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Synopsis. Topographically organized maps and adaptive filters fulfill important
roles for information processing in the brain and are also promising to facili-
tate tasks in digital information processing. In this contribution, we report re-
sults on two important network models. A first network model comprises the
“self-organizing feature maps™ of Kohonen. We discuss their relation to optimal
representation of data, present results of a mathematical analysis of their behav-
jor near a stationary state, demonstrate the formation of “striped projections”,
if higher-dimensional feature spaces are to be mapped onto a two-dimensional
cortical surface, and present recent simulation results for the somatosensory map
of the skin surface and the retinal map in the visual cortex. The second network
model is a hierarchical network for principal component analysis. Such a net-
work, when trained with correlated random patterns, develops cells the receptive
fields of which correspond to Gabor filters and resemble the receptive fields of
“simple cells” in the visual cortex.

8.1 Introduction

One essential task of neural-network algorithms is optimal storage of data. Dif-
ferent criteria for optimal storage are conceivable, and correspondingly different
neural-network algorithms have been derived. Many of them fall into one of two
major, and to some extent complementary, categories.

The first category is that of so-called attractor networks [8.1]. Such networks
are fully connected: information is stored in a distributed way and retrieved by
a dynamical relaxation process. The distributed storage mechanism makes these
systems very tolerant to partial damage or degradation in their connectivity but
also introduces a tendency for “crosstalk” between similar patterns [8.2, 3]. This
type of storage does not reduce the information content of patterns stored. In
fact, it stores prototype patterns completely, e.g. as pixel images, and allows
classification of presented patterns according to the stored prototypes.

The second category is formed by so-called competitive learning networks, in
which a set of “grandmother cells” is used for storage of the presented patterns
[8.4, 5]. Such networks involve an input and output layer of “grandmother cells”
and storage is achieved through the development of receptive fields which re-
semble stored patterns. The receptive fields act as filters: when a pattern similar
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to one of the patterns in a training set is offered, the output cell the receptive field
of which best matches the input becomes activated. Since a single cell provides
the network response, such systems lack any tolerance against hardware failure,
but they avoid crosstalk between patterns of even very high overlap. Although
each “grandmother cell” might appear as a fully localized storage device, part
of the information is actually distributed: the “grandmother cell” selected by the
input pattern is only determined by competition among many candidate cells
and, therefore, depends crucially on information from many different cells in the
network.

The usable storage capacity of both types of network is similar and can be
brought close to the information inherent in the required weight values (see e.g.
[8.6,7]). Generalization or “associative completion” of partial inputs is also very
similar: in the absence of any special preprocessing the stored pattern of maximal
overlap with the presented input is usually retrieved.

While attractor networks have been investigated very much in recent years,
competitive learning networks have received less attention. There are many non-
trivial and interesting properties of competitive networks that deserve more study.
This is particularly true for a generalization of these networks where weight ad-
justments of “grandmother cells” lose their independence and are mutually cou-
pled in some prespecified way. These networks, introduced by Kohonen under the
name “self-organizing feature maps” [8.8-10], possess properties which make
them particularly interesting for both understanding and modeling the biological
brain [8.11, 56-58] and for practical applications such as robotics [8.12, 13].

In the following, we will present several mathematical results pertaining to
Kohonen networks and review some work concerning the application of Kohonen
networks to modeling of neural tissue in the cortex. A more comprehensive
account can be found in [8.14].

Another important issue for optimal storage, relevant to both types of model
discussed above, is efficient preprocessing of information. It is, of course, most
desirable to achieve dense information storage through filters which rapidly dis-
cern the important features of input data and restrict storage to these features. In
the visual system of biological species such filters operate on the lowest levels
of the system in the optical cortex and extract important visual features such as
edges and bars (see e.g. [8.15,16]). An answer to the question how the brain
achieves the neural connectivity which establishes optimal filters for preprocess-
ing is extremely desirable for the development of neural-network algorithms for
computer vision and other information-processing tasks characterized by huge
amounts of data. Only a small part of the architecture of the brain is genetically
specified; most of the brain’s synaptic connections are achieved through self-
organization. Postnatal visual input plays an essential role in the organization of
synaptic patterns of the optical cortex of mature animals (see e.g [8.17]). These
observations raise the question of how a sensory system, in response to input
information, can organize itself so as to form feature detectors which encode
mutually independent aspects of the information contained in patterns presented
to it. In Sect. 8.6 we will present a two-layered network as a model for such
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system. It will be demonstrated that simple local rules for synaptic connectivities
allow the model to learn in an unsupervised mode. Presented with a set of input
patterns the network learns to discern the most important features defined as the
principal components of the correlation matrix of a set of training patterns. The
network described generalizes a model of Linsker [8.18] which established the
possibility of self-organized formation of feature detectors.

8.2 Self-organizing Maps and Optimal Representation of Data

The basic aim of “competitive networks” as well as of “self-organizing maps”
is to store some, usually large, set V of patterns, encoded as “vectors” v €
V, by finding a smaller set W of “prototypes” w, such that the set W :=
{w,,,w,,,... w,, } of prototypes provides a good approximation of the original
set V. Intuitively, this should mean that for each v € V the distance ||v —w (||
between v and the closest prototype w,,) in the set W shall be small. Here,
the “mapping function” s(.) has been introduced to denote for each v € V the
(index of the) closest prototype in W. (Therefore, the function s(.) depends on
all prototypes w, and is equivalent to a full specification of their values: given
s(.), one can reconstruct each w, as the centroid of the subset of all v e V for
which s(v) =r.)

For a more precise formulation of the notion “good approx1mat10n of V’ we
assume that the pattern vectors v are subject to a probability density P(v) on V,
and then require that the set of prototypes should be determined such that the
expectation value E of the square error,

Elw] = / llv = wow|[* Pv)dy (8.1)

is minimized. Here w := (w,,, w,,,... w,, ) represents the vector of prototypes
in W.

Minimization of the functional E[w] is the well-known problem of optimal
vector quantization [8.19,20] and is related to data compression for efficient
transmission of the pattern set V: if an average error E{w] can be tolerated,
sender and receiver can agree to use the mapping function s(.) to transmit only
the (usually much shorter) “labels” s(v) of the approximating prototypes w,
instead of the complete pattern vectors v themselves.

