “dimensionality conflict”
for the distribution of these parameters on the two-dimensional visual cortex:
in addition to the two “primary” stimulus variables “retinal position” (x- and
y-coordinates), the relative weight of the input of both eyes is a “secondary”
feature in the case of the ocular dominance stripes. On the other hand, in the
orientation stripes, the “secondary” feature is the orientation of the bright-
ness edge, and each neuron — in addition to its specialization to a particular
retinal position — will respond well to a small range of edge orientations
only. Several models for the description of such spatial patterns of neural
stimulus variables have been suggested in the past. The papers of von der
Malsburg (1979, 1982), Willshaw and von der Malsburg (1976), Takeuchi
and Amari (1979), as well as Miller et al. (1989) represent some selected
contributions to this area. In particular, the ability of Kohonen’s model to
generate such striped patterns was noticed very early by Kohonen himself in
computer simulations (Kohonen 1982a). However, until recently this impor-
tant property of the model received only little attention by other researchers.

14. Mathematical Analysis of Kohonen’s Model 260

Abb. 14.12: Topographic map with periodic structure of stripes. The input
signals came from a three-dimensional feature space 0 ≤ x, y ≤ 40, −4 ≤
z ≤ 4. The map was generated by Kohonen’s algorithm on a 40×40-lattice
(σ = 1.4, 104 steps). The height (z-dimension) plays the role of the “secondary”
feature, whose distribution in the map is represented by gray levels. The resulting
pattern qualitatively resembles the pattern of ocular dominance stripes observed
in the visual cortex, into which cells with a preference for the same eye become
segregated, or of orientation columns in the striate cortex separating cells with
receptive fields of different orientation.

The derivation given here augments the earlier simulation results by means
of a mathematical analysis that can serve as a point of departure for the
mathematical treatment of more realistic versions of Kohonen’s model. It
shows that stripe formation can be regarded as an instability against wave-
like “distortions” resulting from a ‘dimensionality conflict” between input
signals and the neuron layer.

14.11 Appendix

In this appendix, we show that for every positive function ε(t) the conditions

lim
t→∞

∫ t

0
ε(τ) dτ = ∞

14. Mathematical Analysis of Kohonen’s Model 261

lim
t→∞

ε(t) = 0 (14.93)

and

lim
t→∞

∫ t

0
ε(t′)2 exp

(
−β

∫ t

t′
ε(t′′) dt′′

)
dt′ = 0. (14.94)

are equivalent for arbitrary β > 0.
Proof: (14.94)→ (14.93) is obvious for ε > 0; (14.93)→ (14.94):
Choose δ > 0 arbitrarily small and a > 0 such that ε(t) < βδ holds for
all t > a. Let εmax := maxt ε(t). Then a b > a can be chosen such that
exp(−β

∫ t
a ε(τ) dτ) < βδ/εmax holds for all t > b. It then follows for all t > b

that: ∫ t

0
ε(t′)2 exp

(
−β

∫ t

t′
ε(t′′) dt′′

)
dt′ =

=
1

β

(∫ a

0
+
∫ t

a

)[
ε(t′)

∂

∂t′
exp

(
−β

∫ t

t′
ε(t′′) dt′′

)]
dt′

≤ εmax
β

[
exp

(
−β

∫ t

t′
ε(t′′) dt′′

)]t′=a
t′=0

+ δ ·
[
exp

(
−β

∫ t

t′
ε(t′′) dt′′

)]t′=t
t′=a

≤ εmax
β
· 2βδ

εmax
+ δ = 3δ.

Since δ may be chosen arbitrarily small, (ii) must hold.

15. Local Linear Mappings 262

15. LOCAL LINEAR MAPPINGS

In the treatment of robot control tasks, we have seen that often the use of
matrices, i.e., linear mappings, as output values provides a useful extension
of output learning maps. In the simulation of visuomotor coordination, the
network learned the transformation between the visual image of the target
point and the joint angles for the required arm position. Each neuron repre-
sented this nonlinear transformation for a neighborhood of a grid point. To
this end, it had a matrix available that gave the linear part of the expan-
sion of the transformation about the relevant grid point. In this way, the
required transformation was approximated by an adaptive superposition of
many linear mappings, each one valid only locally. Compared to the use of
fixed output values, this yields a considerably higher accuracy with the same
number of neurons.
Another interesting possibility was demonstrated for ballistic movements in
Chapter 13. There, an output quantity (torque amplitude), varying as a func-
tion of further parameters (components of the target velocity), was assigned
by means of an array to each input signal (arm position) which describes
a linear relationship between torque amplitudes and velocity components.
Such linear relationship represented by a matrix eliminates the necessity of
representing the further parameters (e.g., velocities) in the map as well, and,
hence, the dimension of the space to be projected onto the lattice can be
significantly reduced.
A precondition for such a strategy is a splitting of the input variables
v1, v2, . . . , vd into two (not necessarily disjoint) sets {v′1, v′2, . . . , v′a} and {v′′1 , v′′2 , . . . , v′′b }
such that

{v1, . . . , vd} = {v′1, . . . , v′a} ∪ {v′′1 , . . . , v′′b },

and such that that output quantities f locally depend only linearly on one of
the sets, i.e.,

f = A(v′)v′′. (15.1)

15. Local Linear Mappings 263

Here, we have put v′ := (v′1, . . . , v
′
a), v′′ := (v′′1 , . . . , v

′′
b). All those parameters

not represented in the map themselves are included in v′′.
Such a splitting is possible in many cases. For example, in Chapter 11 the
vector v′ consisted of the coordinates u of the target point in the two camera
fields of view. The vector f was the change of the joint angle under a small
shift v′′ of the location of the end effector in the camera fields of view.
In Chapter 13, v′ stood for the joint angles of the arm, f was the torque
amplitude in the joints, and v′′ was the resulting velocity to which the end
effector was accelerated under the action of f .

15.1 The Learning Algorithm
for Local Linear Mappings

In this section we formulate the general version of the learning algorithm
already derived for the special discussed in Chapters 11, 12, and 13.
We assume as before that the only available information is a sequence of
n-tuples (v′,v′′, f) satisfying (15.1). These are created during the learn-
ing phase by the reaction of the system to, e.g., pseudo-randomly selected
targets. In visuomotor coordination (Chapter 11), for example, v′ was the
position in the field of view of the target point and v′′ and f were the changes
of the position in the field of view of the end effector and the joint angles
during fine positioning. In the ballistic movements of Chapter 13, the v′ were
the arm joint angles, and v′′ was the velocity of the end effector due to an
acceleration with torque amplitudes f .
The task of the network is to learn the matrix A(v′) of Eq. (15.1) for each
v′. As was shown in Chapter 11, this can occur by means of a linear error
correction rule. Together with the principle of neighborhood cooperation in
Kohonen’s original model, this leads to the following learning algorithm:

1. Register the next input signal (v′,v′′, f).

2. Determine the lattice site s := φw(v′), assigned to v′ in the map.

3. Compute an improved estimate A∗ for the linear mapping Aold
s of the

chosen lattice site s

A∗ = Aold
s + δ ·

(
f −Aold

s v′′
)
(v′′)T (15.2)

15. Local Linear Mappings 264

4. Carry out a learning step

Anew
r = Aold

r + εhrs

(
A∗ −Aold

r

)
(15.3)

for the assignment of linear mappings Ar.

5. Carry out a learning step

wnew
r = wold

r + ε′h′rs
(
v′ −wold

r

)
(15.4)

for the synaptic strengths wr, and continue with Step 1

We encountered this algorithm in its application to the control of a robot
arm by means of computer simulations. In the following, we analyze the
algorithm mathematically in more detail. We are mainly interested in the
question of convergence of the linear mappings Ar to their correct values.
For this, we first discuss the convergence behavior of the matrices Ar in the
absence of the lateral interaction, i.e., for hrs = δrs. Building on this, we
then investigate the important influence of lateral interaction.

