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Abstract: It is demonstrated that the computational capabilities of Kohonen'’s self-
organizing mapping algorithm can be applied to problems from such diverse fields
as sensory mappings, combinatorial optimization and motor control. In addition we
present some recent mathematical results characterizing important properties of the
algorithm in these situations.

1. Introduction

Connections in a biological neural network of a higher animal cannot be genetically
prespecified in a detailed manner. Consequently much of the “neural wiring diagram”
can only evolve after birth and requires sensory and motor experiences for proper
maturation (Held and Hein 1963). At present, very little is known about higher levels
of this extensive process of organization. On a lower level, the adaptive formation of
topology-conserving neural projections can be observed in many different parts of the
brain (Kaas et al. 1983, King et al. 1988, Harris 1986). Models successfully accounting
for the formation of such projections from simple principles have been proposed and
investigated by several authors (Grossberg 1976ab, v.d.Malsburg and Willshaw 1977,
Willshaw and v.d. Malsburg 1979, Overton and Arbib 1982). Kohonen demonstrated
the capability of similar principles for the adaptive formation of more abstract feature
maps (Kohonen 1982abc, 1984a, Kohonen et al. 1984b). We believe that his model
constitutes a most valuable step towards a better understanding of the question, how
the organization of higher levels of synaptic connections can occur on the basis of
simple and fairly low level synaptic modification rules without the need for extensive
instruction beyond exploratory sensory and motor experience. In this contribution,
we want to demonstrate that the computational capabilities of Kohonen’s algorithm
provide an unified approach to such diverse fields as sensory mappings, combinatorial
optimization and learning in motor control. To this end we give in Sec. 2 a brief
account of the algorithm. In Sec. 3 we show several applications in the aforementioned
fields and in Sec. 4 we present some recent analytical results for the model.

2. The Algorithm

The aim of Kohonen's algorithm (Kohonen 1982a, 1984a) is to generate a mapping
of a higher dimensional space V of input signals onto an, usually two-dimensional,
discrete lattice A of formal neurons. The map is generated by establishing a corre-
spondence between inputs from V and neurons in the lattice such, that the topological
(neighborhood) relationships among the inputs are reflected as faithfully as possible
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in the arrangement of the corresponding neurons in the lattice. This renders a “non-
linearly flattenend” two-dimensional version of the input space which for many tasks
constitutes a very useful data structure.

The correspondence is obtained iteratively by a sequence of training steps, which
can be formulated in terms of synaptic modification laws (Kohonen 1984a) for the
neurons. However, for the purposes of this paper, we present the algorithm in an
abstract form without explicit reference to neurons.

Each input signal is represented by a vector v € V. For each training step an
input v € V is chosen randomly according to some probability of occurrence P(v).
Each location r of the lattice A carries a vector wy € V. The vectors wy map lattice
locations r to points in V and for each training step this mapping is adjusted by the
following two steps:

1. Determine lattice location s for which
wg — V|| = min||wy — Vv
“ 8 || Ted || r ”

where v is the randomly chosen input signal for the current step.
2. For all sites r in the neighborhood of s (with s included) adjust

w9 = W) 4 ehyg(v — WM, (1)

where 0 < hyg < 1 is a prespecified adjustment function of the distance ||r — 8|
and ¢ is a learning step size. hrg has its maximum at r = s and usually decays
to zero, as ||r — 8|| increases.

By decreasing the step size € and the lateral width of hrs slowly with increasing number
of training steps, the algorithm can be shown to gradually yield values for the vectors
wy which define a (discretized) neighborhood conserving mapping between lattice sites
r and points of the input space V (Kohonen, op.cit.).

3. Applications

In this Section we shall demonstrate the computational capabilities of the map-
ping algorithm by examples in three different fields: sensory mappings, combinatorial
optimization and learning in motor control. Applications have been explored also in
pattern recognition (Bertsch and Dengler 1987, Kohonen op.cit.).