A straightforward approach to find a local minimum of (8.1) is gradient
descent for the functional E[.], i.e. the prototypes are changed according to

W, = / (v — W) P(v)d% . (8.2)
s(v)=r

Equation (8.2) is equivalent to the discrete “learning rule”

Aw, = 551‘,3(11)(” - w,) ’ (8.3)
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applied for a sequence of random “samples” v € V that are distributed according
to the probability density P(v) in the limit of vanishing “step size” e. Equation
(8.3) is a well-known “learning rule” found in many competitive networks: for
each “presentation” of an input v, s(v) “selects” the best-matching prototype
Vector w,(y), for an adjustment towards v. For rapid convergence, one usually
starts with a larger initial learning step size ¢; < 1, which is gradually lowered
to a final, small value ¢ > 0.

The self-organizing feature maps [8.8-10] generalize this scheme for optimal
storage (in the sense of minimal average error E[w], (8.1)) by considering the
prototypes w, to be associated with points = in some “image domain” A and
requiring that a “structured representation” or “map” of the data 'V is created on
A during the storage process. The “map” arises through the selection function
s(v), which maps each pattern vector to a point 8 € A. The discrete set A
is endowed with some topology, e.g. by arranging the points as a (often two-
dimensional) lattice. The aim of the algorithm of self-organizing feature maps
then is, besides approximating V' by the prototypes w,., also to arrange the w,
in such a way that the associated mapping s(.) from V to A maps the topology
of the set V, defined by the metric relationships of its vectors v € V, onto the
topology of A in a least distorting way. This requires that (metrically) similar
patterns v are mapped onto neighboring points in A. The desired result is a (low-
dimensional) image of V' in which the most important similarity relationships
among patterns from V are preserved and transformed into spatial neighborhood
relationships in the chosen “image domain” . '

To achieve this, the adjustments of the prototypes w, must be coupled by
replacing the Kronecker 6,., in (8.3) by a “neighborhood function” h,.,,

Aw, = ehyym)(v — w,) . (8.4)

The function h,, is (usually) a unimodal function of the lattice distance d =
||» — 8]| in A, decaying to zero for d — oo and with maximum at d = 0. A
suitable choice, for example, is a Gaussian exp(—d?/20?). Therefore, vectors w,,
w, associated with neighboring points », s € A are coupled more strongly than
vectors associated with more distant points and tend to converge to more similar
patterns during learning. This mechanism enforces a good “match” between the
topologies of V and A on a local scale. Consequently, it is no longer E[w] but
instead the functional

Flwl =) hpp / l|o — w,|[*P(v)d%v (8.5)
rr! s(v)=r'

that is (approximately) minimized by the new process. Equation (8.5) for a dis-
crete set V has been stated in [8.21] and there it was shown that its minimization
is related to the solution of the “traveling-salesman problem”. A more general
interpretation was subsequently given by Luttrell [8.22]. He considers again the
case when the prototypes in W are used to obtain “labels” s(v) to compress the
pattern set V' for the purpose of transmission, but in addition assumes that this
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transmission is “noisy”, i.e. there is a probability of h,, that label s is confused
with label = as a result of the transmission process. Then the reconstruction of
a transmitted pattern v will not always be the closest prototype w4 but will
be w, with a probability of h,,»). Hence the expected mean square error on
transmitting a pattern v will be given by >, hpsw)(v — w,)? and F[w] can thus
be seen to represent the expected mean square transmission error over the noisy
channel, averaged over the whole pattern set V.

In Sect. 8.4 we will return to this interpretation and discuss the relationship
between some aspects of brain function and optimization of F[w].

8.3 Learning Dynamics in the Vicinity of a Stationary State

After clarifying the optimization task underlying the formation of self-organizing
maps, the next task is to characterize the convergence properties of the map for-
mation process, based on (8.4). For a more detailed account of the mathematical
analysis the reader is referred to [8.23]. '

First, one needs to address the question how far convergence to a global min-
imum can be achieved. Even for simple distributions P(v), the functional F[w]
can exhibit many different local minima [8.59, 60]. As the adaptation equation
(8.4) is based on a gradient descent procedure, one generally cannot hope to find
the global optimum but must be content with some more or less optimal local
minimum. The function h,, plays an important role in finding a good minimum
[8.59, 60]. Inspection of (8.4) shows that in the long-range limit (i.e. h,, = const)
the functional F[w] approaches a simple quadratic function with a single min-
imum. Therefore, by starting an adaptation process with a long-ranged h,., and
then reducing the range of h,, slowly to the intended, smaller final value, one
gradually deforms the “optimality landscape” from a simple, convex shape to a
final, multi-minimum surface. Such a strategy facilitates convergence to a good
minimum of F[.]. The choice of a good starting configuration is also helpful
in this respect. As will be pointed out in Sect. 8.4, the optimization process can
be interpreted as a model for the formation of topographically ordered neural
projections in the brain. In this case, a good starting configuration is provided
by an initial coarse ordering of the neural connectivity.

We focus in the following on the behavior of the optimization process in the
vicinity of a good minimum of F'. For the mathematical analysis we consider an
ensemble of systems, each characterized by a set w = (w,,, w,,,...w, ), r; €
A, of prototype vectors. S(w,t) shall denote the distribution of the ensemble,
after ¢ adaptation steps, in the state space {2 spanned by the prototype sets w.
We make the assumption that the pattern vectors v are statistically independent
samples from V/, subject to the probability density P(v). In this case (8.4) defines
a Markov process in the space {2 with transition probability

Quw,w)=Y" / dv 6(w — W' — ehy oV — w')) P(v) (8.6)
T Fr(w)
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for the transition from a state w' to a state w. F.(w') denotes the set of all »
which are closer to w] than to any other w', s # r, and s'(v) is defined in
analogy to s(v), but using the primed reference vectors w], instead. F,.(w') and
s'(.) are related: the former is the set of patterns v € V' mapped onto the same
point » € A by the latter.

Assuming a small learning step size ¢ and a distribution function S(w,t) that
is concentrated in the vicinity of the selected local optimum @ of F[.], one can
derive the following Fokker—Planck equation for the time development of S:

1 B i) € #S(u,t)
EatS(u, t)= r";n —:B,.m,.lnu,.:nS(u, )+ E ";n Drm,r'n'aurmaur,n ’
8.7

where we have tacitly shifted the origin of S(.,¢) to the selected state @, using

now the new argument variable u = w — i instead of w. B is a matrix given
by

B, i = <M) ’ (88)

awr'n w
and the quantities V,.,, and D,.,,,, are the expectation values (—0w,y,) and
(6w, 6w, ,) under one adaptation step, where dw,.,,, is the change of the mth
component of prototype w,, but scaled to ¢ = 1. Their explicit expressions are
are given in [8.23].