15.2 Convergence Behavior without Lateral
Interaction

Without lateral interaction, each lattice site learns its linear mapping isolated
from all the others. We can then consider the evolution of the matrix of a
single lattice site in our treatment of convergence. We further assume that
the correspondence between lattice sites and values v′ given by the vectors
wr has already formed and no longer changes significantly in the course of
the learning phase. To each vector v′ is assigned a fixed lattice site s and
thus a matrix As. We emphasize this in the following by writing A(v′, t)
instead of As, where t gives the number of learning steps after which lattice
site s was chosen in step 2 of the algorithm. With hrs = δrs and equations
(15.2) and (15.3), one then has

A(v′, t+ 1) = A(v′, t) + δ ·
(
A(v′)−A(v′, t)

)
v′′(v′′)T (15.5)

Here, we have absorbed the product ε · δ into the single constant δ. Denoting
by D(v′, t) := A(v′, t) −A(v′) the deviation from the exact matrix A(v′),

15. Local Linear Mappings 265

we obtain for the change of the Euclidean matrix norm ‖D‖ = (Tr DTD)1/2

during one step (15.5

∆‖D‖2 = 2Tr DT∆D + Tr ∆DT∆D

= −δ(2− δ‖v′′‖2)‖Dv′′‖2 (15.6)

If 0 < δ < 2/‖v′′‖2, the norms ‖D(v′, t)‖ thus constitute a monotoni-
cally decreasing sequence. For a nonsingular correlation matrix 〈v′′(v′′)T 〉,
this guarantees the convergence
limt→∞A(v′, t) = A(v′). 1

The preceding treatment of convergence assumes that the correlation matrix
〈v′′(v′′)T 〉 is independent of A(v′, t). However, this is often not satisfied
because the values of v′′ are generated by the system itself, i.e., the system
tries to learn from its own reactions. At each learning step, the system
receives a target v′′targ for v′′. For ballistic movements, this is the target
velocity of the end effector, in visuomotor coordination, it is the residual
difference between achieved and prescribed end effector position in the two
camera fields of view after coarse positioning. In order to reach the target,
the system determines its output quantity f by (15.1), but instead of the
correct matrix A(v′) it uses the matrix A(v′, t) which deviates more or less
from A(v′). Thus,

f = A(v′, t)v′′targ. (15.7)

By (15.1), this leads to

v′′ = A(v′)−1A(v′, t)v′′targ. (15.8)

Hence, a nonsingular correlation matrix 〈v′′targ(v′′targ)T 〉 of the target is not
enough to guarantee convergence, because if A(v′, t) evolves “unfavorably”
during learning, 〈v′′(v′′)T 〉 can still become singular, and the learning process
can get stuck. This was the reason why in Chapter 11 and 13 we obtained
convergence only for a fraction of the lattice sites without neigborhood coop-
eration between the neurons (see Figs. 11.7 and 13.5). We now analyse this
behavior mathematically in more detail.
We neglect the slight variation of v′ within the “parcels” of the particu-
lar lattice site s chosen and thus write v in place of v′′ and A(t) or A in

1 For singular 〈v′′(v′′)T 〉 D can converge to a nonvanishing value from the null-space
〈v′′(v′′)T 〉, but even in this case the mean squared error Tr D〈v′′(v′′)T 〉DT goes to
zero.

15. Local Linear Mappings 266

place of A(t,v′) or A(v′), respectively. In order to investigate convergence,
we consider the matrix B(t) = A−1A(t) − 1. We obtain for the change
∆B := B(t+ 1)−B(t) of B under a learning step the expression

∆B = − δ ·B
(
1 + B

)
uuT

(
1 + B

)T
. (15.9)

Similar to (15.6), the change of ‖B‖2 under a learning step (15.5) becomes

∆‖B‖2 = −δ
(
2− δ‖v‖2

)
‖B(1 + B)u‖2. (15.10)

Hence, a monotonically decreasing sequence again arises for ‖B(t)‖, provided
0 < δ < 2/‖v‖2 holds. Maximization of the decrease per learning step occurs
by means of the choice δ = 1/‖v‖2. If δ is to be chosen independently of
v, then the condition 0 < δ < 2/α(1 + ‖B(0)‖)2 with α = sup ‖u‖2 is
sufficient for ∆‖B‖2 < 0. Every possible stationary value for ‖B(t)‖ requires
B2 = −B. Since for ‖B(0)‖ < 1 solutions B 6= 0 with B2 = −B can no
longer be reached, we obtain the convergence statement For ‖B(0)‖ < 1 and

0 < δ < 2/‖v‖2 holds limt→∞B(t) = 0, i.e., limt→∞A(t) = A.

However, the condition B2 = −B has, in contrast to the previous situation
described by (15.6), in addition to B = 0 a whole manifold M of undesired
stationary solutions. As we will show, a subset of M possesses an attractive
neighborhood. Hence, there are initial values with the property ‖B(0)‖ > 1
that evolve toward M under the learning rule and thus do not lead to the
desired limit A. For such initial values, the learning procedure converges to
the wrong value.
This behavior can be illustrated well if one restricts to the one-dimensional
case. In this case, u and B are scalar quantities, and (15.9) simplifies to

Ḃ = −δ ·B · (B + 1)2u2. (15.11)

For sufficiently small learning step lengths δ, one can neglect statistical fluc-
tuations due to the random variables u and replace u2 by its average. Without
loss of generality, we assume
〈u2〉 = 1. This yields

Ḃ = −δ ·B · (B + 1)2. (15.12)

We can interpret B as the position coordinate of a mass point in a viscous
medium, e.g., a small, not too heavy sphere in a jar of honey. The equation

15. Local Linear Mappings 267

of motion for viscous motion is

m

γ
B̈ + Ḃ = − d

dB
V (B). (15.13)

Abb. 15.1: The shape of the potential V (B). The absolute minimum lies at
B = 0, which corresponds to the correctly learned matrix. The “force” acting at
the position B = −1 on B also vanishes. Hence, for an unfavorable initial value,
B gets “stuck” on this plateau.

Here V (B) is a potential in which the sphere moves. In the case of a small
mass m and large viscosity γ, i.e., m/γ � 1, the acceleration term with B̈
can be neglected, and the velocity Ḃ is proportional to the force −V ′(B).
Equation (15.13) goes over to (15.12) in this limit for

V (B) =
1

4
B4 +

2

3
B3 +

1

2
B2. (15.14)

Figure 15.1 presents the shape of V (B). The global minimum lies at B = 0,
the value to be learned. The finite attractive neighborhood of this minimum

15. Local Linear Mappings 268

extends from B > −1 to B = ∞. Any initial value of B within this in-
terval converges to the desired value during the learning process described
by (15.12). The condition ‖B(0)‖ < 1 assumed in the above convergence
statement thus implies that we are located within the basin of attraction of
the minimum at B = 0. In the one-dimensional case, the submanifold M
of “false” stationary solutions consists of just the isolated point B = −1.
Figure 15.2 shows that the attractive region of M is given by the interval
] − ∞,−1]. Since the motion in the potential surface V (B) is “infinitely”
viscous, any initial value within the interval]−∞,−1] is pushed towards the
point M and gets stuck there. However, an arbitrarily small disturbance in
the positive direction suffices for leaving M in favor of the desired minimum
B = 0. In higher dimensions, one has in addition undesired stationary solu-
tions which are no longer unstable, and in this case M even has points where
a small perturbation no longer leaves M . We show this in the remainder of
this section.

Abb. 15.2: An illustration of the convergence behavior of B. The sphere with
initial value less than −1 (left) will get stuck on the plateau at B = −1 (middle).
Any sphere to the right of the plateau will roll as desired into the global minimum
at B = 0 (right).