Throughout the simulations we chose €(t) = ¢ - (¢7/ ¢;)t/tmaz, hpg = exp(—||r —
s|[2/20(t)%) and o(t) as €(t) with f; replaced by os;. The variable ¢ counts the
learning steps.

The first simulation shows the formation of a somatotopic map between the tactile
receptors of a hand surface and a model cortex of 30 x 30 formal neurons arranged as a
regular square lattice (Ritter and Schulten 1986). In this case the space V consists of
the activity patterns of the set of tactile receptors covering the hand surface and each
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show that this type of problem can be solved in a very similar fashion by applying
Kohonen’s original algorithm, which differs in the way the adjustments are produced.
To this end input vectors v and weight vectors wr are chosen two-dimensional and the
probability distribution P(v) is concentrated to a set of L = 30 randomly chosen loca-
tions of “towns” in the unit square. Instead of a two-dimensional lattice of neurons a
linear, closed chain of 100 “neurons” is chosen for A. Figures 2a,b,c show the resulting
mapping process for ¢; = ¢; = 0.8, 0; = 50, 05 =1 and tygz = 10000. Each stage of
the process is visualized by showing the square together with the image of the chain
A under the mapping r € A — wy € [0,1)2. A regular 100-gon was chosen as initial
configuration (Fig.2a). During the training sequence it gradually deforms into a path
connecting the 30 points to a closed tour (Fig.2b: after 7000 steps, Fig.2c: after 10000
steps). The tendency of the algorithm to preserve neighborhood structure results in
attempting especially short tours as final configurations. In fact, for the simulation
shown the algorithm detected the shortest possible tour, although this is not always
guaranteed and slightly longer tours than minimal may be obtained.

Figure 2a-c

The last example deals with a problem in motor con-
trol. We consider a three-jointed robot arm over a
table (Fig.3). Its joints are actuated by torques ¥ =
(r1,72,73)T and its joint angles are § = (61,02,03)T.
The arm shall be actuated by short torque pulses
and swing freely for the remaining periods (“ballistic
movements”). A torque pulse 7(t) = 7- §(t) acceler-
ates the end effector to a velocity given by v = A(G_)r"
(we assume the end effector to be initially at rest and
we assume absence of gravity). Here A is a configura-
tion dependent linear mapping, relating a desired ve-

Figure 3 locity v for the end effector with the required torque
pulse amplitude 7.
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Figure 4a-c

A generally depends in a very complicated manner on configuration and dynamical
properties of the arm and, therefore, often is not known explicitly. Here we shall
employ an extension of Kohonen’s algorithm to learn A by trial movements from the
velocities v actually attained. During training each site r shall become responsible
for a small subregion of configuration space, located at wy, and learn the appropriate
transformation Ay valid there. To this end we again employ a lattice, but now we attach
to each site r in addition to wr a linear mapping A transforming desired velocity into
required torque amplitude. Training consists_‘ of a sequence of random trial movements.
Each movement starts from a configuration 8, for which the end effector is at a random
position on the table. For the simulation the desired velocity u of the movement is
chosen of unit magnitude and along a random direction. Configuration 0 selects the
site s for which ||§ — wg|| is minimal, and on the basis of the associated matrix Ag a
torque pulse of amplitude 7 = Agu is applied at the joints. A learning rule of error-
correction-type (Widrow and Hoff, 1960) is used to obtain from the velocity v actually
resulting from 7 an improved estimate

A* = Ag+ |[v]|7H(7 - Asv)vT

for the correct value of Ag. Then the pair (5, A%) is used to perform an adjustment
step on the lattice variables wr and Ay, which is analogous to step 2. in Sec.2.

In this case the resulting data structure is a planar map of linear mappings con-
necting sensory input to motor output. This is reminiscent of a qualitatively similar
situation in the Superior Colliculus, where a topologically organized motor map of eye
saccade movements is found (Sparks and Nelson 1987).