With the help of (8.7) one can answer an important question about the con-
vergence of the process: Which control of the learning step size ¢ guarantees that
each ensemble member converges (with probability 1) to the optimum w? It turns
out that, if w is a stable stationary state (a necessary and sufficient condition for
this is that B+ BT be a positive definite matrix), the two conditions

t

tlim / e(t)dt' = oo, (8.9)
0
tlim et)=0 (8.10)

provide the desired answer [8.23]. Equation (8.10) is rather obvious, but (8.9)
sets a limit on the rate of reduction of the learning step size. If ¢ decreases faster
than allowed according to condition (8.9) there is some nonzero probability that
the adaptation process “freezes” before the local optimum is reached.

In reality, of course, (8.9) can never be met exactly; however, for ¢ = 0,
(8.7) can be used to show that the remaining deviations from the optimum are
exponentially small in the quantity [ e(¢)dt [8.23]. :

A second important question concerns the statistical SAuctuations that are
present for a non-vanishing learning step size and that are due to the randomness
of the sequence of input patterns v. If ¢ = const, (8.7) admits as a stationary
solution a Gaussian with correlation matrix
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(8.11)

rm,sn

(UrmUsn) = (Wem — Wy )(Won — Wen))s = € [(B+ BT D]

where (...) denotes averaging over the ensemble. For an explicit evaluation of
the matrices B and D one needs to know the configuration w of the local
optimum chosen for the discussion. Even for simple distributions P(v) there
can be numerous and complex configurations w leading to a local minimum of
F[.]. To study a simple, but still interesting, case we assume that A is a two-
dimensional lattice of N x N points and that the set V' is continuous and of higher
dimensionality. We choose V' as the three-dimensional volume 0 < z,y < N,
—s < z < s and assume a constant probability density P(v) = [2sN2]~!.
Clearly, for a topology-preserving mapping between V and A there exists some
“conflict” because of the different dimensions of A and V. The parameter s
can be considered a measure of this conflict: if s is small (i.e. 2s <« N), a
“perpendicular” projection obviously provides a very good match between the
topologies of V and of A (Fig. 8.1a). However, this is no longer the case if
s becomes larger. Then minimization of F[.] is expected to require a more
complicated mapping from V to A (Fig. 8.1b).

(b)

= |
/“ / /= = 7.7 7 Fig.8.1 (a): For small height 2s of the

4 \" volume V, a “perpendicular” projection
of V onto the lattice A provides a good
match between the topologies of V' and
% A. (b) For larger values of s the mapping

ﬁ V +— A required to minimize the func-

tional F[.] (8.5) is no longer obvious

We want to find the limiting value of s for which the “perpendicular” pro-
jection loses its optimality and to discuss in which way the mapping can be
“improved” then.

To avoid any edge effects, we assume periodic boundary conditions for the
lattice A and for V along the z- and y-axes. One can then evaluate (8.11) for
W, =T, r =me, +ney, which, by symmetry, must be a stationary solution for
F (as well as any other configuration obtained by translations or rotations of ).
This choice for w corresponds to the mapping 3(v) = nint(v,)e, + mnt(vy)ey
(nint(z) = nearest integer to z), i.e. to a perpendicular projection suppressing
the v,-coordinate. Besides P(v) and b, the remaining important determinant of
the behavior of the system is the function h,., that defines the coupling between
different lattice points. A simple choice is the Gaussian

2
hrr' = 25r+s,r’ CXp (_2_80'__2') ’ (812)

with lateral width o, for which we will require 1 <« o0 <« N. Owing to the
translational invariance, both D,,,+,, and B, ,,, depend only on the difference
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r — v’ and on m, n. Therefore, we can decouple (8.7) if we represent S(u,t) in
terms of the Fourier mode amplitudes

A 1 ik ,
a(k) = ¥ zr:e' T, (8.13)

of u, where k = (I/2xrN,m /2% N) is a two-dimensional wave vector of the
lattice A. Each mode amplitude turns out to be distributed independently, and
its fluctuations can be calculated explicitly by separating (8.7) into a set of
independent equations for each mode. The exact result is fairly complicated (for
details, see [8.23]), but if one neglects “discretization effects” due to the finite
lattice spacing and uses axes parallel (||) and perpendicular (L) to the wave
vector instead of the fixed z- and y-directions, one can bring the mean square
value of the equilibrium fluctuations of the different Fourier modes into a simpler
form:

A a2 _ 2 exp(—k?a?)

(G1(k)) =emo 120 — exp(—k202/2)) ° (8.14)

a2 (12K%0* + 1)exp(—k2o?)

(k) = emo” 0 — vty exp(—k?02/2) ’ (8.15)
2 2 2

(23(k)?) = emo?— 3 K0 (8.16)

3 — sk?exp(—k202/2)

Figures 8.2-4 compare the theoretical prediction (curves) and data points from
a Monte Carlo simulation of the process on a 32x32-lattice for the square roots
fias = (@) 5)!/? of the mode fluctuations for & = 0.01. To make the Monte
Carlo simulation computationally more feasible, h,, was not chosen according
to (8.12), but instead as unity for » = s and all nearest-neighbor pairs r,s in
the lattice and zero otherwise. This corresponds roughly to ¢ = 1 in (8.12),
but the corresponding theoretical predictions are somewhat different from (8.14—
16) (they are given in [8.23]); however, all essential features discussed below
remain. Each mode can be interpreted as a periodic distortion of the equilibrium
mapping. The first set of modes (&, Fig.8.2) represents distortions that are
“transverse” to their direction of periodicity, while the second set of modes (&),
Fig. 8.3) represents distortions that are “longitudinal”. For both kinds of mode,
the fluctuations increase with increasing wavelength. This is to be expected,
since the “restoring force” for modes with very long wavelengths is determined
by the boundary conditions, which are assumed periodic, and, therefore, allow
an arbitrary translational shift (¢ = 0-mode).