We now resume the discussion of the general case. M consists of all matrices
B 6= 0 satisfying the condition ‖B(B + 1)‖ = 0. Hence, we can take the
quantity d(B) = ‖B(B+1)‖2 = Tr B(B+1)(B+1)TBT as a measure of the
distance from B to M . If δ is small enough to justify neglect of the terms of

15. Local Linear Mappings 269

quadratic order, the learning step (15.5) leads to the change

∆d(B) = −2δTr B(1 + B)

×
[
BuuT (1 + B)T + uuT (1 + B)T (1 + B)

]
× (1 + B)TBT . (15.15)

This expression is not particularly accessible to further manipulation. Hence,
we restrict ourselves as above to the case in which (15.15) can be averaged
over the target vector u. This is consistent with the assumption of small
learning step lengths δ. We further assume for u an isotropic distribution in-
dependently in each component, so that (perhaps after appropriate rescaling)
〈uuT 〉 = 1 holds. This leads to

〈∆d(B)〉 = −2δ · Tr B(1 + B)
(
1 + 2B + BT + BBT + BTB

)
× (1 + B)TBT

= −2δ · Tr B(1 + B)
(
1 +

3

2
B +

3

2
BT + BBT + BTB

)
× (1 + B)TBT

= −2δ · Tr B(1 + B)H(B)(1 + B)TBT , (15.16)

where the matrix H(B) is defined by

H(B) = 1 +
3

2
B +

3

2
BT + BBT + BTB. (15.17)

For all regions of M for which H is strictly positive, one has 〈∆d(B)〉 < 0.
Thus, any point B located sufficiently close to such a region is drawn farther
toward M on the average. A condition for this to occur results from the
following

Theorem 1. Let B0 :=
∑
i=1,n piq

T
i , where pi,qi are 2n vectors, whose scalar

products satisfy the conditions

pi · pj = 0, qi · qj = 0, (i 6= j);

together with ‖pi‖ · ‖qi‖ ≥ 3/2, i = 1, . . . , n. For every B sufficiently close

to B0, one then has 〈∆d(B)〉 < 0.

15. Local Linear Mappings 270

Proof: For i = 1, . . . , n, define

αi : = ‖qi‖;

βi : =
3

2‖qi‖
≤ ‖pi‖;

wi : = αipi + βiqi;

This yields

H(B0) = 1 +
∑
i=1..n

wiw
T
i +

∑
i=1..n

(‖pi‖2 − β2
i)qiq

T
i . (15.18)

Therefore, H(B0) is strictly positive. Since H depends continuously on its
argument, this holds throughout a whole neighborhood of B0 and implies
〈d(B)〉 < 0 there.

Abb. 15.3: Difference between the one-dimensional and the multidimensional
case. Left: In the one-dimensional case, the desired solution B = 0 cannot be
reached if the undesired fixed point M separates the initial value B0 from the
origin. Right: In the multidimensional case, on the other hand, it is possible to
avoid the manifold M of undesired fixed points. It may even be possible to reach
the desired solution B = 0 if the initial value B0 lies in the (shaded) neigborhood
of M within which d(B), the distance to M , is everywhere decreasing.

This deserves two remarks. First, there are matrices B0 for which the above
theorem holds, but which are located so far from the manifold M , i.e., for

15. Local Linear Mappings 271

which ‖B0(1+B0)‖ is so large, that the matrices are attracted to the desired
solution B = 0 before reaching M . For these initial values, the above theorem
does not necessarily imply convergence to M , since the learning steps (15.5)
might induce the system to leave the neighborhood of the initial value within
which this property exists, even if they decrease ‖B(1 + B)‖ on the average.
This is shown in Fig. 15.3 on the right. A sufficient condition for B0 ∈M is
for example pi · qj = −δij.
Secondly, M possesses points for which 〈∆d(B)〉 < 0 can not even be guaran-
teed within an entire neighborhood. Near these points, it is no longer possible
to guarantee convergence to M . An example of such a point is B = −1. As
we have seen, in the one-dimensional case M consists only of this one point.
Thus, we have shown that under the learning rule (15.5) A(t) converges to
the desired value A, provided the initial value A(0) is not “too badly” chosen.
The basin of attraction for the desired A contains the region ‖A−1A(0)−1‖ <
1. Moreover, there is a whole manifold of undesired fixed points which can
be reached for bad initial values. This unfortunate property led in Chapters
11 and 13 to poor results in the computer simulations whenever there was no
neighborhood cooperation between the neurons. With sufficient neighbor-
hood cooperation between the neurons, on the other hand, convergence to
the desired state occured. In the following, we show how this improvement
through neighborhood cooperation arises.

15.3 Improvement of Convergence through
Neighborhood Cooperation

We now investigate the effects of neighborhood cooperation due to the lateral
interaction hrs. A significant consequence of neighborhood cooperation is
that none of the adaptation steps is restricted to the particular lattice site
s, but rather all of the adjacent lattice sites participate in the adaptation
step as well. The degree of participation decreases according to hrs with
increasing distance from s. In the following, we will show that this offers at
least two advantages. First, the effective rate of convergence is improved,
and secondly the robustness of the system with respect to unfavorable initial
values of the linear mappings Ar is increased. Even for initial values for
which, in the absence of lateral interaction, not all the mappings Ar would
converge as desired, convergence of all Ar to the correct matrices is ensured
in the presence of lateral interaction.

15. Local Linear Mappings 272

To make the following investigation feasible, we make a few additional sim-
plifying assumptions. First, we suppose that the adaptation of the synaptic
strengths wr is already finished and has attained an asymptotic distribution
such that each lattice site is selected in step 2 of the algorithm with the same
probability. As shown in Chapter 5, it is just this (approximate) creation of
such a state which forms an essential property of the algorithm. Secondly,
we restrict ourselves to the case in which the correct mapping A(v′) is inde-
pendent of v′ and thus the same for every lattice site. This assumption will
not significantly influence the results in all cases where the change in A(v′)
is small over the range of the function hrs. We further suppose that the step
lengths δ are small enough to allow one to neglect terms of quadratic and
higher order. Under these assumptions, we can summarize steps 1–4 for the
matrices Br = A(wr)

−1Ar(t)− 1 as follows:

1. Choose s = φw(v′).

2. Set
B∗ = Bs(t) + ∆L

(
Bs(t)

)
, (15.19)

where ∆L

(
Bs(t)

)
= −δBs(t)(1 + Bs(t))uuT (1 + Bs(t))

T is the change

of Bs(t) under the learning rule (15.5).

3. Improve the matrices Br(t) according to

Br(t+ 1) = Br(t) + εhrs

(
B∗ −Br(t)

)
, (15.20)

and begin again at step 1.

With (15.19) and (15.20), we obtain for the average time rate of change Ḃr

of the matrix Br in the presence of additional neighborhood cooperation

Ḃr =
∑
s

hrs(Bs −Br)− δ ·
∑
s

hrsBs(Bs + 1)(Bs + 1)T . (15.21)

Here, we have again replaced uuT by its mean, and we have assumed as
before 〈uuT 〉 = 1. A multiplicative factor ε/N has been normalized to unity
by an appropriate scaling of the time constant.
We decompose the summation over all lattice points s into sums over nearest
neighbors of r, next nearest neighbors, etc. This yields the expression

Ḃr = h
∑
〈s〉

(Bs −Br) + h2
∑
〈〈s〉〉

(Bs −Br) + . . .