Figures 4a,b show the resulting maps from a simulation of the system described
above. Figure 4a shows the reactions of the end effector prior to learning, when the
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initial values of the matrices Ay entail large random errors. The initial values wy have
been chosen to correspond to a set of random end effector positions on the table, and
for each of these positions the resulting actual velocities from two test movements of
equal desired velocity parallel to the table sides are shown. Fig. 4b shows the same
test after 10000 trial movements. Now the reactions are in good agreement with the
desired ones. A much worse result is obtained, if the lateral interactions provided by
the finite width of hyg in the learning algorithm are absent (Fig. 4c). In this case only
part of the units manages to converge to the correct values (Ritter and Schulten 1987).

4. Mathematical Results

In view of the wide applicability of Kohonen’s mapping algorithm, a closer math-
ematical analysis of its basic properties is highly desireable. Some results for this and
a closely related algorithm have already been presented in (Kohonen 1982b, 1984a,
Cottrell and Fort 1986, Ritter and Schulten 1986, 1988). Here we want to report some
more recent results.

Mathematically, the algorithm is a Markov process with transition probabilities
Q(w,w') = / §(w — T(W',v,€))P(v) dv. (2)

where w := (Wr;,...,Wry) is a multi-vector comprising all vectors wy of A and
T (W', v, €) is the new multi-vector w obtained from w' under one adaptation step (1)
with input v. For a discrete probability density (p; >0, ¥;p; = 1)

L
P(v)=Y pb(v—-q), a€V. (3)
i=1

there exists a potential V (w), whose expected change for state w under a single learning
step is given by

E(AViw) = —e; IVw:VII® (4)

if the learning step size ¢ is small. V itself is given by

Viw) =3 Tk L milai-wo) (5)

re q;€F(w)
with
Fo(w) = {veV||lv—wall <|lv—wr| Vre 4}. (6)
V is continuous, but only piecewise differentiable. All local extrema, where V is dif-

ferentiable, are minima. —V (W) can be interpreted as a measure of the degree of
topological ordering of the mapping defined by state w, if hyg is taken as measuring

I-114



the degree of neighborhood of r and st. V usually exhibits numerous local minima,
which correspond to mappings with different types of topological defects. (4) shows,
that on the average V decreases and the learning process tries to find states minimiz-
ing V. Any individual learning step however, can lead to a temporary increase of V.
Therefore, similar to Monte-Carlo-annealing, Kohonen'’s algorithm has to some extent
the capability of escaping from bad local minima with ¢ in loose qualitative analogy to
a temperature. The number of minima decreases with increasing range of the lateral
adjustment function hys. In the limiting case hyg = const. (i.e. infinite range), only a
single minimum is left, corresponding to wy = const. as the only stable state. As the
range of hrg decreases, more and more minima appear, and correspondingly many dif-
ferent stable equilibrium maps become possible. Therefore, starting with long-ranged
hrs and slowly changing hyg to the desired values adiabatically transforms V from an
“easy” to a “difficult” potential. This greatly facilitates achieving low minima for the
learning algorithm and, therefore, good mappings without topological defects. Passing
to the limit of a continuous probability distribution, V looses its differentiability and
cannot any longer be regarded as a potential function. However, we expect that the
presence of many different possible configurations is preserved in this case, too. This
is in accordance with experience from simulations, which here likewise produce better
maps if the range of hrg is gradually lowered from large values.

5. Conclusion

We have explored Kohonen’s algorithm in three problem domains: sensory map-
pings, combinatorial optimization and motor learning. For a discrete probability dis-
tribution of the training inputs, the formation of the mapping can be described as a
probabilistic descent in a potential. In view of their wide applicability, the principles
of the algorithm may also be inherent to the maturation of biological brains and may
help to achieve a better understanding of these processes from a more unified point of
view.
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