The most interesting set of modes are those perpendicular to the zy-directions
(23). These modes describe fluctuations of the prototypes w, along the additional
dimension, which is “lost” in the “perpendicular” projection 3(.) associated with
the equilibrium configuration @. For values s < o, inspection of (8.16) shows
that the amplidude of these modes is of the order of s and, therefore, is small
for any k. This indicates that, although some information is lost, for s < o
the mapping defined by @ cannot be improved by small distortions. However,
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Fig. 8.2. Dependence of fluctuations of “ransverse mode” », on the wave number k. The “neigh-
borhood function” was chosen to be hrs = 1 for r = s and all nearest-neighbor pairs r, s and zero
otherwise. The data points were obtained from a Monte Carlo simulation with 10000 samples of the
Markov process (8.4) for fixed € = 0.01 and s = 10—4. The curve represents the analytical result

Fig. 8.3. Fluctuations of the “longitudinal mode” u)| of the same simulation as in Fig. 8.2 above. For
small wave numbers the fluctuations are smaller than for u;,

Fig. 8.4. Fluctuations of the “perpendicular mode” u3 for three different values of the thickness
parameter s: for s = 104, i.c. essentially a two-dimensional input distribution, only small fluctuations
arise. For s = 1.3 fluctuations begin to exhibit a broad maximum at about k* = 0.58x, which becomes

very pronounced for s = 1.5, i.e. a value closely below the critical value s* = /12/5

as s increases, (8.16) shows that for s close to a “threshold value” of s* =
04y/3¢/2 = 2.020 the denominator can become very small for ||k||-values in
the vicinity of ||k|| = k* = v2/0, and correspondingly large fluctuations are
exhibited by these modes. Finally, at s = s*, all modes with ||k|| = k* become
unstable: s has become so large that the mapping 3(.) has lost its optimality and
can be further optimized if the prototypes w, assume a wavelike “modulation”
along their w,3-direction. The characteristic wavelength of this modulation is
A* = g7v/2 ~ 4.440 [8.21]. For s > s*, a whole “window” of unstable modes
appears. This is also discernible in Fig. 8.4, where the different choice of the
function h,,, however, leads to changed values of s* = 12/5 ~ 1.54 and
k* ~ 0.58~ (for k directed along the z-direction).

We can summarize now the following answer to our initial question: the
simple, “perpendicular” projection 3(.) is the optimal mapping as long as s, its
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maximal “error” in the vertical direction, is below a value s* = o1/3¢/2. In this
case, apart from fluctuations, all prototypes w, have the same value of w,3. The
threshold value s* can be interpreted as being the distance in the space V that
corresponds to the range of the “neighborhood function” h,, in the lattice A. For
s > s*, the “perpendicular” projection can be optimized further by distortions.
These distortions arise from the components w,3, which now must vary with
r. Their variation, and, therefore, the pattern of distortions, is dominated by
a wavelength of \* = onv/2, i.e. A\* is also proportional to the range of the
“neighborhood function” h.,.,.

In the previous context, V being a set of patterns, the z- and y-coordinates
would correspond to two “primary” features characterized by a large variation,
whereas the z-coordinate would correspond to a “secondary” feature, character-
ized by a smaller variation that is measured by s. Then, as long as s < s*,
the system converges to a topographic map of the two “primary” features only.
However, when the variation of the “secondary” feature, compared to the two
“primary” ones, becomes large enough, the “secondary” feature begins to be re-
flected in the values of the prototypes and, therefore, in the topographic map.
The variation of the prototypes along the axis of the “secondary” feature is dom-
inated by the wavelength A\* and gives rise to an irregular pattern of “stripes” if
each lattice point » is assigned a gray value that indicates the value w,3 of its
prototype w, along the axis of the “secondary” feature (Fig. 8.5).

Fig. 8.5. “Striped projection”. The displayed 40x40-lattice was used to obtain a “topographic map”
of a 3-dimensional “feature space” given by 0 < z,y < 40, —4 < z < 4 with Kohonen’s algorithm
((84), ¢ = 1.4, 10* steps). The height (2-) dimension plays the role of the “secondary” feature,
and gray values indicate its distribution over the lattice. The resulting pattern closely resembles the
“ocularity stripes” found in the visual cortex. These are alternating bands of cells with stronger
preference to input from either the right or the left eye (see, e.g. [8.24])
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Interestingly, in the brain there are many two-dimensional arrangements of
cells on which such “striped projections” seem to be realized. Prominent ex-
amples are the “ocular dominance stripes”, where in addition to the “primary”
two-dimensional retinal location, the additional feature “ocularity” (i.e. the de-
gree to which a cell receives input from each eye) is mapped [8.24,25], and the
“orientation stripes”, where the additional feature is line orientation [8.26, 27].

Models of the development of such “striped projections” have been previously
suggested (see, e.g. [8.25,28-31]). Here we want to emphasize that the previous
analysis demonstrates that also the particularly simple model by Kohonen can
account for the phenomenon of striped projections, a fact that has been observed
already in simulations presented in [8.10] but seems to have received only little
attention subsequently. This brings us to the issue of the “neural interpretation”
of the model and its properties, a topic taken up in the following section.

8.4 Relation to Brain Modeling

One of the major architectural features within the brains of higher animals are to-
pographically organized “maps” of various “feature spaces”. They can be found
in nearly all sensory and motor areas within the brain, e.g. the visual, auditive,
and somatosensory fields as well as in the motor cortex, and there is both theoret-
ical and some experimental evidence that maps of more abstract features might
turn out also to play a role on higher processing levels [8.32].

In the somatosensory system the “feature space” is particularly simple. It
is mapped onto a certain part of the cortex called the “somatosensory cortex”.
Experiments on the cortical representation of the hand surface in owl monkeys
have revealed a very precise correspondence between hand locations and neurons
in the cortical field [8.33]: each neuron can be excited only from receptors in some
small “receptive field” in the hand surface, and the arrangement of the neurons
in the cortex is a distorted, but still topographic “image” of the arrangement
of their receptive fields on the skin. There is evidence that the required, very
precise connectivity is not genetically prespecified but instead evolves gradually
under the influence of sensory experience. Maps in different individuals show
considerable variations, and they are not rigidly fixed even in adult animals. The
somatotopic map can undergo adaptive changes, which have been found to be
strongly driven by afferent input [8.34, 35].

The “self-organizing maps” are perhaps the simplest model that can account
for the adaptive formation of such topographic representations (for other model-
ing approaches, see e.g. [8.30,31, 36, 37]). In this case, the lattice A of prototypes
w, corresponds to a sheet of laterally interacting adaptive neurons, one for each
lattice site r, that are connected to a common bundle of n input fibers from the
receptors in the receptor sheet. The ith component of vector w, is interpreted as
the connection strength between input fiber ¢ and neuron r.

The formation of the map is assumed to be driven by random sensory stimula-
tion. Tactile stimuli on the receptor sheet excite clusters of receptors and thereby
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cause activity patterns on the input lines that are described by n-dimensional real
vectors and that take the role of the input patterns v € V. The total synaptic input
to each neuron = is measured by the dot product @ - w,. Each tactile stimulus
is considered as a discrete event that leads to excitation of a localized group of
neurons in the lattice A. The function h,., (with s fixed and » taken as argument)
is interpreted as the spatial variation of this neural excitation in A, and (8.4) can
then be interpreted as a Hebbian rule together with an “activity-gated” memory
loss term for the change in the synaptic strengths w, following the stimulus.