15. Local Linear Mappings 273

− δ ·Br(Br + 1)(Br + 1)T

− δ · h
∑
〈s〉

Bs(Bs + 1)(Bs + 1)T + . . . , (15.22)

where 〈s〉 is to be understood as a summation over nearest neighbors and
〈〈s〉〉 as a sum over next nearest neighbors. The factor h is the fall-off of the
Gaussian hrs from the center of the excitation s to the nearest lattice points,
i.e., h = exp(−1/2σ2). The fall-off up to the next nearest neighbors then has
the value h2 etc.
Three cases can be discussed on the basis of Eq. (15.22). First, the limit
h ≈ 1 and δ � h. This corresponds to a very-long-range neighborhood
interaction and (relative to this) a negligible length δ of the improvement
step, as present at the beginning of the learning phase. For this extreme
case, we can again give a potential for the viscous motion Ḃr, namely

V =
h

4

∑
r

∑
〈s〉

(Bs −Br)
2 +

h2

4

∑
r

∑
〈〈s〉〉

(Bs −Br)
2 + ... , (15.23)

which corresponds to the simple situation of coupled springs with spring
constants depending on the lattice spacing. In this potential, the matrices
Br try to take the same value at every lattice site. This is important in the
initial phase of learning, because “deviants” in the initial values are “tamed”
by all other neighbors, and each Br settles down to an average over all initial
values. This average need not lie at the desired Br = 0; this can be seen
from the fact that the above potential is translationally invariant, and thus
every value for Br which is equal at all lattice sites minimizes V. Hence, we
need an additional term favoring Br = 0.
We obtain the opposite case at the end of the learning phase, when h � δ.
The neighborhood interaction then falls off very rapidly and in the extreme
case is negligible compared to the learning step length δ. Evidently, the time
rate of change Ḃr in this approximation is given by the expression

Ḃr = −δ ·Br(Br + 1)(Br + 1)T , (15.24)

which we have already discussed thoroughly. By itself, this expression pro-
duced unsatisfactory convergence of the system as a whole, to the degree
that initial values could lie in the wrong region of attraction. However, now
neighborhood cooperation can pull the values of all Br into the potential
well at Br = 0 before entering the final phase of the learning process, which

15. Local Linear Mappings 274

allows it to be completed successfully. The manner in which this occurs is
shown by consideration of the intermediate learning phase.
The intermediate learning phase is characterized as a state lying between
the two previous extreme cases, i.e., a state for which h ≈ δ and h, δ � 1
hold simultaneously. If we neglect the terms of quadratic and higher order
in these factors in (15.22), one obtains

Ḃr = h
∑
〈s〉

(Bs −Br)− δ ·Br(Br + 1)(Br + 1)T . (15.25)

15.3.1 One-Dimensional Case

If we again discuss this approximation for the one-dimensional case, a very
interesting situation occurs. Here, it is again possible to state a potential for
Ḃ = −dV/dB, namely

V =
h

4

∑
r

∑
〈s〉

(Bs −Br)
2 + δ

∑
r

(1

4
B4

r +
2

3
B3

r +
1

2
B2

r

)
. (15.26)

Our “spheres in honey” again move in the potential whose shape is shown in
Fig. 15.1, but now the “spheres” of each lattice site are coupled via springs
to the nearest neighbors. In contrast to the potential (15.23), one now has
the necessary additional term favoring the desired value Br = 0. Figure 15.4
presents this new situation.
“Spheres” that are stuck on the undesired plateau at Br = −1 can now be
“pulled” or “pushed” off the plateaus by a neighbor located inside the well
at Br = 0.
In principle, the system as a whole can still of course remain stuck outside
the desired state. For example, this is the case when all initial values without
exception lie in the interval [−∞,−1]. All matrices then converge simultane-
ously to the value Br = −1, and the coupling via springs may even accelerate
this convergence. However, this situation becomes more and more unlikely
as the number N of lattice points increases: The probability of such an oc-
currence decreases exponentially like αN , where α < 1 gives the probability
that the initial value of Br lies to the left of the plateau Br = −1.

15. Local Linear Mappings 275

Abb. 15.4: An illustration of the convergence behavior of B in the presence of
additional coupling by means of springs. The spheres that are “stuck” on the
plateau (left and right) are pulled or pushed into the potential well at B = 0 by
the springs from the adjacent sphere (middle) and are thus able to assume the
desired position in the global minimum.

15.3.2 Multi-Dimensional Case

For the further investigation of convergence properties in the multidimen-
sional case, we consider the quantity

S(t) :=
∑
r

‖Br(t)‖. (15.27)

For each iteration 1–3, one has

∆‖Br(t)‖2 = 2Tr ∆Br(t)Br(t)
T

= 2hrsTr
[(

B∗ −Br(t)
)
Br(t)

T
]

≤ 2hrs

(
‖B∗‖ − ‖Br(t)‖

)
‖Br(t)‖

= 2hrs

(
∆L‖Bs(t)‖+ ‖Bs(t)‖ − ‖Br(t)‖

)
‖Br(t)‖,(15.28)

where we have written ‖B∗‖ − ‖Bs(t)‖ =: ∆L‖Bs(t)‖. Inequality (15.28)
yields

∆‖Br(t)‖ ≤ hrs

(
∆L‖Bs(t)‖+ ‖Bs(t)‖ − ‖Br(t)‖

)
, (15.29)

where we recall that ∆L‖Bs(t)‖ also depends on the target vector u, which
as before is assumed to be a random variable with 〈uuT 〉 = 1. For the change

15. Local Linear Mappings 276

of the quantity S(t) with an iteration step, averaged over u and lattice sites s
by taking into account the symmetry of hrs and equation (15.29), one obtains

〈∆S(t)〉s,u ≤ 1

N

∑
r,s

hrs

(
‖Bs(t)‖ − ‖Br(t)‖+ ∆L‖Bs(t)‖

)
=

h

N

∑
s

〈∆L‖Bs(t)‖〉u ≤ 0, (15.30)

where N is the number of lattice sites, and h =
∑

r hrs. If we ignore boundary
effects, h is independent of s. Without lateral interaction, i.e., hrs = δrs, we
would have obtained (15.30) with h = 1. Hence, because of lateral interac-
tion, the convergence rate is raised by a factor of h. Since h is a measure
for the size of the neighborhood region participating in a learning step, this
region should be chosen as large as possible consistent with the requirement
of small variations of Ar and Br.
This result concerning the convergence rate is still quite general, since we
have not yet used special properties of the learning rule for ∆LB. This
will done in the remainder of this section, where we will show that lateral
interaction leads to an effective enlargement of the attraction region about
the desired fixed point of the learning rule (15.5), thus raising the robustness
of the algorithm against poorly chosen initial values.
To this end, we first show two lemmas.
Lemma 1: Let hrs be nonnegative, symmetric with respect to commutation
of r and s and nonvanishing at least for all nearest neighbor pairs r and s
of the lattice. Let Q(t) :=

∑
r ‖Br(t)‖2. Then the mean change 〈∆Q〉 per

learning step vanishes only if all norms ‖Br(t)‖ are equal.
Proof: From (15.28) and ∆L‖Bs(t)‖ ≤ 0, we obtain

∆Q ≤ 2
∑
r

hrs

(
‖Bs(t)‖ − ‖Br(t)‖

)
‖Br(t)‖. (15.31)

Averaging over s and taking into account the symmetry of hrs yields

〈∆Q〉s ≤ −
1

N

∑
r,s

hrs

(
‖Bs(t)‖ − ‖Br(t)‖

)2
. (15.32)

Together with hrs > 0 for all nearest-neighbor pairs r, s, this proves the
claim.
With respect to convergence to the desired fixed point B = 0, all matrices
Br(t) share the same fate: either all of them converge to B = 0, or else