The spatial shape h,, of the neural response is modeled by a Gaussian and
is assumed to arise from lateral competitive interactions within the cortical sheet
(for details, see e.g. [8.11]). Its center location s is assumed to coincide with
the neuron receiving the largest synaptic input w, - v. Strictly speaking, this is
only equivalent to (8.4), where s was defined to be minimizing the Euclidean
difference ||v — w,]|, if all vectors w, and v are assumed to be normalized.
If, however, all w, are kept normalized, one can even drop the “memory loss
term” —h,4)v, as its main purpose is only to keep the vectors w, bounded.
Therefore, the simulations presented below are based on the modified adaptation
equation

wir(t + 1) = (wr(t) + €(t)hn;k:(t)vi)/\/Ei(wku(t) +e(®)hrsikinvi)?, (8.17)

where we have also altered the notation, replacing = by (k, 1) when referring to
the synaptic weights of a neuron at a lattice site » = (k, [).

We still need to specify the input patterns v. To this end, each input line ; is
taken to belong to one tactile receptor, located at a position x; in the receptor
sheet. The tactile stimuli are assumed to excite spatial clusters of receptors. As
a convenient mathematical representation for a stimulus centered at xgim, we
choose a Gaussian “excitation profile”

. . )2
v; = N exp (_(i-#’“—)—) (8.18)

oy

where o, is a measure of the “radius” of each stimulus.

With this interpretation, the algorithm, discussed in Sect. 8.2 as a means to
generate a representation of a data set V that is optimal for transmission over
some noisy channel, is seen as an adaptive process shaping the connectivity
between two sheets of nerve cells. We can now return to the significance of the
minimization of the functional F[w] in the present context.

We will assume that the primary task of a cortical map is to prepare a suitable
encoding of the afferent sensory information for use in subsequent processing
stages. Part of this encoded information is represented by the location of the
excited neurons. Therefore, the correct transmission of this information to sub-
sequent processing stages is equivalent to the target neurons being able to assess
the origin of their afferent excitation correctly. However, such neurons typically
integrate information from several different brain areas. Therefore, their “recep-
tive fields” in these areas tend to be the larger, the higher their level in the
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processing hierarchy is, and their reaction to input from one source may be in-
fluenced by the current inputs from other sources. This may make it impossible
to tie their response precisely to excitation in a precise location of a cortical
predecessor map. However, if such neurons cannot “read” the precise source
location of their input excitation, they are in a position very similar to that of a
receiver at the other end of a noisy transmission channel. Therefore, a cortical
map based on minimization of the functional F(w] (8.5) might help to minimize
the average transmission error between neural layers arising from fluctuations of
their “functional connectivity” .

8.5 Formation of a “Somatotopic Map”

In this section, we shall present a computer simulation for the adaptive ordering of
an initially random projection between tactile receptors on the skin and neurons in
a “model cortex™ [8.11,38]. The “model cortex” consists of 16 384 neurons that
are arranged as a 128 x 128 square lattice and connected to 800 tactile receptors
randomly scattered over a “receptor surface” (Fig. 8.6). The initial values wg;;
were given independent random values chosen from the unit interval, thereby
“connecting” each neuron in a random fashion to the 800 receptors.

In experiments, neurons are frequently characterized by their “receptive field
properties”. A “receptive field” of a neuron is the set of stimulus locations xgim
that lead to a noticeable excitation of the neuron. The center of the receptive
field of neuron (k, ) is in the model defined as the average

Skl = Zwiwku/ Zwkli : (8.19)

The mean square radius of the vr.eceptive field is a measure of the stimulus selec-
tivity of neuron (k,[) and is defined as

Gu= ) (@i - swfweis/ Y wh (8:20)

Figure 8.7 shows the hand-shaped receptor surface of the model used for the
simulations. Each dot represents one of the 800 tactile receptors. Different regions
of the hand are coded by different colors. Figure 8.8a shows the initial state of the
network. Each pixel in the image corresponds to one neuron (k, ) of the neural
sheet, and the pixel color simultaneously encodes two different properties of its
receptive field in the hand surface: the hue indicates the location sy, of the field
center on the receptor surface shown in Fig. 8.7, and the saturation of the color

indicates the spatial spread (o Gzz) of the receptive field. Neurons with large,
diffuse receptive fields, i.e. those neurons that are connected to many, widely
scattered receptors, are represented with low color saturation, while neurons with
small, spatially highly specific receptive fields, i.e. connected only to receptors
within a small spatial domain, are represented with bright, highly saturated colors.
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Fig. 8.6. Schematic drawing of the model system. The neuron
sheet (“cortex™) is represented by a square lattice of model
neurons, each connected by modifiable links to all of 800 ran-
domly located “receptors” in the receptor surface

neural receptor
sheet surface

As each neuron has its connections randomly initialized, all receptive fields,
apart from statistical fluctuations, are initially very similar: they diffusely extend
over the whole hand surface and, therefore, are “centered” in the middle of the
receptor surface. This is reflected in Fig.8.8a by the fairly uniform and pale
color within the entire cortical sheet. Figure 8.8b shows the map after about 200
adaption steps. The brighter colors indicate the onset of a specialization of the
neurons for smaller receptive fields. Finally, Fig. 8.8c shows the completed and
refined map obtained after 10000 stimuli. It shows all parts of the hand surface
in their correct topographic order, and the cortical map exhibits only small fluc-
tuations during further “stimulation”. Note that each neuron is still connected to
every receptor, although the connection strengths outside the neuron’s receptive
field are very small. The connections can, however, be “revived” if the distri-
bution of the input pattern changes, leading to an input-driven reorganization of
the cortical map [8.34].

The emergence of selectively tuned neurons with spatially restricted receptive
fields in the receptor surface can also be analytically demonstrated [8.39]. For
sufficiently small adaptation steps (i.e. ¢ < 1), one can derive the following
equation for the change of the receptive-field sizes G; under one adaptation
step:

hrs - .
Grit+1) = Gi(t) + % zi:(:c,j — sk (v; — wii(t) Zi:(t)) :

(8.21)

From this relation, one can derive an equation for G; when the system has
reached a stationary state,

Gy = Lrsrl(IT(@,) + (@, — 810)°1 5, vi) P.)d %2,
f’%s;kl(E,’ v;)P(:cs)d2:c,
Here P(.) denotes the probability density of the stimuli centers g, in the

receptor surface, and (..) denotes the average over all stimulus shapes (in case
the stimuli are more general than the Gaussians of (8.18)). I'(.) represents the

(8.22)
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Fig. 8.7. (top left) Hand surface with receptor lo-
cations. Colors are used to identify different sub-
regions of the hand

Fig. 8.8a—c. (from top right to center right) De-
velopment of “somatotopic map”. Each pixel de-
notes a neuron, its color encodes the origin of its
input in the hand surface shown in Fig.8.7: (a)
initial, (b) after about 200 stimuli, and (c) after
10 000 stimuli. At this stage, a clear topographic
order has emerged

Fig. 8.9. Spatial organization of neuronal orientation preference and selectivity, formed in a simulated
patch of “visual cortex” by the self-organizing process (8.17). A “rainbow” palette of colors indicates
orientation preferences from 0° to 180°. Dark regions correspond to low, bright regions to high,
directional selectivity




mean square radius of each stimulus, defined by

I(z,) = ﬁ Z(z,- —x,) ;. (8.23)

Equation (8.22) can be approximated well by the much simpler relation (for
details see [8.40])

Gu~T+M 16, (8.24)
where
2 E hrs;mn [(7' - m)2 + (3 - n)2]
ok =t — (8.25)

denotes the mean square radius of the output function and M is the local magnifi-
cation factor of the mapping from stimulus centroids zg;, to neuron coordinates
(r, 8). Equation (8.24) states that the neurons develop receptive fields the area of
which (proportional to Gy;) is the sum of two terms: the first term is essentially
the area of a typical stimulus (< I") and the second term is essentially the area
(x o2) of the adjustment zone in the neuron layer, but “projected back” (inverse
magnification factor M ~!) onto the receptor sheet. Therefore, for predominantly
localized tactile stimuli and narrow A, the neurons will develop localized
receptive fields.

Figure 8.10 compares this theoretical result with data from a simulation
(16 384 cells, 784 receptors, h,, k1 = exp(—[r — k1> + [s — [12/0), 0, = 0.15,
6 x 10* steps), where oy, has been varied slowly between oy, = 100 and oy, = 5.
The diagram shows the mean square radius of the receptive field averaged over
2300 neurons from the center of the neural sheet plotted against the right-hand
side of (8.24). The dots represent the results of the simulation and the solid line
corresponds to (8.24). The agreement is very satisfactory, except for parameter
values leading to large receptive fields, for which edge effects become noticeable.

1,500

]
1,000 1

500 A

mean square radius (simulation)

0 —r—r—r—r—r—r————r——r—r—r
0 500 1,000 1,500
mean square radius (analytical calculation)

Fig. 8.10. Development of receptive field radii. The analytical result (8.24) is compared with results
of a computer simulation (mean square radii are given in arbitrary, relative units)
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Fig. 8.11. Development of a localized receptive field: (a)
(top left) initial connectivity of selected neuron with tactile

receptors, (b) (top right) after 3000 and (c) (lower left)
after 10 000 adaptation steps

Figure 8.11 illustrates the state of a typical receptive field at the beginning of
another simulation (Fig. 8.11a), after 3000 iterations (Fig. 11b) and after 10000
iterations (Fig. 8.11c) (for this run oy, = 50...5, op = 0.12 and ¢y, = 10%). The
dot locations mark the positions of the tactile receptors on the receptor surface,
while their brightness encodes the strength of their connection to the neuron
under consideration. Initially, the field is very diffuse (Fig. 8.11a), but contracts
rapidly (Fig. 8.11b), until finally it is localized well (Fig. 8.11c).

An important aspect of these simulations is the demonstration that the forma-
tion of the correct topographic map of the skin surface succeeds also in the case
when the two-dimensional position information about the stimuli is provided by
the very high dimensional (d = 800) input vectors that represent the excitation
patterns of the tactile receptors. To accomplish this, the algorithm has to “de-
tect” the relevant, two-dimensional submanifold formed by the stimuli, and has
to “ignore” all remaining “orthogonal” coordinates.

The optical cortex faces a self-organization task similar to that of the so-
matosensory cortex. However, in contrast to the somatosensory map, the map
from the eyes’ retina to the optical cortex is known to represent, in addition to
the “primary” features “retinal location” (pair of coordinates!), further features,
such as orientation and ocularity. The spatial organization of the visual map
has been studied in great detail (see e.g. [8.24,26,27]) and cells with similar
ocularity or tuned to similar orientations were found to be arranged in irregular
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“bands” or “stripes”. Adding “ocularity” or “orientation” to the two “pri-
mary” features “retinal location” results in the need to map a three- or higher-
dimensional feature space onto a two-dimensional surface [8.58, 61]. Figure 8.5
showed a self-organizing map which gave rise to a pattern of the “secondary”
feature that resembles observed patterns in the visual map. A closer agreement
with natural maps can be obtained if the three-dimensional input representation is
replaced by high-dimensional excitation patterns on a “model retina” [8.56, 57].
Figure 8.9 shows an “orientation map” on a “model cortex” of 256 x256 cells
obtained in this way. “Stimuli” were of elliptic shape with randomly chosen ori-
entations. The “stimuli” produced excitations on a “model retina” covered with
900 randomly distributed light-sensitive “receptors”. Each pixel in Fig. 8.9 repre-
sents one neuron. The pixel color encodes the orientation of the stimulus to which
the neuron is maximally responsive (“orientation preference”), and the brightness
the degree of specificity of the neuron. Various features, such as “slabs” along
which orientation selectivity changes continuously, dark “foci” of unspecific cells
around which orientation changes in a clockwise or anti-clockwise fashion, and
“fractures”, across which orientation changes discontinuously, can be discerned

and correspond well to observations from actual mapping experiments (see, €.g.
[8.26,27]).

8.6 Adaptive Orientation and Spatial Frequency Filters

In this section we consider the issue of data compression through preprocessing
by local filters which select geometrically significant features from their input.
A major part of the material in this section is taken from [8.40]. The input
will be spatially varying patterns, for example, correlated random dot patterns or
textures. The architecture of the network is very similar to that of the networks
described above. It consists of an input layer with NV; neurons and an output
layer with N, neurons. Input and output units exhibit real, continuous-valued
activities ¢ = (i1,..,t5;) and o = (o1,..,0n,). The output layer should develop
synaptic connections with the input layer to establish suitable receptive fields. The
development of connections is driven by training with a set of N, representative
patterns {p™ = (p{,..,pR.), ™ =1,..., No}.