15. Local Linear Mappings 277

all of them tend to the manifold M of undesired fixed points. However, as
soon as the mean of the ‖Br(t)‖ of the lattice gets below the value unity, at
least some of the ‖Br(t)‖ must converge to B = 0 by (15.30) and Theorem
1. But this induces the convergence of all the others to B = 0, no matter
how bad their initial values may have been. Without lateral interaction,
i.e., hrs = δrs, one does not have this result. In this case (15.32) does not
imply a restriction on the norms ‖Br(t)‖, and Lemma 1 no longer applies.
Hence, lateral interaction enables those lattice sites with good initial values
to extend the zone of convergence about the desired fixed point for all the
other lattice sites. As a consequence, even if a considerable portion of the
lattice sites has poor initial values, the common convergence of all matrices
Br(t) to the desired fixed point cannot be prevented.
It is even possible to improve the bound for the mean norm ‖Br(t)‖ below
which convergence is guaranteed. For this, we prove
Lemma 2: For sufficiently small step sizes δ, the expectation value 〈d(B(t))〉u
of the function d(B) = ‖B(B+1)‖2 obeying Eq. (15.12) satisfies the inequal-
ity

〈d(B(t))〉u ≥ d(B(0)) · exp(−2δλt). (15.33)

Here, λ is a constant upper bound for the matrix H of (15.17) over the
complete time evolution, which is equivalent to

λ ≥ sup
B(t)

‖H(B(t))‖. (15.34)

(Such an upper bound can always be determined, since ‖H‖ is bounded by
some polynomial in ‖B‖, which itself is bounded). Proof: From (15.16) and
Tr AB ≤ ‖A‖ · ‖B‖ one has

〈∆d(B)〉u
d(B)

≥ −2δ‖H(B)‖ ≥ −2δλ. (15.35)

For sufficiently small δ, we can replace (15.35) by

〈∆ ln d(B)〉u ≥ −2δλ. (15.36)

This yields

〈d(B(t))〉u ≥ exp
(
〈ln(d(B(t))〉u

)
≥ d(B(0)) · exp(−2δλt), (15.37)

15. Local Linear Mappings 278

which proves the claim.
One thus has

〈∆L‖Bs(t)‖〉u =
1

2
〈∆L‖Bs(t)‖2〉u/‖Bs(t)‖

= − δ

2
〈‖Bs(t)(Bs(t) + 1)u‖2〉u/‖Bs(t)‖

= − δ

2
d(Bs(t))/‖Bs(t)‖. (15.38)

Equations (15.31), (15.38) and Lemma 2 yield

〈∆S(t)〉s,u ≤ − hδ

2N

∑
s

d(Bs(t))

‖Bs(t)‖

≤ − hδe−2δλt

2N

∑
r

d(Br(0))

‖Br(t)‖
. (15.39)

This shows that ‖Br(t)‖ decreases on the average. Hence the replacement of
the denominator ‖Br(t)‖ with ‖Br(0)‖ should not destroy the inequality. It
then follows that

〈∆S(t)〉s,u ≤ −
hδe−2δλt

2N

∑
r

d(Br(0))

‖Br(0)‖
. (15.40)

Integration of this equation gives the final result

lim
t→∞
〈S(t)〉s,u ≤ S(0)− h

2λ
D0, (15.41)

with

D0 = − 1

2N

∑
r

d(Br(0))

‖Br(0)‖

= − 1

Nδ

∑
r

〈∆L‖Br(0)‖〉u. (15.42)

The quantity described by −D0 can be interpreted as the average initial
change of ‖B‖ of a lattice site due to the learning rule (15.5), but with
respect to δ = 1.
Equation (15.42) shows that on the average each ‖Br(0)‖ is shifted by at
least hD0/2Nλ towards the desired fixed point B = 0. The bound of unity

15. Local Linear Mappings 279

given above for the critical value of the mean norm ‖Br(t)‖ leading to global
convergence rises by this shift, which is proportional to the strength of the
lateral interaction.
This concludes our theoretical discussion of the properties of the learning
algorithm.

15. Local Linear Mappings 280

BIBLIOGRAPHY

Albert A (1972) Regression and the Moore-Penrose Pseudoinverse. Aca-
demic Press, New York.

Albus JS (1971) “A Theory of Cerebellar Function.” Math. Biosci.,
10:25–61.

Amit DJ, Gutfreund H, Sompolinsky H (1985) “Spin-Glass Models of
Neural Networks.” Phys. Rev., A32:1007–1018.

Amit DJ, Gutfreund H, Sompolinsky H (1985) “Storing Infinite Num-
ber of Patterns in a Spin-Glass Model of Neural Networks.” Phys. Rev.
Lett., 55:1530–1533.

Amit DJ, Gutfreund H, Sompolinsky H (1987) “Information Storage in
Neural Networks with Low Level of Activity.” Phys. Rev., A35:2293–
2303.

Anderson JA (1968) “A Memory Model Using Spatial Correlation Func-
tions.” Kybernetik, 5:113–119.

Anderson JA (1970) “Two Models for Memory Organization.” Math.
Biosci., 8:137–160.

Anderson JA, Silverstein JW, Ritz SA, Jones RS (1977) “Distinctive
Features, Categorical Perception and Probability Learning: Some Ap-
plications of a Neural Model.” Psych. Rev., 84:413–451.

Angeniol B, de la Croix Vaubois G, le Texier JY (1988) “Self-Organizing
Feature Maps and the Traveling Salesman Problem.” Neural Networks,
1:289-293.

15. Local Linear Mappings 281

Arbib MA (1981) “Perceptual Structures and Distributed Motor Con-
trol.” Handbook of Physiology: The Nervous System II, Motor Control,
VB Brooks (ed.), 1449–1480. Bethesda, Md.

Arbib MA, Amari SI (1985) “Sensori-Motor Transformations in the
Brain [with a Critique of the Tensor Theory of Cerebellum].” J. Theor.
Biol., 112:123–155.

Ballard DH (1986) “Cortical Connections and Parallel Processing: Struc-
ture and Function.” Behav. & Brain Sci., 9:67–91.

Barto AG, Sutton SR (1981) “Goal Seeking Components for Adap-
tive Intelligence: An Initial Assessment.” AFWAL-TR-81-1070, Avion-
ics Laboratory, Air Force Wright Aeronautical Laboratories, Wright-
Patterson AFB, Ohio 45433.

Barto AG, Sutton SR, Anderson CW (1983) “Neuron-Like Adaptive
Elements That Can Solve Difficult Learning Control Problems.” IEEE
SMC, 13:834–846.

Baum EB (1986) “Intractable Computations without Local Minima.”
Phys. Rev. Lett., 57:2764–2767.

Becker W, Fuchs AF (1969) “Further Properties of the Human Saccadic
System: Eye Movements and Correction Saccades with and without
Visual Fixation Points.” Vis. Res., 9:1247–1258.

Bernstein N (1967) The Coordination and Regulation of Movements.
Pergamon, London.

Bertsch H, Dengler J (1987) Klassifizierung und Segmentierung medi-
zinischer Bilder mit Hilfe der selbstlernenden topologischen Karte, E
Paulus (ed.), 9.DAGM-Symposium Mustererkennung, 166–170, Springer
Informatik Fachberichte 149, Berlin, Heidelberg.

Blasdel GG, Salama G (1986) “Voltage-Sensitive Dyes Reveal a Mod-
ular Organization in Monkey Striate Cortex.” Nature, 321:579–585.

Block HD (1962) “The Perceptron: A Model for Brain Functioning.”
Rev. of Mod. Phys., 34:123–135.

15. Local Linear Mappings 282

Bounds DG (1987) “New Optimization Methods from Physics and Bi-
ology.” Nature, 329:215–219.

Bradburn DS (1989) “Reducing Transmission Error Effects Using a
Self-Organizing Network.” IJCNN-89, II:531–538. Washington, D.C.

Brady M, Hollerbach JM, Johnson TL, Lozano-Perez T, Mason MT
(1984) Robot Motion: Planning and Control. MIT Press, Cambridge,
Mass.

Brooks RA (1983) “Solving the Find-Path Problem by Good Repre-
sentation of Free Space.” IEEE SMC, 13:190–197.

Brooks VB (1981) “The Nervous System: Motor Control.” Handbook
of Physiology, American Physiological Society, Bethesda, Md.

Buhmann J, Schulten K (1987) “Noise-Driven Temporal Association in
Neural Networks.” Europhy. Lett., 4(10):1205–1209.

Buhmann J, Divko R, Schulten K (1989) “Associative Memory with
High Information Content.” Phys. Rev., A39:2689–2692.

Caianiello ER (1961) “Outline of a Theory of Thought and Thinking
Machines.” J. Theor. Bio., 1:204–235.

Campenot RB (1977) “Local Control of Neurite Development by Nerve
Growth Factor.” PNAS, 74:4516–4519.

Cohen M, Grossberg S (1983) “Absolute Stability of Global Pattern
Formation and Parallel Memory Storage by Competitive Neural Net-
works.” IEEE SMC, 13: 815–826.

Cotrell M, Fort JC (1986) “A Stochastic Model of Retinotopy: A Self-
Organizing Process.” Bio. Cybern., 53:405–411.

Cragg BG, Temperley HNV (1954) “The Organization of Neurones: A
Cooperative Analogy.” EEG and Clin. Neurophy., 6: 85–92.

Cragg BG, Temperley HNV (1955) “The Analogy with Ferromagnetic
Hysteresis.” Brain, (78)II:304–316.

Creutzfeld OD (1983) Cortex Cerebri. Springer, Berlin.

15. Local Linear Mappings 283

Cruse H, Wischmeyer E, Br”uwer M, Brockfeld P and Dress A (1990)
“On the Cost Functions for the Control of Human Arm Movements.”
Bio. Cybern., 62:519–528.

Derrida B, Gardner E, Zippelius A (1987) “An Exactly Soluble Asym-
metric Neural Network Model.” Europhys. Lett., 4:167–173.

Durbin R, Willshaw D (1987) “An Analogue Approach to the Travelling
Salesman Problem Using an Elastic Net Method.” Nature, 326:689–
691.

Edelman GM (1978) “Group Selection and Phasic Reentrant Signalling:
A Theory of Higher Brain Function.” The Mindful Brain, GM Edelman
and VB Mountcastle (eds.), 51–100. MIT Press, Cambridge, Mass.

Fox J (1984) “The Brain’s Dynamic Way of Keeping in Touch.” Science,
225:820–821.

Gardiner CW (1985) Handbook of Stochastic Methods (2nd Ed.). Springer,
New York.

Gardner E (1988) “The Space of Interactions in Neural Network Mod-
els.” J. Phys., A21:257–270.

Gardner E, Derrida B (1988) “Optimal Storage Properties of Neural
Network Models.” J. Phys., A21:271–284.

Garey MR, Johnson DS (1979) Computers and Intractability: A Guide
to the Theory of NP-Completeness. Freeman, New York.

Ginsburg H, Opper S (1969) Piaget’s Theory of Intellectual Develop-
ment. Prentice Hall, Englewood Cliffs, N.J.

Golgi C (1903) Opera Omnia, I, II. U Hoepli, Milan.

Grossberg S (1976a) “On the Development of Feature Detectors in the
Visual Cortex with Applications to Learning and Reaction-Diffusion
Systems.” Bio. Cybern., 21:145–159.

Grossberg S (1976b) “Adaptive Pattern Classification and Universal
Recoding: I. Parallel Development and Coding of Neural Feature De-
tectors.” Bio. Cybern., 23:121–134.

15. Local Linear Mappings 284

Grossberg S (1978) “Competition, Decision and Consensus.” J. Math.
Anal. Appl., 66:470–493.

Grossberg S, Kuperstein M (1986) Neural Dynamics of Adaptive Sensory-
Motor Control. North Holland, Amsterdam.

Gutfreund H, Mezard M (1987) “Processing Temporal Sequences.”
Neural Networks, preprint.

Harris WA (1986) “Learned Topography: The Eye Instructs the Ear.”
TINS, March, 97–99.

Hastie T, Stuetzle W (1989) “Principal Curves.” J. Am. Stat. Assn.,
84:502–516.

Hebb D (1949) Organization of Behavior. Wiley, New York.

Held R, Hein A (1963) “Movement-Produced Stimulation in the De-
velopment of Visually Guided Behaviour.” J. Comp. Physiol. Psy.,
56:872–876

Henson DB (1977) “Corrective Saccades: Effects of Altering Visual
Feedback.” Vis. Res., 17:63–67.

Hillis WD (1985) The Connection Machine. MIT Press, Cambridge,
Mass.

Hogan N (1984) “An Organizing Principle for a Class of Voluntary
Movements.” J. Neurosci., 4:2745–2754.

Hopfield JJ (1982) “Neural Networks and Physical Systems with Emer-
gent Collective Computational Abilities.” PNAS USA, 79:2554–2558.

Hopfield JJ (1984) “Neurons with Graded Response Have Collective
Computational Properties Like Those of Two-State Neurons.” PNAS
USA, 81:3088–3092.

Hubel DH, Wiesel TN (1974) “Sequence Regularity and Geometry of
Orientation Columns in the Monkey Striate Cortex.” J. Comp. Neurol.,
158:267– 294.

15. Local Linear Mappings 285

Hubel DH, Wiesel TN, Stryker PN (1978) “Anatomical Demonstra-
tion of Orientation Columns in Macaque Monkey.” J. Comp. Neurol.,
177:361–380.

Hwang YK (1988) “Robot Path Planning Using Potential Field Rep-
resentation.” Thesis, Univ. of Illinois, Urbana-Champaign.

Jenkins WM, Merzenich MM, Ochs MT (1984) “Behaviorally Con-
trolled Differential Use of Restricted Hand Surfaces Induces Changes
in the Cortical Representation of the Hand in Area 3b of Adult Owl
Monkeys.” Soc. Neurosci. Abstr., 10:665.

Jordan MI, Rosenbaum DA (1988) “Action.” Foundation of Cognitive
Science, MI Posner (ed.). MIT Press, Cambridge, Mass.

Kaas JH, Nelson RJ, Sur M, Lin CS, Merzenich MM (1979) “Multiple
Representations of the Body within the Primary Somatosensory Cortex
of Primates.” Science, 204:521–523.

Kaas JH, Merzenich MM, Killackey HP (1983) “The Reorganization
of Somatosensory Cortex Following Peripheral Nerve Damage in Adult
and Developing Mammals.” Ann. Rev. Neurosci., 6:325–56.

van Kampen NG (1981) Stochastic Processes in Physics and Chemistry.
North Holland, Amsterdam.

Kandel ER, Schwartz JH (1982) “Molecular Biology of Learning: Mod-
ulation of Transmitter Release.” Science, 218:433–443.

Kandel ER, Schwartz JH (1985) Principles of Neural Science (2nd Ed.).
Elsevier, New York.

Kawato M, Furukawa K, Suzuki R (1987) “A Hierarchical Neural-
Network Model for Control and Learning of Voluntary Movement.”
Bio. Cybern., 57:169–185.

Kelso SR, Ganong AH, Brown TH (1986) “Hebbian Synapses in Hip-
pocampus.” PNAS USA, 83:5326–5330.

Khinchin A.I. Mathematical Foundations of Information Theory. Dover,
New York.

15. Local Linear Mappings 286

Kirk DE (1970) Optimal Control Theory. Prentice Hall, Englewood
Cliffs, N.J.

Kirkpatrick S, Gelatt CD, Vecchi MP (1983) “Optimization by Simu-
lated Annealing.” Science, 220:671–680.

Kirkpatrick S (1984) “Optimization by Simulated Annealing: Quanti-
tative Studies.” J. Stat. Phys., 34:975–986.

King AJ, Hutchings ME, Moore DR, Blakemore C (1988) “Develop-
mental Plasticity in the Visual and Auditory Representations in the
Mammalian Superior Colliculus.” Nature, 332:73–76.