The formation of the receptive fields will depend on adaptive lateral interac-
tions between units in the output layer. These lateral interactions serve functions
similar to lateral connections in Kohonen-type networks. In the latter such con-
nections are needed to determine the output unit of maximal activity as well as to
induce neighborhoodwide activities described by the functions h,,, which leads
to a topology-conserving neural projection between input and output layers. In
the present network, lateral interactions serve the role of molding the projec-
tion such that characteristic correlations between input activities ¢,...,1y, are
detected. Such correlations are described by the the covariance matrix C of a
set of characteristic patterns. This matrix has elements C;x = (pfpf) where
pj denotes a sample pattern and (...) denotes the average over the training set
{p™,m=1,...,N.}.
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The desired filters are achieved by synaptic weights w;,,, between input unit
J and output unit m. The set of weights connecting an output unit m with all
input units forms the weight vector w,,, the transpose of which is the mth row
of the weight matrix W. Activities of the input units correspond to the presented
patterns, i.e., 2 = p”. Activities of the output units, in response to a pattern p”,
are linear sums of the inputs weighted by the synaptic strengths, i.e., o™ = W p~.
The desired filters, i.e. synaptic weights, are the eigenvectors of the covariance
matrix Cj; defined through

Y Citwkm = AmWim . (8.26)

Application of such filters corresponds to the statistical technique of principal
component analysis (see, e.g., [8.41]). The network should yield the first eigen-
vectors of the covariance matrix corresponding to the largest eigenvalues ),,
of Cjx. To render such network robust against failure of single units one may
represent the mth eigenvalue by a large number of output units rather than a
single unit. However, in the following we will assume for the sake of simplicity
that single output units represent an eigenvector of Cjy.

The output units should also discern the spatial location of these characteris-
tics in a spatially extended pattern p. This latter capacity can be achieved through
a translation-invariant duplication of network characteristics. We will neglect the
position dependence and focus in the following only on preprocessing in a small
neighborhood of input cells. We choose, therefore, two completely interconnected
layers, i.e. w;,, initially is nonzero for all j and m.

We will describe now how the network through adjustment of its synaptic
weights can adopt appropriate receptive fields when exposed to the set of training
patterns. Weights between layers are adjusted upon presentation of an input pat-
tern p™ according to a Hebbian rule, leading to an increase in synaptic strength if
the corresponding pre- and postsynaptic potentials are of the same sign. If weight
changes are small enough, the update can be performed after presentation of all
patterns, i.e.

Awn = n{(p™ — (P)0F, — (5)) , (8:27)

where 7 is a positive parameter and where the brackets (...) denote again the
average over the set of patterns. The subtraction of averages in (8.27) can be
interpreted as the existence of thresholds of the units. On the other hand, sub-
tracting averages is convenient from a mathematical pomt of view [8.42] and
allows one to assume that (p™) =0 and (o™) = 0.

Let us first consider the case of a single output unit. Linsker showed that the
weights of a unit that is subject to the Hebbian rule (8.27) evolve to maximize
the variance of the output for a set of presented patterns [8.18]. If the weights
are normalized after every update such that 3", w? = 1, the Hebbian rule renders
weights which characterize the direction of maximal variance of the pattern set
[8.42]. Equivalently, the weight vector w; converges to the eigenvector with
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the largest eigenvalue A; of the covariance matrix C of the pattern set. Thus, a
Hebbian learning rule for Euclidian normalized weights yields the first principal
component of the input data set. The nonvanishing weights w;; of the output
unit define its receptive field. The output unit then acts as a feature detector
which analyzes the principal feature of a presented pattern and corresponds to a
so-called “matched linear filter” [8.42].

However, a single principal component usually describes only a fraction of
the total information contained in a pattern. In order to transmit the complete
information between the two layers, as many output cells as the rank of the
covariance matrix C are required. Furthermore, in order to develop into filters
of mutually orthogonal features, the output cells need to become uncorrelated.
For this purpose we assume the existence of lateral, hierarchically organized
connections with weights u;,, between output units [ and m, where | < m. The
activity of the mth output cell is then given by o], = - p™+ ;. Uimw;-p™.
According to (8.27), changes of synaptic connection strengths between input units
and output unit m are given by

Aw,, =7 (C’wm +3 ukmC'wk> : (8.28)

k<m

Figure 8.12 presents the architecture of the network, in particular, the hierarchical
arrangement of lateral connections. This arrangement has been chosen to guide
the network to a final state in which the output units assume receptive fields
corresponding to the different eigenvectors of the covariance matrix C. The
cell in the output layer at the top of the hierarchy will adopt a receptive field
corresponding to the eigenvector with the largest eigenvalue, the cell next in the

hierarchy will represent the eigenvector with the second largest eigenvalue, and
so forth.

input units
[ J *® L ] L ]

Fig. 8.12. Schematic drawing of the hierarchical
network used for feature extraction
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To ascertain that the cells adopt different receptive fields the lateral weights
u;m adapt themselves according to an anti-Hebbian rule: the strength of a lateral
synapse is lowered if the corresponding pre- and postsynaptic activities are of the
same sign. Again we assume that changes of the synaptic weights are small. The
anti-Hebbian rule leads to a decrease in synaptic strength if the corresponding
output units have correlated activities and is described by

Atpm = —p {0 O ) . (8.29)

Here u is a positive learning parameter. The anti-Hebbian rule is similar to the
learning rule of Kohonen’s novelty filter [8.10] and to the “unlearning® rule
proposed by Hopfield [8.43].

Because of the hierarchical arrangement, the cell at the top of the hierarchy
will force all other output units to become uncorrelated to it; the top cell develops
its receptive field in accordance with the first eigenvector and suppresses any
attempt of cells lower in the hierarchy to develop the same receptive field. The
second cell in the hierarchy prevents all cells below it developing a receptive field
similar to its own, the latter being shaped to agree with the second eigenvector
of the covariance matrix C. This chain is continued down to the cell last in the
hierarchy. The selection of receptive fields in the order of decreasing eigenvalues
Am originates from the fact that the weights w;,, grow fastest in the direction
of the distribution of the first eigenvector, second fastest in the direction of the
second eigenvector, and so on.

As a result of the proposed learning scheme, the weight vector w,,, converges
to the mth eigenvector of C. Convergence requires that the learning parameters
n and p governing the weights w;m, and up,n, respectively, need to obey the
inequality (we assume the ordering of eigenvalues A\; > A2 > ... > Ay.)

n (M — An)

A (1 F70) (8.30)

for n = 1,2,..., N, [8.44]. Since C is a real symmetric matrix, the weight
vectors w;,, become orthogonal and, consequently, the output units with different
receptive fields in the mature network are uncorrelated. This implies that in the
mature network the lateral connections vanish after they have completed their
important function of yielding orthogonal receptive fields.

Several authors have proposed inhibitory connections between output units in
order to render their activities uncorrelated [8.5, 10, 46,47]. In our scheme, lateral
connections are both excitatory and inhibitory before they vanish. This results
in a purely feed-forward network, which represents an important computational
advantage for a parallel system. Principal component analysis has also been
associated with linear feed-forward networks using optimization methods with
respect to a quadratic error function, i.e., back-propagation [8.48]. The advantage
of our model consists in optimal feature extraction without supervision and in the
existence of biologically plausible, local adaptation rules for the weights, namely
Hebbian and anti-Hebbian rules.
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We will illustrate now the performance of the network for patterns of spatially
varying intensity and show that the network develops feature cells with receptive
fields which are similar to those of “simple cells” found in the striate cortex and
which select features of different orientation and different spatial frequencies.

For this purpose, we consider a rectangular lattice of N; x N/ sensory input
units representing the receptive field of N, output units, with N, < N; N!. We
generate two-dimensional input patterns of varying intensity by first selecting
random numbers sij ™ =1,..., Ny from the interval [—1,+1]. Then, in order
to introduce information about the topological structure of the receptive field,
the random input intensities are correlated, e.g., with their nearest neighbors in
both directions. As a result, the component p7; ) of a pattern p™ at the coordinate
(1, 7) of the receptive field is given by pf; = sT; + 8Ty ; + sy ; + 71 + 8T
We assume vanishing boundary conditions, i.e., so, =80 =S8N+ = s N+l = =0.
Note that this averaging of neighboring signals corresponds to mtroducmg an
additional layer with random activities and with fixed and restricted connections
to the input layer.

Receptive fields of simple cells in cat striate cortex as recorded by Jones
et al. [8.49,50] can be described by Gabor functions which consist of an os-
cillatory part, namely a sinusoidal plane wave, modulated by a Gaussian, ex-
ponentially decaying part. To localize the receptive fields in our model system
correspondmgly, we scale the weights between layers, i.e. the weight w(ij, m)
between the input unit at lattice location (z,7) and the mth output unit, ac-
cording to w'(ij, m) = D(s, ])w(z],m), where D(z, ) is a Gaussian distribution
with D@, j) ~ exp[—(i — i0)?/o1 — (j — jo)*/o2). Here, o1 and o3 control the
width of the distribution and (49, jo) 1s the coordinate of the lattice center, i.e.,
(o, jo) = (Ni/2, N!/2).

Imposing a Gaussian distribution of synaptic weights will change the eigen-
value spectrum of the covariance matrix of the input pattern. Therefore, such a
network, in a strict sense, cannot develop receptive fields according to a principal
component analysis. However, if the restriction to neighborhoods described by
a Gaussian were not applied, the weights w;,, develop towards the exact eigen-
vectors of C. The localization of w;,, can be exploited to prevent degeneracies
between eigenvalues, which can lead to a mixing of receptive fields, resulting in
asymmetrical fields. If the Gaussian distribution is chosen not to be rotationally
symmetric, i.e., if o1 /02 # 1, the orientation of receptive fields is predetermined
owing to imposed symmetry axes.

Figure 8.13 displays contour plots of the receptive fields of the first eight
output cells after 10000 learning cycles (from left to right and top to bottom).
Solid lines correspond to positive, dashed lines to negative synaptic weights. The
input lattice was a square of 20 x 20 units. We imposed a Gaussian distribution
of synaptic weights with parameters o) = 12 and ¢, = 15. Learning parameters
n and p were equal to 0.05 and 0.1, respectively. Owing to the nonsymmetric
Gaussian distribution of weights, all units have slightly elongated receptive fields.
The first unit corresponds to a simple cell with all-inhibitory synaptic weights.
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Fig. 8.13. From left to right and top to bottom: contour plots of receptive fields of output units 1-8
in the case of a square lattice of 20 x 20 input units. The synaptic distribution D(3, ) between layers
was Gaussian with ¢y = 12 and o, = 15. Solid lines indicate positive, dashed lines negative, weights.
The number of leaming cycles was 10000; the learning parameters n and p were equal to 0.05 and
0.1, respectively

The receptive fields of the second and third units display an excitatory and an
inhibitory region and resemble simple cells, selective to edges of a fixed orien-
tation. The fourth and sixth units have receptive fields with two zero crossings,
corresponding to simple cells, selective to bars of a fixed orientation. In addi-
tion, the seventh unit is orientation selective, with four alternating excitatory and
inhibitory regions. This unit would respond maximally to two parallel lines or
bars with fixed distance and orientation.

The described units have receptive fields that resemble recorded receptive
fields of simple cells in the primary visual cortex [8.16, 49, 50]. Up to now, there
has not been any experimental evidence for receptive fields of the type of the
fifth and eighth units, displaying four and six lobes.

8.7 Conclusion

Our previous analysis of self-organizing maps and of a hierarchical network
for learning feature extraction has focused on two complementary aspects: the
first aspect concerned the information-processing task carried out by each system,
while the second concerned the capability of each system to account for observed
phenomena of brain organization.

Regarding the first aspect, we demonstrated that both systems have in com-
mon the ability to compress data. This ability is realized in different ways for the
two systems: self-organizing maps achieve data compression by a nonlinear map-
ping of their input patterns onto a lower-dimensional manifold. The points of this
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manifold can be considered “code labels” requiring less storage space than, and
allowing an approximate reconstruction of, the original data. The self-organizing
maps lead to an encoding that is a compromise between minimization of the
reconstruction error for the original data and preservation of their similarity
relationships under the encoding transformation.

The hierarchical network for feature extraction achieves data compression
by performing a principal component analysis of its input data. The available
cells organize their connectivity such that they automatically extract the prin-
cipal components with the largest eigenvalues of the signal correlation matrix.
Their output values represent the amplitudes of these principal components and,
therefore, provide a lower-dimensional signal from which the original signal can
be reconstructed with minimal expected square error.

With regard to the second aspect, we showed that self-organizing maps can
explain several properties of the organization of cortical areas, such as the ubig-
uitous “striped projections” and the hierarchical feature maps found in the visual
cortex, as a consequence of a single principle. This principle is related to the
minimization of the functional F[w] and interpretable as a process of adaptive
synaptic modification. The hierarchical feature-extraction network complements
this ability by explaining the formation of the small-scale structure observed
in the various receptive fields encountered in cells of the visual cortex. The
receptive-field properties of these cells resemble Gabor filters, and very similar
receptive fields are developed by the cells of the artificial network.

' A better understanding of the operation of the brain involves the investigation
of several levels of organization. The research presented in this contribution was
meant to be a small step towards this goal.
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