Knudsen EI, du Lac S, Esterly SD (1987) “Computational Maps in the
Brain.” Ann. Rev. Neurosci., 10:41–65.

Kohonen T (1972) “Correlation Matrix Memories.” IEEE, C21:353–
359.

Kohonen T (1982a) “Self-Organized Formation of Topologically Cor-
rect Feature Maps.” Bio. Cybern., 43:59–69.

Kohonen T (1982b) “Analysis of a Simple Self-Organizing Process.”
Bio. Cybern., 44:135–140.

Kohonen T (1982c) “Clustering, Taxonomy and Topological Maps of
Patterns.” Proc. 6th Int. Conf. on Pattern Recognition, Munich, 114–
128.

Kohonen T (1984a) “Self-Organization and Associative Memory.” Springer
Series in Information Sciences 8, Heidelberg.

Kohonen T, Mäkisara K, Saramäki T (1984b) “Phonotopic maps—
Insightful Representation of Phonological Features for Speech Recogni-
tion.” Proc. 7th Int. Conf. on Pattern Recognition, Montreal, 182–185.

Kohonen T (1986) “Learning Vector Quantization for Pattern Recog-
nition.” Report TKK-F-A601, Helsinki University of Technology.

Korn A (1982) Bildverarbeitung durch das visuelle System. Fachberichte
Messen, Steuern, Regeln 8, Springer-Verlag, Heidelberg.

15. Local Linear Mappings 287

Kuperstein M (1987) “Adaptive Visual-Motor Coordination in Multi-
joint Robots Using Parallel Architecture.” Proc. IEEE Int. Conf. Au-
tomat. Robotics, 1595–1602, Raleigh N.C.

Kuperstein M (1988) “Neural Model of Adaptive Hand-Eye Coordina-
tion for Single Postures.” Science, 239:1308–1311.

Lawley DN, Maxwell AE (1963) Factor Analysis as a Statistical Method.
Butterworths, London.

Lee C, Rohrer WH, Sparks DL (1988) “Population Coding of Sac-
cadic Eye Movements by Neurons in the Superior Colliculus.” Nature,
332:357–360.

Lemon R (1988) “The Output Map of the Primate Motor Cortex:
Trends.” Neural Sci., 11:501–506.

Lin S, Kernighan BW (1973) “An Effective Heuristic for the Travelling
Salesman Problem.” Optimization Research, 21:498–516.

Linde Y, Buzo A, Gray RM (1980) “An Algorithm for Vector Quantizer
Design.” IEEE Trans. Comm., 28:84–95.

Little WA (1974) “The Existence of Persistent States in the Brain.”
Math. Biosci., 19:101–120.

Little WA, Shaw GL (1975) “A Statistical Theory of Short and Long
Term Memory.” Behav. Bio., 14:115–133.

Luttrell SP (1989) “Self-Organization: A Derivation from First Princi-
ples of a Class of Learning Algorithms.” Proc. IJCNN 89, II:495–498,
Washington, D.C.

Makhoul J, Roucos S, Gish H (1985) “Vector Quantization in Speech
Coding.” Proc. IEEE. 73:1551–1588.

von der Malsburg C (1973) “Self-Organization of Orientation Sensitive
Cells in the Striate Cortex.” Kybernetik, 14:85–100.

von der Malsburg C, Willshaw DJ, (1977) “How to Label Nerve Cells
So That They Can Interconnect in an Ordered Fashion.” Proc. Nat.
Acad. Sci. USA, 74:5176–5178.

15. Local Linear Mappings 288

von der Malsburg C (1979) “Development of Ocularity Domains and
Growth Behavior of Axon Terminals.” Bio. Cybern., 32:49–62.

von der Malsburg C (1982) “Outline of a Theory for the Ontogenesis
of Iso-Orientation Domains in Visual Cortex.” Bio. Cybern., 45:49–56.

Marks KM, Goser KF (1987) “AI Concepts for VLSI Process Modelling
and Monitoring.” Preprint.

Marr D (1969) “A Theory of Cerebellar Cortex.” J. Physiol., 202:437–
470.

Martinetz T, Ritter H, Schulten K (1988) “Kohonen’s Self-Organizing
Map for Modeling the Formation of the Auditory Cortex of a Bat.”
SGAICO Proc. Connectionism in Perspective, 403–412, Z”urich.

Martinetz T, Ritter H, Schulten K (1989) “3D-Neural Net for Learning
Visuomotor-Coordination of a Robot Arm.” IJCNN-89, Conf. Proc.,
II:351–356, Washington,.

Martinetz T, Ritter H, Schulten K (1990a) “Three-dimensional Neural
Net for Learning Visuomotor-Coordination of a Robot Arm.” IEEE
Trans. on Neur. Net., 1(1):131–136.

Martinetz T, Ritter H, Schulten K (1990b) “Learning of Visuomo-
tor Coordination of a Robot Arm with Redundant Degrees of Free-
dom.” ICNC-90 Proc. Int. Conf. on Parallel Processing; Neur. Sys.
and Comp., D”usseldorf, 431–434, R, Eckmiller G, Hartmann, and G
Hauske (eds.), North-Holland, Amsterdam; and in ISRAM-90 Proc.
Third Int. Symp. Robot. and Mfg., Vancouver, B.C. , 521–526.

Martinetz T, Schulten K (1990) “Hierarchical Neural Net for Learning
Control of a Robot’s Arm and Gripper.” IJCNN-90 Conf. Proc., San
Diego 1990, III:747–752.

McCulloch WS, Pitts W (1943) “A Logical Calculus of the Ideas Im-
manent in Nervous Activity.” Bull. Math. Biophys. 5:115–133.

Merzenich MM, Knight PL, Roth GL (1975) . J. Neurophysiol., 38:231.

Miller KD, Keller JB, Stryker MP (1989) “Ocular Dominance Column
Development: Analysis and Simulation.” Science, 245:605–615.

15. Local Linear Mappings 289

Miller WT (1989) “Real-Time Application of Neural Networks for Sensor-
Based Control of Robots with Vision.” IEEE Trans. Sys., Man, and
Cybern., 19(4):825-831.

Minsky M, Papert S (1969) Perceptrons. MIT Press, Cambridge, Mass.

Mountcastle VB (1978) “An Organizing Principle for Cerebral Func-
tion: The Unit Module and the Distributed System.” The Mindful
Brain, GM Edelman and VB Mountcastle (eds.), 7–50. MIT Press,
Cambridge, Mass.

Murphy JT, Kwan HC, MacKay WA, Wong YC (1977) “Spatial Or-
ganization of Precentral Cortex in Awake Primates. III. Input-Output
Coupling.” J. Neurophysiol., 41:1132–1139.

Nelson W (1983) “Physical Principles for Economies of Skilled Move-
ments.” Biol. Cybern., 46:135–147

Obermayer K, Ritter H, Schulten K (1989) “Large-Scale Simulation of
a Self-Organizing Neural Network: Formation of a Somatotopic Map.”
Parallel Processing in Neural Systems and Computers, Eckmiller et al.
(eds.), 71–74, North Holland, Amsterdam.

Obermayer K., Ritter H., Schulten K. (1990a) “Large-Scale Simulations
of Self-Organizing Neural Networks on Parallel Computers: Applica-
tion to Biological Modelling.” Parallel Computing, 14:381–404.

Obermayer K, Ritter H, Schulten K (1990b) “A Neural Network Model
for the Formation of Topographic Maps in the CNS: Development of
Receptive Fields.” IJCNN-90 Conf. Proc., II:423–429. San Diego.

Obermayer K, Ritter H, Schulten K (1990c) “A Principle for the For-
mation of the Spatial Structure of Cortical Feature Maps.” Proc. Nat.
Acad. Sci. USA, 87:8345–8349.

Obermayer K, Blasdel GG, Schulten K (1991) “A Neural Network
Model for the Formation and for the Spatial Structure of Retinotopic
Maps, Orientation- and Ocular-Dominance Columns.” ICANN-91, Helsinki,
June 1991.

15. Local Linear Mappings 290

Overton KJ, Arbib MA (1982) “The Branch Arrow Model of the For-
mation of Retino-Tectal Connections.” Bio. Cybern., 45:157–175

Palm G (1980) “On Associative Memory.” Bio. Cybern., 36:19-31.

Palm G (1981) “On the Storage Capacity of an Associative Memory
with Randomly Distributed Storage Elements.” Bio. Cybern. 39:125–
127.

Pearson JC, Finkel LH, Edelman GM (1987) “Plasticity in the Orga-
nization of Adult Cerebral Maps: A Computer Simulation Based on
Neuronal Group Selection.” J. Neurosci., 12:4209–4223.

Pellionisz A, Llinas R (1979) “Brain Modelling by Tensor Network The-
ory and Computer Simulation. The Cerebellum: Distributed Processor
for Predictive Coordination.” Neurosci., 4:323–348.

Ramón y Cajal S (1955) Histologie du Systeme Nerveux. II., C.S.I.C.,
Madrid.

Rauschecker JP, Singer W (1981) “The Effects of Early Visual Expe-
rience on the Cat’s Visual Cortex and Their Possible Explanation by
Hebb-Synapses.” J. Physiol., 310:215–239.

Ritter H, Schulten K (1986a) “On the Stationary State of Kohonen’s
Self-Organizing Sensory Mapping.” Bio. Cybern., 54:99–106.

Ritter H, Schulten K (1986b) “Topology Conserving Mappings for Learn-
ing Motor Tasks.” Neural Networks for Computing, JS Denker (ed.)
AIP Conf Proc., 151:376–380, Snowbird, Utah.

Ritter H, Schulten K (1987) “Extending Kohonen’s Self-Organizing
Mapping Algorithm to Learn Ballistic Movements.” Neural Comput-
ers, R Eckmiller and E von der Malsburg (eds.), Springer, Heidelberg,
393–406.

Ritter H, Schulten K (1988) “Kohonen’s Self-Organizing Maps: Explor-
ing their Computational Capabilities.” IEEE ICNN 88 Conf., I:109–
116, San Diego.

15. Local Linear Mappings 291

Ritter H, Schulten K (1989) “Convergence Properties of Kohonen’s
Topology Conserving Maps: Fluctuations, Stability, and Dimension
Selection.” Bio. Cybern., 60:59–71.

Ritter H, Martinetz T, Schulten K (1989a) “Topology Conserving Maps
for Learning Visuomotor-Coordination.” Neural Networks, 2:159–168.

Ritter H, Martinetz T, Schulten K (1989b) “Topology Conserving Maps
for Motor Control.” Neural Networks, from Models to Applications, (L
Personnaz and G Dreyfus (eds.), I.D.S.E.T. Paris, 579–591.

Ritter H, Martinetz T, Schulten K (1989c) Ein Gehirn für Roboter—
Wie neuronale Netzwerke Roboter steuern können. MC-Mikrocomputerzeitschrift,
Franzis-Verlag München, Feb. 1989.

Ritter H (1989) “Asymptotic Level Density for a Class of Vector Quan-
tization Processes.” Internal Report A9, Helsinki Univ. of Technology.
IEEE Trans. on Neural Networks, Jan. 1991.

Ritter H, Kohonen T (1989) “Self-Organizing Semantic Maps.” Bio.
Cybern., 61:241–254.

Ritter H, Kohonen T (1990) “Learning ‘Semantotopic Maps’ from Con-
text.” IJCNN-90, Conf. Proc., 1990, I:23–26 Washington, D.C.

Ritter H. (1990) “Motor Learning by ‘Charge’ Placement with Self-
Organizing Maps.” Neural Networks for Sensory and Motor Systems,
R Eckmiller (ed.), Elsevier, Amsterdam.

Robinson DA (1973) “Models of the Saccadic Eye Movement Control
System.” Kybernetik, 14:71–83.

Rosenblatt F (1958) “The Perceptron: A Probabilistic Model for Infor-
mation Storage and Organization in the Brain.” Psych. Rev., 65:386–
408.

Rosenblatt F (1961) Principles of Neurodynamics: Perceptrons and the
Theory of Brain Mechanisms. Spartan Books, Washington, D.C.

Rubner J, Schulten K (1990) “A Self-Organizing Network for Complete
Feature Extraction.” Bio. Cybern., 62:193–199.

15. Local Linear Mappings 292

Rumelhart DE, McClelland JL (1984) Parallel Distributed Processing.
MIT Press, Cambridge, Mass.

Rumelhart DE, Hinton GE, Williams RJ (1986) “Learning Represen-
tations by Back-Propagating Errors.” Nature, 323:533–536.

Saltzman EL (1979) “Levels of Sensorimotor Representation.” J. Math.
Psy., 20:91–163.

Schwartz EL (1980) “Computational Anatomy and Functional Archi-
tecture of Striate Cortex: A Spatial Mapping Approach to Perceptual
Coding.” Vision Res., 20:645–669.

Sejnowski T, Rosenberg CR (1987) “Parallel Networks That Learn to
Pronounce English Text.” Complex Systems, 1:145–168.

Sparks DL, Nelson JS (1987) “Sensory and Motor Maps in the Mam-
malian Superior Colliculus.” TINS, 10:312–317.

Steinbuch K (1961) “Die Lernmatrix.” Kybernetik, 1:36–45.

Suga N, Jen PH (1976) “Disproportionate Tonotopic Representation
for Processing CF–FM Sonar Signals in the Mustache Bat Auditory
Cortex”. Science, 194:542–544.

Suga N, O’Neill WE (1979) “Neural Axis Representing Target Range
in the Auditory Cortex of the Mustache Bat.” Science, 206:351–353.

Takeuchi A, Amari S (1979) “Formation of Topographic Maps and
Columnar Microstructures.” Bio. Cybern., 35:63–72.

Taylor WK (1956) “Electrical Simulation of Some Nervous System
Functional Activities.” Information Theory, C Cherry (ed.), 314–328,
Butterworths, London.

Walker MW, Orin DE (1982) “Efficient Dynamic Computer Simulation
of Robotic Mechanisms.” J. Dyn. Sys., Meas., and Cont., 104:205–211.

Werbos P (1974) “Beyond Regression: New Tools for Prediction and
Analysis in the Behavioral Sciences.” Ph.D. thesis, Harvard Univ. Com-
mittee on Applied Mathematics.

15. Local Linear Mappings 293

Widrow B, Hoff ME (1960) “Adaptive Switching Circuits.” WESCON
Conv. Rec., IV:96–104.

Willshaw DJ, Buneman OP, Longuet-Higgins HC (1969) “Non-Holographic
Associative Memory.” Nature 222:960–962.

Willshaw DJ, von der Malsburg C (1976) “How Patterned Neural Con-
nections Can Be Set up by Self-Organization.” Proc. R. Soc. London,
B194:431–445.

Willshaw DJ, von der Malsburg C (1979) “A Marker Induction Mecha-
nism for the Establishment of Ordered Neural Mappings: Its Applica-
tion to the Retinotectal Problem.” Proc. R. Soc. London, B287:203–
243.

Woolsey CN, Harlow HF (1958) Biological and Biochemical Basis of
Behavior. Univ. of Wisconsin Press, Madison, 63–81.

Wurtz RH, Goldberg ME, Robinson DL (1986) Neuronale Grundla-
gen der visuellen Aufmerksamkeit. Wahrnehmung und visuelles System,
Spektrum der Wissenschaft, Heidelberg, 58–66.

Zipser D, Andersen RA (1988) “A Back-Propagation Programmed Net-
work That Simulates Response Properties of a Subset of Posterior Pari-
etal Neurons.” Nature, 331:679–683.

